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Abstract. This paper deals with an inverse source problem governed by the Pois-
son equation. The aim is to reconstruct multiple anomalies from internal observation
data within an arbitrary sub-region. The considered model problem is motivated by
various applications such as the identification of geological anomalies underneath the
Earth’s surface. To overcome the ill-posedness, the inverse problem is formulated as
a self-regularized topology optimization one. A least-square functional measuring the
misfit between the observed quantities and the values provided by the model problem
is introduced. The misfit function involves a regularization term penalizing the rela-
tive perimeter of the unknown domain. Finally, it is minimized with respect to a finite
number of circular-shaped anomalies. The existence, uniqueness, and stability of the
solution to the inverse problem are demonstrated. The reconstruction process is based
on the topological derivative method. The variation of the shape functional with respect
to a small geometric perturbation is studied and the leading terms of a second-order
topological asymptotic expansion are derived. A non-iterative reconstruction algorithm
is developed via the minimization of the obtained asymptotic formula with respect to
the location and size parameters of the unknown set of anomalies. The efficiency and
accuracy of the proposed approach are justified by some numerical experiments.

1. Introduction

In this paper, we analyze an inverse source problem governed by the two-dimensional
Poisson equation. The aim is the reconstruction of a mass density distribution with
support within a geometrical domain with the help of internal partial measurements of
the potential field. This problem is motivated by various applications such as gravimetry,
where the goal is to determine Earth’s density distribution from the measurement of the
gravity on the surface of the Earth [32].

The detection of mass distribution in a geometrical domain from total or partial bound-
ary measurements has been the subject of several theoretical and numerical research
works. In [6, 31] the authors established some theoretical results to reconstruct the
unknown source from over-determined boundary measurements of the Poisson equation
solutions. Isakov [32] proved an identifiability result for anomalies having star-shaped
or convex in one direction supports. Then, El-Badia and Ha-Duong [21] established a
uniqueness result for the problem of determining multiply-connected ball-shaped anom-
alies from a single Cauchy data. Hettlich and Rundell proposed in [28] a Newton-type
iterative method for solving an anomaly shape reconstruction problem. In the same con-
text, Hanke and Rundell [27] used the rational approximation method to solve inverse
source problems for determining hidden obstacles. Based on the domain derivative, Mar-
tins [35] developed a decomposition method based on the Kirsch-Kress technique and a
Newton-type algorithm for reconstructing a characteristic source functions in a potential
problem, from the knowledge of full and partial boundary data. While Liu [34] proposed
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an iterative approach based on the shape derivative. They applied the gradient descent
algorithm (GDA) and trust-region-reflective procedure to reconstruct the location, size,
and shape of the source.

In the context of gravimetry, Canelas et al. [14] solved this reconstruction problem in
the two-dimensional case from complete boundary measurements. They proposed an ap-
proach based on the minimization of a Kohn-Vogelius type functional via a second-order
topological sensitivity analysis. The same ideas has been exploited in [15] for recovering
two and three spatial dimensions anomalies from incomplete (partial) boundary measure-
ments. More recently, Menoret et al. [37] combined the Kohn-Vogelius formulation and a
second-order topological gradient method for determining the support of a source-term,
but without using the Newtonian potential to complement the unavailable information
about the hidden boundary as presented in [15].

In most of the works mentioned above, the proposed geometric reconstruction ap-
proaches are developed with the help of boundary measurements. In the present paper,
we address the problem of multiples anomalies reconstruction using local internal observa-
tion data. More precisely, we aim to reconstruct an unknown source-term support ω⋆ ⊂ Ω
from a local interior measurement of the associated potential taken within an arbitrary
sub-region Ω0 ⊂ Ω, where Ω ⊂ R2. In order to overcome the ill-posedness, the considered
inverse problem is reformulated as a self-regularized topology optimization one where the
mass distribution is the unknown variable. The considered misfit function contains two
main terms. The first one is defined by a least-square functional, which measures the
difference between the observed values and the fitted values provided by the model in the
sub-region Ω0 ⊂ Ω. The second one involves a regularization term penalizing the relative
perimeter of the domains. To reconstruct the location, size, shape and number of the
mass density distributions in the geometrical domain Ω, we propose an approach based
on the second-order topological derivative method. The topological sensitivity analysis
is used to estimate the variation of the least-squares functional with respect to a finite
number of ball-shaped trial anomalies. The second-order topological gradient is exploited
to develop an efficient and fast reconstruction algorithm. The main advantages of our
numerical procedure are justified by some numerical investigations.

