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Abstract. There are very few examples of architectured materials producing significant strain-
gradient effects in elastostatics. In the present paper, we generate for the first time new mi-
crostructures featuring these effects from topological optimization of two-dimensional periodic
media. The optimized shape functionals depend on the first and second-order homogenized
tensors, obtained from a two-scale asymptotic expansion homogenization scheme. The opti-
mization method applied here relies on the recently rigorously derived topological derivative of
the second-order homogenized tensor, measuring the strain-gradient sensitivity with respect to
a small circular inclusion at the microscopic level endowed with different material property from
the background. This previous theoretical work allows an accurate numerical implementation.

1. Introduction

Additive manufacturing and topological optimization sparked a renewed interest in the study
of architectured materials over the past two decades, partly due to the emergence of 3D printers
and the improvement of the computational methods and power. In the present study, we are
interested in two-dimensional continuous periodic materials, designed in such a way that the
required macroscopic properties are obtained after organizing their inner microstructure. The
framework describing macroscopic properties of a material from the analysis of its microstruc-
ture, called homogenization, usually allows to describe an architectured material by an approx-
imated first-gradient macroscopic model. Namely, the sole first gradient of the macroscopic
displacement field is used for measuring the elastic energy. Such models have been extensively
studied and optimized (see [9, 11, 43], among others), but they are valid under a hypothesis of
scale separation and finite geometric contrast within the cell.

However, this hypothesis may not be satisfied in practice. In this case, other macroscopic
models also called generalized continua are needed, such as higher order models, having addi-
tional degrees of freedom (for instance Cosserat materials), or higher gradient models for which
higher-order gradients of the macroscopic displacement field are used for measuring the elastic
energy (see e.g., [21]). Thus, we explore how to produce new microstructures yielding non-
classical and interesting behavior, and how to optimize these effects. In particular, we study
the numerical synthesis of novel periodic continuous microstuctures featuring higher gradient
macroscopic effects, and more precisely strain-gradient effects.

In dynamics, strain-gradient elasticity is relevant when the wavelength is of the same order
as the size of the heterogeneities of a material, leading for example to new dispersive properties
(see e.g., [34]). In an effort to improve these effects, the shape and topological optimization have
been investigated for wave equations in periodic structures, some based on the shape sensitivity
[4], others on the topological sensitivity [13, 18].

In elastostatics, the macroscopic length scale is typically the size of the domain and strain-
gradient effects may be understood as small corrections of classical elasticity. Hence, contrary
to dynamics, they are difficult to observe unless some specific stiffness contrast assumptions
are made. Indeed, it was shown theoretically in [17] that many different models of generalized
continua can be obtained from the homogenization of a mixture of materials with large contrast
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and some microstructures were investigated in this framework (see [2, 1], among others). Never-
theless, in practice, there are not so many microstructures that result in a generalized continuum
for the elastostatic case. For this reason, we generate such microstructures in the present work.
Instead of making assumptions on the contrast of the materials, we use topological optimization
to produce non-classical effects arising from geometrical contrasts. In particular, we focus on
the optimization of strain-gradient effects in elastostatics.

For this, we rely on the classical two-scale asymptotic expansion method, which brings out
higher-gradient terms as corrections of the first-gradient elasticity, and allows to identify the
higher-order homogenized tensors by computing the macroscopic elastic energy. In [39], a higher
order convergence result is given for an infinite periodic media with a finite material contrast.
Although the assumptions are restrictive, this result gives an interesting heuristic, and has been
used in [19] to detect strain-gradient effects in a material with voids inclusions by a numerical
investigation. To achieve this result, the first-gradient homogenized tensor should be degener-
ated to create zero-energy modes, so that the strain-gradient terms, which are usually small
correction terms, become predominant. Thus, we follow such an approach in order to maximize
strain-gradient effects in periodic media, for which the unit cell is a mixture of two elastic ma-
terials with a property contrast.

In order to produce some new microstructures, a possible strategy is to use shape or topolog-
ical optimization methods, which have been widely applied to structural optimization problems
(see e.g., [41, 35] for reviews, and [3, 38] for detailed introductions), as well as to many other
fields, such as imaging, fluid mechanics, heat conduction problems, acoustic, electromagnetic,
inverse problems, and piezoelectric. Among the main ones, we can mention the evolutionary
approaches (see e.g., [5]), phase-field approaches (see e.g., [42]), the density methods (such as the
homogenization approach [3], or the SIMP method [12, 44]), and the level-set methods (intro-
duced in [33], see e.g. [41] for a review).

In this paper the topological derivative method is adopted, applying and adapting the theo-
retical results from [15] and the algorithm introduced in [8]. In contrast to the above mentioned
methods, the topological derivative has been specifically conceived to provide a precise informa-
tion on the sensitivity of a given shape functional with respect to topological domain perturba-
tions. The origin of the topological derivative method in optimal design can be dated to the work
by Schumacher et al. [20, 36] on the optimal location of holes within elastic structures. The first
mathematical justifications for topological derivatives in the framework of partial differential
equations are due to [40] and [22], in the context of the Poisson equation and the Navier system
for Neumann and Dirichlet holes. Therefore, this relatively new concept in shape optimization
has applications in many different fields such as shape and topology optimization, geometrical
inverse problems, image processing, multi-scale material design and mechanical modelling, in-
cluding damage and fracture evolution phenomena. See, for instance, the book [32] and the
special issue on the topological derivative method and its applications in computational engi-
neering [29], covering various topics ranging from new theoretical developments up to industrial
applications.

Concerning architectured materials, this method has already been used in [9] for periodic
media made of the mixture of two materials, whose macroscopic behaviours are described by
first-gradient models. In the present paper, we are interested in the synthesis of periodic media,
which feature significant strain-gradient effects.

Thus, we use the topological derivatives of the related higher-order homogenized tensors which
were derived in [15], in order to tackle numerically the problem. The synthesis of periodic media
is made by optimizing the distribution of the two materials, in Ω and Y \ Ω, composing the unit
cell Y. For this, we optimize the homogenized tensors Ch(Ω) and Dh(Ω), carrying respectively
the strain and the strain gradient terms in the macroscopic elastic energy, and depending on the
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distribution of material. Hence, we numerically investigate the following problem:

min
Ω

{
J (Ch(Ω),Dh(Ω))

}
, (1.1)

where J is a shape functional depending on Ω through the homogenized tensors. The effective
mechanical properties contained in the fourth order tensor Ch(Ω) are known. However it is not
trivial to derive from the higher-order tensor Dh(Ω) some coefficients being meaningful from
a mechanical point of view. The approach we follow in this study is based on some natural
characteristic intrinsic lengths defined as square roots of ratios between the components of the
homogenized tensors: (Dh

ijklmn(Ω)/Ch
ijlm(Ω))1/2. From the point of view of shape and topology

optimization the shape functional actually depends on the characteristic function of Ω ⊂ Y.

The paper is organized as follows. In Section 2, we start by introducing the framework of
microstructure optimization. We present the homogenization scheme, based on the asymptotic
expansion method, allowing us to define the so-called higher homogenized tensors, which en-
capsulate information about the macroscopic properties of this material. Then, the topological
derivative is presented in Section 3. We describe the topological perturbation of the problem,
and recall the topological derivatives of higher-order homogenized tensors which were derived
in [23] and [15]. The latter measure how the homogenized tensors change when a small circu-
lar inclusion is introduced at the microscale level. In Section 4, we present the gradient type
algorithm based on these topological derivatives, that we use in Section 5 in order to inves-
tigate the maximization of characteristic lengths, and generate new microstructures featuring
strain-gradient effects.