The rest of this paper is organized as follows. Section 2 states the inverse source
problem and formulates it as a topology optimization one. In Section 3, we introduce
some notations and we present some theoretical results concerning existence, uniqueness
and stability of the considered optimization problem. Whereas, in Section 4 we derive
the asymptotic expansion of a least-square functional with respect to a finite number of
circular-shaped anomalies. The resulting Newton-type method is presented in Section 5,
together with the associated reconstruction algorithm. In Section 6, we present numeri-
cal examples that demonstrate the effectiveness of the devised reconstruction algorithm.
Finally, the paper ends with some concluding remarks in Section 7.

2. Problem formulation

Let Ω ⊂ R2 be an open and bounded domain with Lipschitz boundary ∂Ω. We consider
the problem of determining a source term f ⋆ in the following boundary value problem:{

−∆z = f ⋆ in Ω,
z = 0 on ∂Ω,

(2.1)

from internal measurements of the potential z taken within an open sub-domain Ω0 strictly
included in Ω (i.e. Ω0 ⋐ Ω).
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Based on the underlying physical motivations as mentioned in the introduction section,
the source term to be reconstructed f ⋆ is modeled here as a mass density distribution,
namely,

f ⋆ = χω⋆ , (2.2)

where χω⋆ is the characteristic function of the unknown sub-domain ω⋆ ⊂ Ω\Ω0.
In order to present the considered inverse source problem, we firstly introduce the set

of the admissible solutions. It contains the characteristic functions having the form:

A(Ω) = {χω : Ω 7→ R | χω = 1 in ω and χω = 0 in Ω \ ω, such that PΩ(ω) ≤ C}, (2.3)

where C > 0 is a given constant, ω ⊂ Ω\Ω0 is a Lebesgue measurable set, and PΩ(ω)
denotes the relative perimeter of ω in Ω, namely

PΩ(ω) = sup
{∫

Ω

χω divφ
∣∣∣ φ ∈ C1c (Ω)2, ∥φ∥L∞(Ω) ≤ 1

}
,

with C1c (Ω) is the space of continuously differentiable functions with compact support in
Ω and ∥.∥L∞(Ω) is the essential supremum norm. Moreover, we use the notation

∫
Ω
u to

the classical Lebesgue integral
∫
Ω
u(x)dx.

For each element χω belongs to A(Ω), we denote by uω the solution to the following
boundary value problem {

−∆uω = χω in Ω,
uω = 0 on ∂Ω.

(2.4)

Assuming that the given measured data in Ω0 is given by z|Ω0
, where z is the potential

related to the actual source term f ⋆ = χω⋆ , (i.e. z solves (2.1)). Thus, the inverse
problem to be solved consists in finding χω⋆ ∈ A(Ω) such that the associated potential
uω approximate as most as possible the measured data in the sub-domain Ω0.
According to this observation, the inverse reconstruction problem can be formulated as

a topological optimization one. For this purpose, we consider a weaker formulation of the
considered inverse problem which consists in solving the topology optimization problem
of the form

Minimize
χω∈A(Ω)

J (χω, uω), (2.5)

where the cost function J is defined by

J (χω, uω) := J(χω) =

∫
Ω0

(
uω − z

)2

+ ρPΩ(ω) (2.6)

with ρ > 0 is a regularization parameter.