2. Higher-order homogenized tensors from the two-scale asymptotic expansion

(a)

(b)
Ω

Y \ Ω

x ∈ D

lY
y = x/l ∈ Y

Figure 1. The domain D is paved with the unit cell domain Y, weighted by the
length parameter l. The unit cell is composed of two different materials, a stiff
material (a) and a soft material (b), represented respectively by the domains Ω
and Y \ Ω.

Let D be a connected bounded regular open subset of R2 representing an elastic body having a
periodic micro-structure (see Figure 1). We assume that this material is a first-gradient material,
completely characterized by its elasticity tensor.

2.1. The unit cell Y. Let {e1, e2} be an orthonormal basis of R2, and
Y = (0, l1) × (0, l2) (2.1)

be an open rectangle of R2, for 0 < l1, l2. The open set Y stands for the unit cell of the
periodic material. We assume that this unit cell Y is composed of two different homogeneous
and isotropic elastic materials: a stiff material (a), and a soft material (b). The stiff material
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occupies an open subset Ω of Y, and the soft material occupies the complementary domain
Y \ Ω in the unit cell (see Figure 1). These two elastic materials are characterized by the same
Poisson’s coefficient ν, and by Young’s moduli differing from a ratio 0 < γ0 < +∞, where γ0
is called the contrast of elastic properties between the two materials. Let C0 be the constant
elasticity tensor describing the stiff elastic material (a), defined by

C0 = E
1 − ν2 ((1 − ν)I + νI ⊗ I) , (2.2)

where E is the Young’s modulus of the stiff elastic material. The tensor I = ei⊗ei is the identity
second order tensor, and I the fourth order symmetric identity tensor. They are defined by

Iij = δij , (2.3)

Iijkl = 1
2(δikδjl + δilδjk), (2.4)

δij being the Kronecker symbol. Then we can write the elasticity tensor characterizing the
unit cell Y. The two phases of material result in a piecewise constant fourth order tensor
C = (Cijkl)1≤i,j,k,l≤2, which is defined as follows:

C(y) :=
{C0, y ∈ Ω,
γ0C0, y ∈ Y \ Ω.

(2.5)

Before going further in the description of the model, we write the convention we use for tensor
calculus. Let u and v be two vectors of R2, A and B be two second order tensors of R2, C and
D be two third order tensors, E be a fourth order tensor, and F be a sixth order tensor, we
write:

FC = FijklmnClmn ei ⊗ ej ⊗ ek, EA = EijklAkl ei ⊗ ej , (2.6)
AB = AikBkj ei ⊗ ej , Au = Aijuj ei, (2.7)
C ·D = CijkDijk, A ·B = AijBij , (2.8)
u · v = uivi, (2.9)

by using the Einstein summation convention, and where ei⊗ej is a matrix such that (ei⊗ej)kl =
δikδjl. We finally define

u⊗s v := u⊗ v + v ⊗ u

2 . (2.10)

2.2. The periodic body. We define the elasticity tensor characterizing the elastic body D.
Let 0 < l be a microscopic length parameter describing the length-scale of the microscopic
variations of the elasticity tensor, and let 0 < L be a macroscopic length parameter which can
be for example defined by L = diam(D), such that l ≪ L. We denote by ϵ the scale ratio

ϵ = l/L. (2.11)

For convenience, we assume that L = 1, and thus ϵ = l ≪ 1. Actually, the periodic medium we
are interested in, consists of the domain D, which is paved with the microscopic periodic cell
ϵY (see Figure 1). Thus we define the elasticity tensor of the periodic material D, depending on
the parameter ϵ, as follows:

Cϵ(x) := C(x/ϵ), (2.12)
where C is defined in (2.5). We notice that the tensor Cϵ of microscopic moduli does not depend
on the macroscale position Y := x, but only on the microscale variable y := x/ϵ.

This material is subjected to body forces f ∈ L2(D), and the displacement field uϵ : D → R2,
which is the unknown of the problem, is fixed on the boundary ∂D. The displacement vector
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field uϵ is then given by the solution of the following boundary value problem of linearized
elasticity {− divx(σϵx(uϵ)) = f in D,

uϵ = 0 on ∂D,
(2.13)

where the second order tensor field σϵx(uϵ) is the stress tensor, defined throughout the following
constitutive stress-strain relation in the linear elastic regime:

σϵx(uϵ) := Cϵεx(uϵ), (2.14)

εx(uϵ) := ∇s
xu

ϵ := 1
2

(
∇x(uϵ) + ∇x(uϵ)⊤

)
, (2.15)

where the right lower index of a differential operator denotes the differentiation variable, and
where εx(uϵ) is the linearized strain tensor.

2.3. The homogenized material and homogenized tensors. The two-scale asymptotic
expansion method is used to define the higher-order homogenized tensors. The interested reader
can refer to [15] for more details and references.

2.3.1. Second-order truncation, definition of the homogenized tensors. We define

y = x/ϵ and Y = x, (2.16)

respectively the microscopic and macroscopic variables, for all x ∈ D (see Figure 1). The method
relies on an asymptotic expansion of the displacement flied with respect to the scale ratio ϵ, by
using corrector fields depending on both the macroscopic variable and the microscopic variable.
From this, the displacement field is approximated by a truncation of this expansion. In the
present case, we consider the following truncation up to the second order of the parameter ϵ:

ūϵ(Y, y) = U(Y ) + ϵ h1
ij(y)Eij(Y ) + ϵ2 h2

ijk(y)Kijk(Y ), (2.17)

where E(Y ) = ∇sU(Y ) is the macroscopic strain, and K(Y ) = ∇E(Y ) is the corresponding
strain-gradient. The displacement corrector fields h1

ij and h2
ijk are respectively solutions of the

following canonical set of variational problems (see [15]):

h1
ij ∈ V :

∫

Y
σy(h1

ij) · εy(η) +
∫

Y
C(ei ⊗s ej) · εy(η) = 0, ∀η ∈ W, (2.18)

and

h2
ijk ∈ V :

∫

Y
σy(h2

ijk) · εy(η) +
∫

Y
C(h1

ij ⊗s ek) · εy(η) =
∫

Y
(σy(uij) − Ch(ei ⊗s ej))ek · η, ∀η ∈ W, (2.19)

where uij and Ch are respectively given in (2.26) and (2.29) below, σy(h1
ij) = Cεy(h1

ij), and the
spaces W and V are defined as follows:

W := H1
per(Y;R2)/R, (2.20)

V :=
{
η ∈ H1

per(Y;R2) : ⟨η⟩ = 0
}
. (2.21)

Here for all tensor fields A, we define the volume averaging of A

⟨A⟩ := 1
|Y|

∫

Y
A(y)dy, (2.22)

where |Y| denotes the area of the unit cell.
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From this, we define the approximated macroscopic energy E h(ūϵ) as being the average of the
microscopic elastic energy Eµ(ūϵ) on the unit cell domain Y defined by

Eµ(ūϵ) = 1
2σx(ūϵ) · εx(ūϵ), (2.23)

so that
E h(ūϵ) = 1

|Y|

∫

Y

1
2σx(ūϵ) · εx(ūϵ) dy =

〈1
2σx · εx

〉
. (2.24)

By calculating the strain tensor induced by ūϵ, we find

εx(ūϵ) = εy(uij)Eij + ϵ(h1
ij ⊗s ek + εy(h2

ijk))Kijk + ϵ2(h2
ijk ⊗s el)∂Yl

Kijk, (2.25)

where uij is given by
uij(y) := (ei ⊗s ej)y + h1

ij(y). (2.26)
Then we can compute 1

2σx(ūϵ) · εx(ūϵ), and evaluate the truncated homogenized energy E h(ūϵ)
defined by (2.24). The expression of E h(ūϵ) allows to identify the homogenized tensors, which
are thus defined as integrals over the cell Y of products of the y-depending fields from expression
(2.25). This gives the following expression

2E h = EijCh
ijklEkl + ϵEijEhijpqrKpqr + ϵ2(KijkFhijkpqrKpqr + 2EijGh

ijkpqr∂Yk
Kpqr) + o(ϵ2), (2.27)

in which Ch, Eh, Fh and Gh are so-called homogenized tensors. The energy depends on the
gradient of the strain-gradient ∇K at order ϵ2. In order to only deal with strain-gradient
coupling effects, it is necessary to perform a macroscopic integration by part to transform the
coupled terms Eij∂yk

Kpqr into KijkKpqr. By doing this, we only consider the bulk of the material
D, and we do not take into account the boundary terms (see [19]). As a result, the truncated
homogenized energy can be written as

E h = 1
2EijC

h
ijklEkl + ϵEijEhijpqrKpqr + ϵ2

1
2KijkDh

ijkpqrKpqr + o(ϵ2), (2.28)

where Dh = Fh − 2Gh. In particular, we focus on the optimization of functionals depend-
ing only on the fourth order tensor Ch = (Ch

ijkl)1≤i,j,k,l≤2, and the sixth order tensor Dh =
(Dh

ijkpqr)1≤i,j,k,p,q,r≤2, which are defined from (2.25), (2.24) and (2.28), and respectively given in
index format by

Ch
ijkl := 1

|Y|

∫

Y
σy(uij) · εy(ukl) = ⟨σy(uij) · εy(ukl)⟩ , (2.29)

and

Dh
ijkpqr := 1

|Y|

∫

Y
C(h1

ij ⊗s ek + εy(h2
ijk)) · (h1

pq ⊗s er + εy(h2
pqr))

− 1
|Y|

∫

Y

(
σy(uij) · (h2

pqr ⊗s ek) + σy(upq) · (h2
ijk ⊗s er)

)

:=
〈
C(h1

ij ⊗s ek + εy(h2
ijk)) · (h1

pq ⊗s er + εy(h2
pqr))

〉

−
〈(
σy(uij) · (h2

pqr ⊗s ek) + σy(upq) · (h2
ijk ⊗s er)

)〉
. (2.30)

3. Topological Sensitivity

So far, we have defined the homogenized tensors Ch, and Dh. We are now interested in the
optimization of the topology of the unit cell composing a periodic body, in order to improve
some of its macroscopic properties by using the topological derivative method. We refer to the
books [31], and [30] for a comprehensive introduction on the subject. For practical use and
future investigations, we mention that the topological sensitivities of the homogenized tensors
Eh, Fh and Gh were also computed in [16].
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Y

Ω

Y \ Ω
Γ ŷ1

ŷ2

(a)

(b)

Yρ,ŷ2

Ω

Y \ Ω

Bρ
ŷ2

Bρ
ŷ1

Yρ,ŷ1

Ω

Y \ Ω

Bρ ⊂ R2

Figure 2. Introduction of an inclusion centered at ŷ1 or ŷ2 into the domains Ω
or Y \ Ω respectively. The resulting domains are denoted by Yρ,ŷ1 and Yρ,ŷ2 .

3.1. Perturbation of the unit cell. We consider the unit cell of a periodic material Y, which
is made of a mixture of two materials, defined in Section 2.1. From there, Y is subjected to a
perturbation confined in a small circular open set Bρ(ŷ) of radius ρ and centered at an arbitrary
point ŷ of Y, such that its closure is included in Y, and which does not touch the interface
Γ (see Figure 2). Then, the region occupied by Bρ(ŷ) is filled by an inclusion with different
material property from the background. The material properties of the perturbed domain are
characterized by the piecewise constant function γρ of the form

γρ(x) :=
{

1 ifx ∈ Y \Bρ ,
γ(x) ifx ∈ Bρ ,

(3.1)

where

γ(x) :=
{
γ0 ifx ∈ Ω ,
γ−1

0 ifx ∈ Y \ Ω .
(3.2)

Namely we introduce either a small ball of soft material into the stiff one, or a small ball of stiff
material into the soft one. Finally the elasticity tensor is given by γρC in the perturbed domain.

The topologically perturbed counterparts of problems (2.18) and (2.19) are respectively given
by

h1
ij
ρ ∈ V :

∫

Y
γρσ(h1

ij
ρ) · ε(η) = −

∫

Y
γρC(ei ⊗s ej) · ε(η), ∀η ∈ W, (3.3)
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and

h2
ijk

ρ ∈ V :
∫

Y
γρσ(h2

ijk
ρ) · ε(η) = −

∫

Y
γρC(h1

ij
ρ ⊗s ek) · ε(η)

+
∫

Y
(γρσ(uρij) − Ch

ρ(ei ⊗s ej))ek · η ∀η ∈ W, (3.4)

where from now on we leave the lower indices of differential operators behind. As we did in
Section 2, we can define the topologically perturbed counterparts of the homogenized tensors,
denoted as Ch

ρ , and Dh
ρ . By setting

uρij := (ei ⊗s ej)y + h1
ij
ρ, (3.5)

we have
(Ch

ρ)ijkl =
〈
γρσ(uρij) · ε(uρkl)

〉
, (3.6)

(Dh
ρ)ijkpqr =

〈
γρC(h1

ij
ρ ⊗s ek + ε(h2

ijk
ρ)) · (h1

pq
ρ ⊗s er)

〉

−
〈
(Ch

ρ(ei ⊗s ej) · (h2
pqr

ρ ⊗s ek) + γρσ(uρpq) · (h2
ijk

ρ ⊗s er))
〉
. (3.7)

From there, we denote by H any homogenized tensor we are interested in, namely Ch or Dh.
We assume that the following topological asymptotic expansion holds true

Hρ = H + g(ρ)DTH(ŷ) + o(g(ρ)), (3.8)
where g is a positive function, such that g(ρ) → 0 with ρ → 0. Then the function

ŷ ∈ O 7−→ DTH(ŷ) (3.9)
is called the topological derivative of H at ŷ.

3.2. Topological derivatives of the homogenized tensors. In this section, we give the rig-
orous formulas of the topological derivatives of the homogenized elasticity tensors Ch (see [23])
and Dh. Unlike for Ch, the computation of topological derivative of Dh, requires the introduc-
tion of so-called adjoint states prijk ∈ V for i, j, k, r ∈ {1, 2} (see [15]). For Ch, the associated
problem is self-adjoint, and then no Lagrangian needs to be introduced. But the correctors h1

and h2 both involved in the definition of Dh are solutions of a coupling problem, which leads to
the emergence of a Lagrangian and its associated adjoint states.

The topological derivatives of the components of tensors Ch and Dh are given by
(DTCh)ijkl(ŷ) = Pσ(uij)(ŷ) · ε(ukl)(ŷ), (3.10)

and
(DTDh)ijkpqr(ŷ) = P(σ(h2

ijk)(ŷ) + C(h1
ij(ŷ) ⊗s ek)) · (ε(h2

pqr)(ŷ) + (h1
pq(ŷ) ⊗s er))

− Pσ(uij)(ŷ) · (ε(pkpqr)(ŷ) + (h2
pqr(ŷ) ⊗s ek))

− Pσ(upq)(ŷ) · (ε(prijk)(ŷ) + (h2
ijk(ŷ) ⊗s er)), (3.11)

where ŷ is the location of the perturbation, uij is given by (2.26), h1
ij and h2

ijk are solutions to
the set of canonical variational problems (2.18) and (2.19), prijk are the associated adjoint states,
solutions of the following set of variational problems:

pkpqr ∈ V :
∫

Y
σ(pkpqr) · ε(η) =

∫

Y

(
σ(˜̃upqr) + C(ũpq ⊗s er)

) · (η ⊗s ek) −
∫

Y
C(˜̃upqr ⊗s ek) · ε(η)

−
∫

Y

〈
σ(˜̃upqr) + C(ũpq ⊗s er)

〉 · (η ⊗s ek), ∀η ∈ W. (3.12)

Here, P is the polarization tensor defined as

P = − 1 − γ

1 + γβ

(
(1 + β)I + 1

2(α− β) 1 − γ

1 + γα
I ⊗ I

)
, (3.13)
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where I and I are defined in (2.3) and (2.4), and the parameters α and β given by

α = λ+ µ

µ
and β = λ+ 3µ

λ+ µ
. (3.14)

With the topological derivatives of the homogenized tensors Ch and Dh, an optimization proce-
dure can now be set up.