3. Analysis of the minimization problem

In this section, we discuss two theoretical questions related to the considered inverse
problem. The first one is devoted to the existence of an optimal solution. The second
one is concerned with the stability notion. We start our analysis by introducing some
definitions as well as some useful results.

3.1. Notations and preliminary results. Let Lq(Ω) and Hp(Ω) be the usual Lebesgue
and Sobolev spaces. In a Banach space Y , we denote the weak convergence of a sequence
{Tn}n to T by

Tn ⇀ T in Y as n→∞.
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Now, we briefly introduce the space of functions with bounded total variation. For more
details the reader may refer to [9]. A function u belonging to L1(Ω) is said to be of
bounded total variation if

|Du|(Ω) := sup
{∫

Ω

u div φ
∣∣∣ φ ∈ C1c (Ω)2, ∥φ∥L∞(Ω) ≤ 1

}
.

Let BV (Ω) be the space of functions of bounded total variation (BV -functions). It can
then be defined as

BV (Ω) =
{
u ∈ L1(Ω)

∣∣∣ |Du|(Ω) <∞
}

and equipped with the natural norm

∥u∥BV (Ω) = ∥u∥L1(Ω) + |Du|(Ω).
Finally, we recall the following preliminary results, which will be used in the sequel. For
more details and proofs one can consult [20, Theorem 6.3 in Chapter 5].

Lemma 1. Let {On}n be a sequence of measurable domains in Ω for which there exists a
constant c > 0 such that

PΩ (On) ≤ c, ∀n.
Then, there exist a measurable set O∗ in Ω and a subsequence {Onk

}k such that

χOnk
→ χO∗ in L1(Ω) as k →∞ (3.1)

and
PΩ(O∗) ≤ lim inf

k→∞
PΩ (Onk

) ≤ c. (3.2)

Remark 2. When PΩ(ω) < ∞, we say that ω has finite perimeter in Ω. In this case
the relative perimeter PΩ(ω) of ω coincides with the total variation of the distributional
gradient of the characteristic function of ω :

PΩ(ω) = |Dχω|(Ω).

The penalization of the error function (L2(Ω0)-norm) by the relative perimeter PΩ is
relevant for the existence of optimal solution of the optimization problem (2.5), which
will be discussed in the next section.

3.2. Existence and uniqueness of a minimizer. This section is concerned with the
existence of an optimal solution to the considered problem (2.5). The obtained result is
summarized in the following theorem.

Theorem 3. The minimization problem (2.5) admits at least one solution.

Proof. Since the function J from (2.6) is bounded from below by zero, there exists a
minimizing sequence {χωn}n ⊂ A(Ω) such that

lim
n→∞

J(χωn) = inf
χω∈A(Ω)

J(χω).

By the definition of the admissible solutions, we deduce that {ωn}n is a sequence of
measurable domains in Ω such that PΩ(ωn) ≤ C. Therefore, in view of Lemma 1, there
exist a measurable set ω⋆ ∈ Ω and a subsequence of {χωn}n, still denoted by {χωn}n, such
that

χωn → χω⋆ in L1(Ω) as n→∞
and

PΩ(ω
⋆) ≤ lim inf

n→∞
PΩ(ωn) ≤ C.



5

Consequently,

χω⋆ ∈ A(Ω).
Now, we shall prove that χω⋆ is indeed the unique minimizer to (2.5). For each n ∈ N, let
us consider uωn the solution of the following boundary value problem{

−∆uωn = χωn in Ω,
uωn = 0 on ∂Ω.

(3.3)

By taking uωn as test function in the weak formulation of (3.3), one can deduce

∥uωn∥H1
0 (Ω) ≤ c, (3.4)

where c is a positive constant depending only on Ω. Thus, the sequence {uωn}n is bounded
in H1

0 (Ω). This indicates the existence of some u⋆ ∈ H1
0 (Ω) and a sub-sequence of {uωn}n,

again still denoted by {uωn}n, such that

uωn ⇀ u⋆ in H1
0 (Ω) as n→∞. (3.5)

We claim

u⋆ = uω⋆ .