4. Gradient type method for topological optimization

In a general manner, we consider the following minimization problem:

inf
Ω

{
J (Ω) := j(Ch(Ω),Dh(Ω))

}
, (4.1)

where Ω is the stiff part of the unit cell Y defined in Section 2, and the shape functional J is
defined from a smooth real-valued map j depending on the homogenized tensors.

4.1. The algorithm. To solve problem (4.1), we use a gradient-type method based on the topo-
logical derivative, which was introduced in [8], and used in [9] to tackle optimization problems
of functionals depending only on Ch.

4.1.1. Outline of the algorithm. For a complete description of the algorithm, we refer to the
pioneering papers [8, 7]. The basic idea is to make use of the topological derivative as a steepest-
descent direction, analogously to the methods using the gradient of the cost function in classical
optimization. Here we consider, as in Section 3.1, the case where the perturbation of the domain
is performed by either the inclusion of a small circular set of material (a) into the material (b),
or the inclusion of a small circular set of material (b) into the material (a). Thus we want to
use the following topological asymptotic expansion to implement an optimization procedure:

J (Ωρ,ŷ) = J (Ω) + g(ρ)DTJ (Ω)(ŷ) + o(g(ρ)). (4.2)
This expansion delivers the following necessary local optimality condition for the problem (4.1)
under the class of domain perturbations depicted above, which is

DTJ (Ω)(ŷ) ≥ 0, ∀ŷ ∈ Ω ∪ (Y \ Ω). (4.3)
To take advantage of the optimality condition (4.3), we start representing the distribution of
material composing the cell with a level-set function ψ. Namely we have

Ω = {x ∈ Y | ψ(x) < 0} , (4.4)
Y \ Ω = {x ∈ Y | ψ(x) > 0} , (4.5)

Γ = {x ∈ Y | ψ(x) = 0} . (4.6)
Now the idea is somehow to let the topological derivative DTJ (Ω) plays the role of a “target
level-set”. Indeed, by defining a new signed topological derivative gTΩ as follows:

gTΩ(ŷ) =
{ −DTJ (Ω)(ŷ) if ŷ ∈ Ω,

+DTJ (Ω)(ŷ) if ŷ ∈ Y \ Ω,
(4.7)

we can rewrite the optimality condition (4.3) as being equivalent to the collinearity between the
level-set ψ and the signed topological derivative gTΩ. Thus the optimality condition becomes

∃c > 0, ψ = cgTΩ. (4.8)
The distribution defined by the level-set ψ remains unchanged when we multiply it by a positive
scalar. We can therefore normalize in L2 norm both ψ and gTΩ without changing the procedure.
From now we consider that ∥ψ∥L2(Y) = 1 and ∥gTΩ∥L2(Y) = 1. In order to control and drive the
collinearity between this two fields, we choose to use θ the non orienting angle between them

θ = arccos(⟨gTΩ, ψ⟩L2(Y)). (4.9)
For achieving the optimality condition, we make the level-set evolve “in the direction” of the
topological derivative by rotating it of an angle κθ in the plane span{ψ, gTΩ}, where κ ∈ [0, 1]
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plays the role of a step size. We denote by Cκ,θ(ψ) the result of this rotation, which is a linear
combination of ψ and gTΩ given by (see [8])

Cκ,θ(ψ) = 1
sin θ

(
sin((1 − κ)θ)ψ + sin(κθ)gTΩ

)
. (4.10)

Thus the evolution of the level-set will follow the fixed point procedure ψ = Cκ,θ(ψ). The
procedure is summarized in the following steps (see [7] for more details).

• Choose an initial level-set ψ0 and an initial step size κ0.
• While the optimality condition (4.8) is not satisfied: iterate on n ≥ 0

– calculate the associated topological derivative gTn
– update the level-set function within a line search

ψn+1 = Cκn,θn(ψn). (4.11)

The step size κn is adapted in order to make sure that the level-set follows a descent
direction: J (Ωn+1) < J (Ωn), where Ωn+1 := {ψn+1 < 0}. Thus, the step size is
decreased if the criterion is not improved.

We recall that our topological optimization problem depends on the homogenized tensors,
for which we gave explicit formulas of the topological derivatives, and we made in the previous
section the assumption that j in (4.1) is smooth. Thus we directly have the exact topological
derivative of the shape functional J given by the chain rule

DTJ (Ω) =
〈
D1j,DTCh

Ω
〉

+
〈
D2j,DTDh

Ω
〉
. (4.12)

4.1.2. Numerical computation of the topological derivatives. As we saw in the previous sections,
in order to calculate the homogenized tensors and the topological derivatives of the homogenized
tensors, we need to solve auxiliary boundary value problems defined on the cell, giving the first
and second order correctors and the adjoint sates.

We solve these problems and implement the optimization procedure in a Matlab code, for
a computation of the fields by a Finite Element (FE) discretization. This code was imple-
mented for the first-order homogenization and optimization of Ch in [9]. For the present article,
we have added the higher-order homogenization scheme, in order to compute the higher-order
homogenization tensor, together with its topological derivative.

The design variable is the level-set ψ. For the discretization, we select a mesh Mh, and we use
P1 elements. The numerical level-set ψ is defined by its nodal values. From this we define the
field γ characterizing the distribution setting γ = 1 on the nodes for which the level-set ψ < 0,
and γ = γ0 on the nodes where ψ ≥ 0. At this stage, the contrast field γ is defined by its nodal
values. Then by linear interpolation from the nodes to the centers of the triangles, we calculate
a contrast field which is constant on each triangle. The periodic boundary conditions imposed
for the vector fields is ensured by a procedure described in [24]. The solutions of approximated
auxiliary problems (i.e. correctors and adjoint states) are computed and take their values on the
nodes, while their gradients are constant on each triangular element. The homogenized tensors
and their topological derivatives depend on the contrast field, and on the correctors, the adjoint
states and their gradients. Thus we also interpolate the correctors and adjoint states from the
nodes to the centers of the triangular elements.

4.2. Settings of the numerical study. The sequence of domains (Ωn)n≥0 produced by the
optimization process are defined by Ωn = {ψn < 0} and Y \ Ωn = {ψn > 0}, where ψn is the
level-set at the step n, and where the cell is the unit square

Y := (0, 1) × (0, 1). (4.13)

Both domains are characterized by the same Poisson coefficient

ν := 0.3 (4.14)
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and by Young’s moduli which differ from a contrast γ0 = 0.01, that is
E{ψ<0} = 1, (4.15)
E{ψ>0} = 0.01. (4.16)

Except when specified, the initial step size κ0 is taken equal to 1, and the initial distribution
Γ0 = {x ∈ Y | ψ0(x) = 0} that we consider is a disk (see Figure 3).

The procedure is sensitive to the initialization. It depends both on the size of the mesh and
on the initial shape Γ0, and can converge to different local solutions. Indeed the minimization
problems we tackle numerically are not well-posed. They can have several local minima, and may
not even have global minimum. However we will see in Section 5.2.1 that algorithm encounters
a form of stability with respect to the initial data. We start with a rather coarse mesh, so that
we can reach rapidly but not precisely a local minimum, and then we refine the mesh. The mesh
we choose is made with structured triangles (see Figure 3). We divide the cell Y with n2

i squares
crossed by their diagonals, giving 4n2

i triangles elements. When a homogeneous refinement is
performed, each triangle element is subdivided into four triangle elements of the same area.
When a local refinement is performed, only the elements on which the topological derivative
is high are subdivided, and the threshold is empirically set at 75% of the maximum value of
the topological derivative. Now we present in the following and last section the optimization
problems we have investigated.

Figure 3. Initial black (stiff material) and white (soft material) distribution on
the left, and initial mesh on the right, both given for a number of squares ni = 40
along one side of Y.

5. Optimized microstructures

After having made a state of the art of the results we need, we now present their application
to the synthesis of microstructures featuring strain-gradient effects. We start by defining in
Section 5.1 the characteristic lengths on which relies the optimization procedure. Then different
shape functionals are investigated in Sections 5.2 to 5.4, as well as a study of the convergence
and the sensitivity to the initialization of the optimization procedure. Finally, the optimized
microstructures are evaluated for a large material property contrast in Section 5.5.

5.1. Strain-gradient characteristic lengths. A second-gradient model having a macroscopic
strain energy given by (2.28) contains some intrinsic characteristic lengths. Indeed, by consid-
ering a strain tensor E, and a vector e ∈ R2, we can define an intrinsic characteristic length as
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follows:

lE,e =

√
(E ⊗ e) · Dh(E ⊗ e)

E · ChE
, (5.1)

which can be interpreted as a measure of the sensitivity of the material to a variation of the strain
E in the direction e: K = E ⊗ e. If a microstructure leads to a strain-gradient homogenized
model, then the characteristic length measures the relative weight of Ch and Dh in the energy.

From now on, we fix a coordinate frame {e1, e2} of R2, and we consider that the optimization
problems of strain-gradient effects are done relatively to this frame. From there, we consider
the unit strains of uniaxial extension E11 = e1 ⊗ e1, and E22 = e2 ⊗ e2, and of pure shear
E12 = e1 ⊗s e2, and their variations in the directions e1 and e2. This gives the following
definition of the six different arising characteristic lengths:

l111 =
√

Dh
111111

Ch
1111

, l221 =
√

Dh
221221

Ch
2222

, l121 =
√

Dh
121121

Ch
1212

,

l112 =
√

Dh
112112

Ch
1111

, l222 =
√

Dh
222222

Ch
2222

, l122 =
√

Dh
122122

Ch
1212

.

(5.2)

From this, we intend to maximize these characteristic lengths. Indeed, by maximizing these
ratios, we force some components of the tensor Ch to be small, and even close to zero. In this
case we obtain some zero strain energy modes, also called floppy modes [19], corresponding to
this apparition of a kernel for Ch. Then, for strains belonging to this kernel, the strain-gradient
elastic energy weighted by ϵ2 and depending on Dh becomes more significant than the classical
first-gradient energy depending on Ch in the energy (2.28). Namely, we numerically maximize
the strain-gradient energy while minimizing the first-gradient energy relatively to some strain
modes.

It is worth to note that in the case of a centrosymmetric unit cell, the odd order coupling
tensor Eh between E and K vanishes (see [39]). As we choose centrosymmetric initial unit cells,
it turns out that the optimized unit cells we obtain are also centrosymmetric, even if nothing
enforces this symmetry. This very interesting conservation could indicate that a break in the
centrosymmetry of the microstructure does not improve the considered functionals.

In addition, we want to observe the effects of a gradient of deformation throughout several
cells. It means that the characteristic lengths need to be of order of several cells, or at least one
cell. Indeed, in the expression of the energy, Dh is multiplied by ϵ2, and then the characteristic
lengths deriving from the energy are given by ϵlijk. In view of the definition of the cell in (4.13),
we wish to have lijk greater than 1.

In view of the isotropic initial distribution and the square shape of the unit cell (see Figure 3),
we first only consider the maximization of l111, l112, and l121, because from a square unit cell,
we obtain the same results rotated with a π/2 angle by respectively maximizing l222, l221, and
l122.

Before numerical investigation, we give the values of these characteristic lengths for the initial
cell defined in Figure 3, and for a mesh ni = 100:

l111 ≃ i 0.3655, (5.3)
l112 ≃ i 0.0926, (5.4)
l121 ≃ i 0.0933, (5.5)

noting that in each case the lengths are imaginary, because the coefficients Dh
111111, Dh

112112, and
Dh

121121 are negative. In the following, we are going to maximize the square of these lengths,
and we will observe that for each optimized shape that we obtain, the components of Dh will be
positive, and thus the optimized lengths will be real lengths. Indeed, it is observed in [19] that for
a zero strain energy mode – which we are creating by maximizing the associated characteristic
length –, the corresponding part of Dh turns to be positive.



13

5.2. The horizontal elongation. In [2, 37], the authors study a pantographic beam made of
crossed rods connected via perfect junctions. This structure features an extensional floppy mode
for a deformation E11 and a non zero energy for a gradient in the horizontal deformation K111.
This can be seen as Ch

1111 = 0 and Dh
111111 > 0 for the homogenized tensors of the structure. We

would like to retrieve this strain-gradient behavior in the framework of continuous materials.
Thus, we minimize the functional:

j(Ch,Dh) = −Dh
111111

Ch
1111

. (5.6)

The mesh is initialized with ni = 100. We have made two local refinements of the mesh at
the iterations 20 and 26, before the level-set finally reached an optimum for a total of 29 itera-
tions, with an angle θ ≃ 9.30◦. Here are the values of the components of interest for the final
distribution:

Ch
1111 ≃ 0.1079, (5.7)

Dh
111111 ≃ 0.0183, (5.8)

that is
l111 ≃ 0.4114. (5.9)

Surprisingly, despite the simplicity of the functional involved, we obtain in Figure 4 a panto-
graphic like cell (see e.g., [37, 28, 27]). We can see the appearance of junctions that allow a small
relative rotation of the stiff parts. For homogeneous deformation E11, the rotations of all the
stiff parts are compatible, and we can see on Figure 4 that the structure can extend because of
these rotations (the South and North inner junctions are moving away while the East and West
junctions are moving closer together). But for a gradient of deformation K111 = e1 ⊗ e1 ⊗ e1,
the rotations are incompatible, so that this macroscopic deformation mode costs in energy.

It is interesting to note that the junctions of the obtained microstructures play the role of
quasi-mechanism (see e.g. [27]), meaning that some deformation modes are favored and cost
few energy. This can be compared to mechanisms, which are perfect deformation modes with
zero energy. The appearance of these junctions is common in topological optimization (see e.g.,
[25] on the amplification of the displacements in a given direction generated by thermal effects).
This sometimes reflects the ill-posedness of an optimization problem (for instance the compli-
ance minimization without regularization [5, Section 6.2.1]), and numerically, fractal phenomena
appear in the vicinity of these junctions when the mesh is refined. We will see that this is not the
case in our finite contrast problem in Section 5.2.3. In addition to these theoretical difficulties,
these junctions can give rise to materials that are not manufacturable in practice, but this al-
lows, from a continuous medium model, to bring out a need for mechanism or quasi-mechanism
to feature certain mechanical behaviors.

In Figure 4, we also present three total displacement fields of the unit cell, when this latter
is subjected either to an homogeneous strain deformation E11, or to a homogeneous strain-
gradient deformations K111, or K112 = e1 ⊗s e1 ⊗ e2. These deformation modes are derived
from the expansion (2.17) by choosing suitable fields U , so that respectively ∇sU(y) = e1 ⊗s e1,
∇∇sU(y) = e1 ⊗s e1 ⊗ e1, and ∇∇sU(y) = e1 ⊗s e1 ⊗ e2. Thus, the corresponding total
displacement fields obtained can be respectively given by

u11(y) = y1e1 + h1
11(y), (5.10)

u111(y) = 1
2y

2
1e1 + h1

11(y)y1 + h2
111(y), (5.11)

u112(y) = y1y2e1 − 1
2y

2
1e2 + h1

11(y)y2 + h2
112(y). (5.12)
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For each of these deformation modes, the local norm of the corresponding stress fields ∥σ∥ :=
(Σ2

i,j=1σ
2
ij)1/2 is represented in logarithmic scale only in the stiff material, and the deformed

geometry is displayed with a scale factor for readability.