In other hand, the variational formulation of (3.3) implies∫
Ω

∇uωn · ∇w =

∫
Ω

χωnw, ∀w ∈ H1
0 (Ω). (3.6)

Due to (3.5), it follows

∇uωn ⇀ ∇u⋆ in L2(Ω)× L2(Ω) as n→∞.

Tending n to infinity, from (3.6) one can obtain∫
Ω

∇u⋆ · ∇w =

∫
Ω

χω⋆w, ∀w ∈ H1
0 (Ω). (3.7)

Thanks to the uniqueness of the limit, one can conclude that

u⋆ = uω⋆ .

The last part of this proof is due to the lower semi-continuity of the function J . Indeed, it
is well known that the L2(Ω0)-norm is lower semi-continuous. The lower semi-continuity
of the second term in J (the perimeter function) from Lemma 1 (see aslo [7, Proposition
10.1.1]). Then, exploiting the lower semi-continuity of J and the above convergence
results, one can derive

J(χω⋆) =

∫
Ω0

(
u⋆ − z

)2

+ ρPΩ(ω
⋆)

≤ lim inf
n→∞

∫
Ω0

(
uωn − z

)2

+ ρ lim inf
n→∞

PΩ(ωn)

≤ lim inf
n→∞

J(χωn) = inf
χω∈A(Ω)

J(χω),

indicating that χω∗ is indeed a minimizer to the optimization problem (2.5). Furthermore,
the convexity of J(χω) follows from the convexity of the error function (L2-norm) and the
penalty term [19], which implies the uniqueness of χω∗ . □



6

3.3. Stability result. In this section, we will discuss the stability question related to the
minimization problem (2.5). Let {zn}n be a sequence of measurements of the potential in
Ω0. For each n ∈ N, we denote by χωn the solution to the following minimization problem

Minimize
χω∈A(Ω)

Jn(χω),

with Jn is the cost function defined by

Jn(χω) :=

∫
Ω0

(
uω − zn

)2

+ ρPΩ(ω).

In the following theorem, we examine the convergence of the sequence {χωn}n when the
measured data zn tends to z in L2 as n→ +∞.

Theorem 4. If zn tends to z in L2(Ω0) as n→ +∞. Then, the sequence {χωn}n converges
strongly in L1(Ω) to the minimizer of the optimization problem (2.5).

Proof. The unique existence of each χωn is guaranteed by Theorem 3. Since PΩ(ωn) ≤ C,
thus from Lemma 1, there exists χω⋆ ∈ A(Ω) and a subsequence of {χωn}n, still denoted
by {χωn}n, such that

χωn → χω⋆ in L1(Ω) as n→∞.

Now it suffices to show that χω⋆ is indeed the unique solution to the minimization problem
(2.5). Actually, after repeating the same argument as that in the proof of Theorem 3, one
can derive

uωn ⇀ uω⋆ in H1
0 (Ω) as n→∞, (3.8)

up to taking a further sub-sequence. Using the convergence of zn to z when n → +∞
and from (3.8), one can obtain

uωn − zn ⇀ uω⋆ − z in L2(Ω0) as n→∞.

Consequently, for any χω ∈ A(Ω), again we take advantage of the the lower semi-continuity
of the L2-norm and the lower semi-continuity of the perimeter to deduce

J(χω⋆) =

∫
Ω0

(
uω⋆ − z

)2

+ ρPΩ(ω
⋆)

≤ lim inf
n→∞

∫
Ω0

(
uωn − zn

)2

+ ρ lim inf
n→∞

PΩ(ωn)

≤ lim inf
n→∞

[ ∫
Ω0

(
uωn − zn

)2

+ ρPΩ(ωn)
]

≤ lim
n→∞

[ ∫
Ω0

(
uω − zn

)2

+ ρPΩ(ω)
]
.