Remark 1. We emphasize that the functionals considered in this study do not take into account
any soft phase volume constraint. Such a constraint was not needed because in the functionals,
we impose a competition between the first-gradient and strain-gradient tensors, which avoids a
saturation of the cell with only stiff or soft phase. For example, there is a 16.4% decrease in stiff
phase volume compared to the initial stiff phase volume for the microstructre obtained in Figure
4, and 7.5% for the microstructre obtained in Figure 9.

Before exploring more functionals, we present the behavior of the optimization procedure with
respect to the initialization, the choice of the cell and the mesh convergence.

Unit cell Nine unit cells

E11 K111 K112

100

10−1

10−2

Figure 4. Results for the minimization of the cost function (5.6): maximization
of the characteristic length l111. From left to right: optimum unit cell; periodic
microstructure; deformed geometry for the deformation modes E11, K111, and
K112, together with the corresponding local stress norm in logarithmic scale.

5.2.1. Sensitivity to the initial guess and mesh. First we investigate the effect of the initial level-
set and of the initial mesh on the convergence of the algorithm. For this we consider the problem
of minimization of the functional defined in (5.6), for several perturbations of the initial level-set
in Figure 3. For all j in {−4,−3, · · · , 3, 4} we consider the new initial level-set functions

ψ0,j := ψ0 + 0.05j. (5.13)

At the same time we also consider, for each of these initial level-set functions, different initial
meshes. Namely ni varies in {40, 60, 80, 100, 120, 140}. The final resulting distributions are
gathered in Figure 5.

As expected, the optimization procedure is sensitive to initial data, and both the initial level-
set and the initial mesh influence the final result. Nevertheless, Figure 5 shows some character-
istic patterns in the optimized results. In fact we observe that several optimized distributions
do look like pantographic materials (see Figure 4) such as results (15 − 18), (21 − 24), (27, 28),
(42). The result (1) has got also a lot of similar results (sometimes translated half a unit-cell):
(3 − 11), (13 − 14), (19), (25), (29, 30), (33, 34), (38), (40, 41), (45 − 47), and (52 − 54). This
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(1) 0.2177 (2) 0.2355 (3) 0.2400 (4) 0.2477 (5) 0.2464 (6) 0.2527

(7) 0.2352 (8) 0.2406 (9) 0.2367 (10) 0.2085 (11) 0.2460 (12) 0.1146

(13) 0.2266 (14) 0.2315 (15) 0.3700 (16) 0.3723 (17) 0.3795 (18) 0.3935

(19) 0.2268 (20) 0.1377 (21) 0.3627 (22) 0.3853 (23) 0.3829 (24) 0.4045

(25) 0.2271 (26) 0.1318 (27) 0.3581 (28) 0.3843 (29) 0.2421 (30) 0.2477

(31) 0.0829 (32) 0.1070 (33) 0.2404 (34) 0.2473 (35) 0.3774 (36) 0.3960

(37) 0.1101 (38) 0.2414 (39) 0.1840 (40) 0.2491 (41) 0.2521 (42) 0.3942

(43) i ∗ 0.0152 (44) 0.0216 (45) 0.2458 (46) 0.2528 (47) 0.2508 (48) i ∗ 0.0324

(49) 0.0701 (50) i ∗ 0.0260 (51) 0.1573 (52) 0.2424 (53) 0.2523 (54) 0.2556

ni = 40 ni = 60 ni = 80 ni = 100 ni = 120 ni = 140

Figure 5. Different final level-sets and their corresponding characteristic lengths
l111 obtained when the initial level-set and the size of the initial mesh vary. Each
line from the top to the bottom is obtained for the level-sets from ψ0,−4 to ψ0,4
defined in (5.13). Each column corresponds to different mesh sizes.
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indicates a kind of stability of the topological optimization procedure for the present functional.

Furthermore, even by changing the initial shape of the distribution (but with the same initial
topology) the algorithm produces similar results. For example, still within the maximization of
l111, we consider an initial rectangular inclusion of material (see Figure 6 (d)). The final level-set
obtained Figure 6 is quite similar to the result (1) from Figure 5. Finally, the microstructures
having the best characteristic length l111 are actually the pantographic cells, such as the one we
obtained in Figure 4.

5.2.2. Position and number of unit cells. It is known that the periodic solutions to the variational
problems (2.18) and (2.19) remain unchanged up to a translation when the distribution of
material is translated in the unit cell, or when the cell is redefined as the union of several unit
cells. Then, from definitions (2.29) and (2.30), the homogenized tensors remain unchanged
under such transformations. To observe this property, we consider the unit cells (a), (b) and
(c) from Figure 6, with meshes defined by ni = 50 for (a) and (c), and ni = 100 for (b). From
this we maximize the length l111. For all the cases (a), (b), and (c), we perform a homogeneous
refinement of the mesh at iteration 27, and the final topologies are obtained after a total of 37
iterations, for an final angle θ ≃ 5.88◦ every time. The results are presented Figure 6, and show
that the topological optimization procedure does not depend on the choice of the cell.

(a) (b) (c) (d)

(a) (b) (c) (d)

Figure 6. Maximization of the characteristic length l111. From left to right:
initial distribution; optimized distribution. From left to right: (a) ni = 100,
Ya = (0, 1) × (0, 1). (b) ni = 200, Yb = (0, 2) × (0, 2). (c) ni = 100, Yc =
(0.5, 1.5) × (0, 1). (d) ni = 100, Yd = (0, 1) × (0, 1).

5.2.3. Mesh convergence. Finally we investigate the algorithm convergence with respect to the
mesh. We have seen in the previous paragraphs that the size of the initial mesh can affect the
final result, and leads the algorithm to reach a local optimum rather than another. In order to
analyse it, we go back to the initial circular level-set, and for an initial mesh characterized by
ni = 100. The algorithm converges to the solution that we display once again in Figure 7 (i), for
a final angle θ ≃ 18.54◦. After the algorithm reached the state (i), we perform a homogeneous
refinement of the mesh leading to Figure 7 (ii) for a final angle θ ≃ 10.18◦. We repeat the
refinements one more time resulting in (iii) for an angle θ ≃ 9.08◦.
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(i) (ii) (iii)

Figure 7. Final optimum topologies for the maximization of l111, initial circular
level-set, ni = 100. (i) no refinement of the mesh. (ii) one refinement of the mesh.
(iii) two refinements of the mesh.

(i) (ii) (iii)

Figure 8. Zoom on the junctions surrounded by red rectangles from Figure 7.
The new frame is (0.45, 0.55) × (0.6, 0.7).

Junction regions surrounded by the red rectangles in Figure 7, are displayed with a zoom in
Figure 8. We measure the thinnest width between two nodes of black elements in the horizontal
junction. The width is ≃ 0.04 for (i), ≃ 0.035 for (ii), and ≃ 0.0325 for (iii). Hence, it seems
that the width of this junction is stable when the mesh size goes to zero. Indeed, the small
decrease between (i) and (iii) is specific to the resolution: the fineness of the mesh making the
measure more accurate.

Let us recall that, this kind of optimization procedure does not always converge with the
mesh without a regularization of the optimization problem, such as perimeter or Von-Mises
stress constraints. Such regularizations are often used in numerical procedures, and are generally
necessary to show the theoretical existence of an optimum. In order to ensure the existence of an
optimal domain to (1.1) e.g., the regularization by perimeter of Ω could be used in a proper way
[6]. Nevertheless, we emphasize that in the present study we did not use any regularization. As
explained in Remark 1, this could be due to the competition we require between the first-gradient
and strain-gradient tensors.

5.2.4. Length: l112. We are now interested in the effects of the gradient of the horizontal elon-
gation in direction e2: K112. In this case, we minimize the following functional:

j(Ch,Dh) := −Dh
112112

Ch
1111

. (5.14)
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The mesh is initialized with ni = 100. After 18 iterations, the level-set reaches almost its final
shape, for an angle θ ≃ 8.15◦. Then we perform a local refinement of the mesh, and we obtain
the final distribution for a total number of iterations of 27, and a final angle θ ≃ 5.33◦. Here are
the values of the components of interest for the final distribution which is presented in Figure 9:

Ch
1111 ≃ 0.0753, (5.15)

Dh
112112 ≃ 0.0034, (5.16)

which corresponds to
l112 ≃ 0.2139. (5.17)

The final distribution is made of stiff parts connected by rods. We notice that the deformation
mode K112 results in high stress levels in comparison to K111. This latter deformation mode can
be seen as a bending of the unit cell, which is restrainde by the incompatible relative rotations
of the stiff parts.

Unit cell Nine unit cells

E11 K111 K112

100

10−1

10−2

Figure 9. Results for the minimization of the cost function (5.14): maximiza-
tion of the characteristic length l112. From left to right: optimum unit cell; pe-
riodic microstructure; deformed geometry for the deformation modes E11, K111,
and K112, together with the corresponding local stress norm in logarithmic scale.

5.3. The shear deformation. Now we consider the pure shear deformation E12, and maximize
the gradient of pure shear deformation in the horizontal direction e1, by means of the following
functional:

j(Ch,Dh) := −Dh
121121

Ch
1212

. (5.18)

The mesh is initialized with ni = 100. The optimum distribution is reached after 17 iterations
for an angle θ ≃ 0.01◦ (see Figure 10). Here are the values of the component of interest for the
final distribution:

Ch
1212 ≃ 0.0250, (5.19)

Dh
121121 ≃ 0.0522, (5.20)

that is
l121 ≃ 1.4442. (5.21)
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It is interesting to observe that we obtain a laminated cell. Indeed, it was shown in [14] that un-
der certain conditions on the asymptotic behavior of material contrast and the volume fraction,
a second gradient term – the gradient of the rotation – is appearing in the limit energy of a pe-
riodic laminated elastic material, resulting in a Koiter model. The result we obtain seems quite
stable: for a change in the initial parameters such as the fineness of the mesh, or for a change in
the initial distribution of material, the optimization scheme still leads to a laminated cell. We
can observe that the horizontal strip of soft material allows a shear deformation without costing
much elastic energy. But the presence of the horizontal beams of stiff material withstands to a
horizontal gradient of the shear deformation.

Unit cell Nine unit cells

E12 K121 K122

10−1

10−2

Figure 10. Results for the minimization of the cost function (5.18): maximiza-
tion of the characteristic length l121. From left to right: optimum unit cell;
periodic microstructure; deformed geometry for deformation modes E12; K121,
and K122, together with the corresponding local stress norm in logarithmic scale.

Now we consider the maximization of both characteristic lengths l121 and l122, namely we
minimize the following functional:

j(Ch,Dh) := −Dh
121121 + Dh

122122
Ch

1212
. (5.22)

The mesh is initialized with ni = 60, and we take an initial step size κ0 = 0.75. After a local
refinement of the mesh, we obtain the final distribution after 19 iterations, and the final angle is
θ ≃ 13.16◦. As a result, the microstructure displayed in Figure 11 is composed with stiff parts
in the form of discs connected to each other by two rods, and we obtain the following lengths:

√
l2121 + l2122 ≃ 0.7285, and l121 = l122 ≃ 0.5151. (5.23)

We observe that shear deformations are facilitated by the presence of the connected rods which
then start to rotate, and allow the stiff parts to move. In this case the stress is concentrated
in the junction areas between the connecting rods and the stiff parts. But for a vertical or
horizontal gradient of shear deformation, the connected rods are either stretched or compressed,
and the stress propagate also in the stiff parts. In addition, we notice that the layout between
the stiff parts and the connecting rods allows a small free rotation of the stiff parts.
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Unit cell Nine unit cells

E12 K121 K122

10−1

10−2

Figure 11. Results for the maximization of the cost function (5.22): maximiza-
tion of the characteristic lengths l121 and l122. From left to right: optimum unit
cell; periodic microstructure; deformed geometry for the deformation modes E12,
K121, and K122, together with the corresponding local stress norm in logarithmic
scale.

5.4. Pantographic-like microstructure. A pantographic continuous material has been in-
troduced and studied in [19]. It corresponds to a 2-dimensional periodic material constituted
with triangles and rhombuses being connected together via thin junctions (Figure 12). Their
layout produces the behaviour of a pantographic-like material, which has floppy modes. One
in extension E11, and another one in shear E12. Its macroscopic behaviour is described by a
strain-gradient model. Surprisingly, we retrieve it through the topological optimization proce-
dure.

Figure 12. Pantograph (Figure from [19]).

For this we consider the rectangular unit cell

Y = (0, 1) × (0, 2). (5.24)

In [19], the characteristic lengths of the pantograph for the unit cell Y have been evaluated,
and l111 and l112 turn to have significant values. We consider the following functional to be
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minimized
j(Ch,Dh) = −Dh

111111 + Dh
112112

Ch
1111

. (5.25)

We choose an initial mesh for which the vertical direction of the rectangle is subdivided into
ni = 120 crossed squares, and the horizontal direction is subdivided into ni = 60 crossed squares.
The initial step size is κi = 0.75. Finally we choose an initial level-set function which results
into shifted strips of holes (see Figure 13). After 29 iterations, we perform a homogeneous
refinement of the mesh, followed by a local refinement of the mesh after 9 iterations. For a total
of 45 iterations, the final angle is θ ≃ 5.35◦, and the optimized distribution is shown Figure 13.
We finally get

l111 ≃ 0.2548, l112 ≃ 0.4578. (5.26)
We can notice that the shape we get in Figure 13 looks very much like the pantograph from
Figure 12, for which the triangles are smoothed, the rhombuses are replaced by more elliptic
shapes, and some extra connecting rods are present.

Initial unit cell Unit cell Two unit cells

E11 K111 K112

100

10−1

10−2

Figure 13. Results for the minimization of the cost function (5.25): maximiza-
tion of the sum l111 + l112. From left to right: initial unit cell; optimum unit
cell; periodic microstructure; deformed geometry for the deformation modes E11,
K111, and K112, together with the corresponding local stress norm in logarithmic
scale.

5.5. Very large contrast. In the previous sections, we have obtained new interesting mi-
crostrucures by optimizing different strain-gradient effects. But the strain-gradient behaviour,
which is quantified by the characteristic lengths we have introduced, is not very significant.
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Except in the case of the laminated cell, we have obtained characteristic lengths between 0.2
and 0.5 times the size of the unit cell. In comparison, the strain-gradient effects observed in [19]
are more pronounced. This difference has two possible explanations. First, the computations
led in [19] are made in the case where the cell is made up of a stiff material and voids, whereas
in the present case, the cell is a mixture of a stiff and soft materials. Secondly, the junction
regions of the pantograph in [19] are chosen arbitrarily thin, which brings on the strain-gradient
behaviour.