Then, it follows

J(χω⋆) ≤
∫
Ω0

(
uω − z

)2

+ ρPΩ(ω) = J(χω), ∀χω ∈ A(Ω),

which implies that χω⋆ is a solution to the minimization problem (2.5). □
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4. Sensitivity analysis

The considered inverse problem (2.1) has been rewritten in the form of a topology
optimization problem (2.5), which will be solved with the help of a fast and accurate ap-
proach based on the topological derivative method [38, 39]. The topological derivative was
introduced in the field of shape optimization in [22, 43] and was for the first time mathe-
matically justified in [26, 44]. Since then, topological based gradient algorithms have been
successfully applied for solving a wide range of relevant problems, such as cracks detec-
tion [4], images restoration and classification [8, 11], images segmentation [30], detection
of small cavities in Stokes flow [1], localization of obstacles [17, 18], topology optimiza-
tion of structures [5, 26], elastodynamic and acoustic inverse scattering [12, 42], fracture
mechanics [3, 46], damage evolution phenomena [2, 47], and many other applications [40].

In the context of inverse problems, such numerical algorithms are non-iterative, free
of initial guess and require only a minimal number of user defined algorithmic param-
eters, contrary to the traditional optimization procedure where many parameters must
be adequately chosen (such as the initial guess, step size, regularization coefficient, ...
etc) to enhance the stability of the numerical procedure and ensure the optimization pro-
cess. Numerical simulations in the literature have shown that topological gradient based
algorithms enjoy high robustness with respect to noisy input data. Hence, despite the
large number of investigations concerning the topological sensitivity analysis method, the
theoretical aspect of the robustness issue has not been addressed so far.

To solve the topology optimization problem (2.5), we propose in this work a fast and
accurate detection approach based on both first and second topological gradients. To this
end, we derive a second-order topological asymptotic expansion for the considered shape
function J with respect to the presence of a finite number of ball-shaped anomalies. But
before, let us introduce some notations and useful assumptions. Let N ≥ 1 be a given
integer. For each 1 ≤ i ≤ N , we denote by Bεi(x̂i) the ball of radius εi and center x̂i ∈ Ω.
We assume that the balls Bεi(x̂i) are disjoints and strictly included inside the domain
Ω\Ω0; i.e.

Bεi(x̂i) ∩ Bεj(x̂j) = ∅, ∀i, j ∈ {1, ..., N} and i ̸= j

Bεi(x̂i) ⊂ Ω and Bεi(x̂i) ∩ Ω0 = ∅, ∀i = 1, ..., N.

From these elements, the perturbed counterpart of the characteristic source term χω can
be defined

χωε = χω +
N∑
i=1

χBεi (x̂i). (4.1)

As mentioned above, the first-order topological derivative method provide a fast and
accurate numerical optimization algorithm which means that no any additional regular-
ization term is needed to stabilize the reconstruction process. Later on, this result was
generalized to the second-order topological derivative by Novotny et al. [15, 16, 24, 25, 41].
More recently, in the context of gravimetry, Menoret et al. [37] discussed the robustness
of the second-order topological gradient method of four different error norms. More pre-
cisely, they proved that the L2-norms are more robust with respect to noise (numerically).
However, this feature still needs to be mathematically proven. Hence, for the sake of sim-
plicity, we neglect the influence of the regularization term in (2.6) by assigning a small
value to the parameter ρ. Indeed, one can choose ρ = |ε|5 where ε = (ε1, · · · , εN) and
|ε| = ε1+ ...+εN . Then, ρPΩ(ω) = o(|ε|4) since PΩ(ω) ≤ C. Therefore, the cost functional
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associated with the topologically perturbed domain can be evaluated as

J (χωε , uε) =

∫
Ω0

(
uε − z

)2

+ o(|ε|4), (4.2)

with uε be the solution of the perturbed boundary value problem{
−∆uε = χωε in Ω,

uε = 0 on ∂Ω.
(4.3)