Therefore, we investigate the characteristic lengths of the microstructures we have obtained,
assuming the soft material is replaced by voids. We consider the level-set functions ψ obtained
after the topological optimization for a contrast γ0 = 10−2, and for each of these geometries,
we compute for a contrast γ0 = 10−8 the homogenized tensors Ch and Dh. For this, we need to
change slightly the model for the higher order correctors h2

ijk. Indeed we can see on equation
(2.19) the presence of a body force depending on Ch which is applied homogeneously on the
unit cell Y. When the contrast γ0 goes to zero, it means that a load is applied on the very
weak material. We adopt the approach followed in [19]. Let φ be the normalized characteristic
function defined by

φ(y) := 1∫
Y χ

|Y|χ(y), (5.27)

where χ is the characteristic function of the stiff material, defined directly from the level-set
ψ. The first auxiliary problem (3.3) remains unchanged, because it does not involve any body
force, while the second auxiliary problem (3.4) is replaced by

h2
ijk ∈ V :

∫

Y
σ(h2

ijk) · ε(η) +
∫

Y
C(h1

ij ⊗s ek) · ε(η) =
∫

Y
(σ(uρij) − φCh

ρ(ei ⊗s ej)) · (η ⊗s ek) ∀η ∈ W. (5.28)

γ
0

=
10

−
2

l111 0.4114 0.1295 0.2548
l112 0.3166 0.2139 0.4578

Ch eigenvectors

[
−0.19
−0.98
0.00

][
−0.98
0.19
0.00

][
0.00
0.00
1.00

] [
−0.18
−0.98
0.00

][
−0.98
0.18
0.00

][
0.00
0.00
1.00

] [
−0.19
−0.98
0.00

][
−0.98
0.19
0.00

][
0.00
0.00
1.00

]

Ch eigenvalues (0.2615, 0.1022, 0.0800) (0.2596, 0.0694, 0.0433) (0.3203, 0.0922, 0.1067)

γ
0

=
10

−
8

l111 1.2607 0.1714 0.6415
l112 1.1039 0.5554 1.2656

Ch eigenvectors

[
1.00

−0.03
0.00

][
−0.03
−1.00
0.00

][
0.00
0.00
1.00

] [
−0.06
−1.00
0.00

][
−1.00
0.06
0.00

][
0.00
0.00
1.00

] [
1.00

−0.06
0.00

][
−0.06
−1.00
0.00

][
0.00
0.00
1.00

]

Ch eigenvalues (0.0177, 0.2188, 0.0705) (0.2032, 0.0103, 0.0099) (0.0209, 0.2528, 0.0813)

Figure 14. Homogenization results of the previously obtained microstructures
with a property contrast γ0 = 10−2, and homogenization results for the same
microstructures with a new property contrast γ0 = 10−8. (I)

Figures 14 and 15 present the values of the characteristic lengths, for each of the microstruc-
tures we have obtained, for both the finite contrast γ0 = 10−2 of the previous sections and
the new very small contrast γ0 = 10−8. We observe that for each microstruture, considering
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γ
0

=
10

−
2

l121 1.4442 0.5151
l122 0.0099 0.5151

Ch eigenvectors

[
−1.00
−0.02
0.00

][
−0.02
1.00
0.00

][
0.00
0.00
1.00

] [
−0.71
−0.71
0.00

][
−0.71
0.071
0.00

][
0.00
0.00
1.00

]

Ch eigenvalues (0.6998, 0.0356, 0.0125) (0.2843, 0.2348, 0.0176)

γ
0

=
10

−
8

l121 1472 1.3979
l122 9.2409 1.3979

Ch eigenvectors

[
−1.00
0.00
0.00

][
0.00
1.00
0.00

][
0.00
0.00
1.00

] [
−0.71
−0.71
0.00

][
−0.71
0.071
0.00

][
0.00
0.00
1.00

]

Ch eigenvalues (0.6933, 4.10−8, 1.10−8) (0.2353, 0.2055, 0.0024)

Figure 15. Homogenization results of the previously obtained microstructures
with a property contrast γ0 = 10−2, and homogenization results for the same
microstructures with a new property contrast γ0 = 10−8. (II)

this very small contrast improves significantly the characteristic lengths. For example for the
two pantographic structures in Figure 14, the characteristic lengths are multiplied by a factor
between 2.5 and 3.5.

Whereas, for a finite contrast γ0 = 10−2, Ch eigenvalues remain quite comparable, when the
contrast is set to γ0 = 10−8 the expected floppy modes clearly emerge. For instance, in Figure 15
column 1, the eigenvalue related to E11 significantly drops from γ0 = 10−2 to γ0 = 10−8 whereas
the other eigenvalues are not quite affected. This can be clearly observed in Figure 16, where we
can see that E11 corresponds to a floppy mode in comparison to the other deformation modes
E22 and E12. We also observe in this figure that while the stress associated to the deformation
mode E11 is not significant (and is obviously localized in the thin junctions), stress associated
to the deformations modes K111 and K112 is more significant. Thus the obtained pantographic
structure effectively displays strain gradient effects for deformations in the the direction e1.

6. Conclusion

In the present article, we have numerically optimized strain-gradient effects for two-dimensional
periodic material in elastostatics. For this purpose, criteria depending on the homogenized ten-
sors Ch and Dh are optimized, via an optimization method based on the topological derivatives
of these homogenized tensors.

We have obtained non trivial microstructures for functionals based on intrinsic characteristic
lengths. The latter are defined as a ratio of the components of Ch and Dh. It is worth to notice
that these microstructures are obtained by opening the kernel of Ch, so that the strain-gradient
terms depending on Dh become predominant in the macroscopic elastic energy. In particular,
we have strikingly obtained well known microstructures featuring strain-gradient effects, such
as a pantographic unit cell, similar to the one studied in [19]. The convergence with respect to
the mesh has been illustrated. Finally, the obtained microstructures has also been homogenized
in the case of a large contrast between the stiff and the soft materials and strain-gradient effects
were enhanced.

Note that, the homogenization scheme we used may also correctly predict second gradient
effects in some situations where the material contrast is infinite (see [19]). Nevertheless, no
general result of higher-order homogenization is known in this case (see [14, 26]). Hence, the
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E11 E22 E12

K111 K221 K121

K112 K222 K122

100

10−1

10−2

Figure 16. Deformed geometry of the pantographic cell obtained in Figure 4,
for the deformation modes Eij and Kijk for i, j, k = 1, 2. The corresponding
total displacement fields are computed in the case where the material contrast
is γ0 = 10−8, and then the corresponding local stress norms are represented in
logarithmic scale.

theoretical study of infinite contrast optimization of higher-order homogenization is also an open
problem. As a consequence, it is not surprising that by optimizing second gradient effects defined
by this finite contrast homogenization scheme, we could obtain microstructures corresponding to
other homogenized models when the contrast is large. For example, the microsctructure obtained
in Figure 11 can be compared with the square grid with isolated diagonals from [26], case 3.
In the referred article, it is numerically shown that a Cosserat model is the most accurate to
describe this microstructure, in comparison to the first-gradient model and the second-gradient
model, when the material contrast behaves as ϵ3, with the size of the cell ϵ going to zero.

To go further in the optimization of strain-gradient effects, two different approaches that we
will follow in future works are possible. The first one is to study functionals depending on the
invariants of the homogenized tensors. For Ch, these invariants are well-known. For Dh, there
exists a very large number of invariants which were computed in [10], and their mechanical
understanding is still a subject of study. The second one is to consider functionals depending
of the fifth-order tensor Eh of coupling moduli between first and second gradient effects. In the
present study, we were not interested in this tensor because it cancels in the case of a centro-
symmetric unit cell. But new microstructures could be explored by taking it into account.

Finally, we would like to point out that the case of dimension 3 could be treated in a similar
way from a theoretical point of view, although the practical implementation of the optimization
procedure as well as the large number of strain-gradient elastic moduli make this task much
more complex.
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