Now, we are ready to establish an asymptotic formula describing the variation of
J (χωε , uε) − J (χω, uω) with respect to ε. Firstly, let us introduce the following ansatz
for the solution to the perturbed problem (4.3):

uε(x) = uω(x) +
N∑
i=1

πε2i vεi(x), (4.4)

where vεi is the solution of the following auxiliary boundary value problem for i = 1, ..., N :
Find vεi , such that : {

−∆vεi = 1
πε2i

χBεi (x̂i) in Ω,

vεi = 0 on ∂Ω.
(4.5)

Since each vεi depends on εi in the ball Bεi(x̂i), we can decompose it into two parts,
namely

vεi(x) = pεi(x) + qi(x), (4.6)

where pεi is solution of the following boundary value problem defined in a big ball BR(x̂i) ⊃
Ω of radius R and centered at x̂i: Find pεi , such that{

−∆pεi = 1
πε2i

χBεi (x̂i) in BR(x̂i),

pεi = 1
2π

lnR on ∂BR(x̂i).
(4.7)

The above boundary value problem admits an explicit solution given by

pεi(x) =

{
− 1

4π
(∥x−x̂i∥2

ε2i
+ 2 ln εi − 1) x ∈ Bεi(x̂i),

− 1
2π

ln ∥x− x̂i∥ x ∈ BR(x̂i) \ Bεi(x̂i).
(4.8)

In addition, qi is the solution to the homogeneous canonical boundary value of the form
problem {

−∆qi = 0 in Ω,
qi = 1

2π
ln ∥x− x̂i∥ on ∂Ω.

(4.9)

Therefore, the difference between uε and z can be obtained simply as

uε − z = uω − z +
N∑
i=1

πε2i vεi . (4.10)

Since Bϵi(x̂i) ∩ Ω0 = ∅, then

vεi(x) = pi(x) + qi(x), ∀x ∈ Ω0, (4.11)

with

pi(x) := pεi(x) = −
1

2π
ln ∥x− x̂i∥, ∀x ∈ Ω0. (4.12)
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Consequently, after replacing (4.10) into (4.2), we can collect the terms in power of εi to
get the following asymptotic expansion:

J (χωε , uε)−J (χω, uω) = 2
N∑
i=1

πε2i

∫
Ω0

(uω − z)hi +
N∑

i,j=1

πε2iπε
2
j

∫
Ω0

hihj + o(|ε|4), (4.13)

where we have considered (4.11) and introduced the notation hi = pi + qi.

5. Reconstruction algorithm

In this section, we want to find a better approximation to the target ω⋆ than the initial
guess ω based on the topological asymptotic expansion of the shape functional (4.13). In
particular, after disregarding the higher order terms of o(|ε|4), the following quantity can
be introduced

Ψ(α, ξ) = α · d(ξ) + 1

2
H(ξ)α · α, (5.1)

where vectors ξ = (x̂1, · · · , x̂N) and α = (α1, · · ·αN), with αi = πε2i . The vector d and
matrix H have entries

d(ξ) =


d1
d2
...
dN

 and H(ξ) =


H11 H12 · · · H1N

H21 H22 · · · H2N
...

...
. . .

...
HN1 HN2 · · · HNN

 , (5.2)

where

di = 2

∫
Ω0

(uω − z)hi and Hij = 2

∫
Ω0

hihj. (5.3)

Given the general function of form (5.1), its minimum is trivially found when:

⟨DαΨ(α, ξ), β⟩ = 0, ∀β ∈ RN . (5.4)

Furthermore, givenHij is symmetric positive definite, the minimum of the function Ψ(α, ξ)
with respect to α is the global minimum. In particular,

(H(ξ)α + d(ξ)) · β = 0, ∀β ∈ RN ⇒ H(ξ)α = −d(ξ) (5.5)

provided that H = H⊤. Therefore,

α = α(ξ) = −H(ξ)−1d(ξ), (5.6)

such that the quantity α, solving (5.6), becomes a function of the locations ξ. After
replacing the solution of (5.6) into Ψ(α, ξ), defined by (5.1), the optimal locations ξ∗ can
be obtained from a combinatorial search over the domain Ω. These locations are the
solutions to the following minimization problem:

ξ∗ = argmin
ξ∈X

{
Ψ(α(ξ), ξ) =

1

2
α(ξ) · d(ξ)

}
, (5.7)

where X is the set of admissible locations of anomalies. Then, the optimal sources are
characterized by the pair ξ∗ and α∗ = α(ξ∗) of locations and sizes, respectively.
To summarize, we have introduced a second order topology optimization algorithm

which is able to find the optimal sizes α∗ of the hidden anomalies and their locations ξ∗

for a given number N of trial balls. The inputs to the algorithm are:

• the vector d and the matrix H;
• the M = card(X) points at which the system (5.6) is solved;
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Algorithm 1: Second Order Reconstruction Algorithm

input : M , N ;
output: the optimal solution α∗, ξ∗;

1 Initialization: Ψ∗ ←∞; α∗ ← 0; ξ∗ ← 0;
2 for i1 ← 1 to M do
3 for i2 ← i1 + 1 to M do

...
4 for iN ← iN−1 + 1 to M do

5 d←


d(i1)
d(i2)
...

d(iN )

; H ←


H(i1,i1) H(i1,i2) · · · H(i1,iN )

H(i2,i1) H(i2,i2) · · · H(i2,iN )
...

...
. . .

...
H(iN ,i1) H(iN ,i2) · · · H(iN ,iN )

;
6 I ← (i1, i2, . . . , iN); ξ ← Π(I); α← −H−1d ; Ψ← 1

2
d · α;

7 if Ψ < Ψ∗ then
8 ξ∗ ← ξ; α∗ ← α; Ψ∗ ← Ψ;
9 end if

10 end for
11 end for
12 end for
13 return α∗, ξ∗;

• the number N of anomalies to be reconstructed.

The algorithm returns the optimal sizes α∗ and locations ξ∗. For the reader convenience,
the above procedure is written in pseudo-code format as shown in Algorithm 1. In the
algorithm, Π maps the vector of nodal indices I = (i1, i2, . . . , iN) to the corresponding
vector of nodal coordinates ξ. For further applications of this algorithm, we refer to
[15, 23, 25].

In Algorithm 1, optimal source locations ξ∗ are obtained through a combinatorial search
over M trial points sampling the set of admissible locations X. As a result, the compu-
tational complexity C(M,N) of the algorithm can be evaluated by the formula

C(M,N) ≈
(

M
N

)
N3 =

M !

N !(M −N)!
N3.

In Figure 1, the graphs of N × log10(C(M,N)) for M = 100 and M = 400 are plotted as
solid and dashed lines, respectively. As can be seen from the display, the computational
cost of the algorithm may become prohibitive for N ≈ M/2. Note that for N = M
there is no combinatorial search to perform and thus the complexity of the algorithm is
of O(N3). This feature has been successfully explored in the design of electromagnetic
antennas in hyperthermia therapy [36].

Finally, let us point out some interesting features of the Algorithm 1: (a) when the
number N⋆ of target anomalies is unknown, the algorithm can be started based on the
assumption that there exists N > N⋆ anomalies and then we should find a number
(N−N⋆) of trial balls with negligible sizes; (b) if the center of the target anomaly ξ⋆ does
not belong to the set of admissible locations X, the algorithm returns a location ξ∗ which
is the closest to the true one ξ⋆; and (c) since a combinatorial search over all the M -points
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Figure 1. Complexity order of Algorithm 1: N × log10(C(M,N)) for M =
100 (solid) and M = 400 (dashed).

of the set X has to be performed, this exhaustive search becomes rapidly infeasible for
M ≈ 2N , as N increases. In the ensuing numerical examples, we set N ≪ M , with N
small, so that Algorithm 1 runs in a few seconds for all examples.

6. Numerical results

Let us consider a domain Ω = (0, 1)× (0, 1), which is discretized with three-node finite
elements. The mesh is generated from a grid of size 160 × 160, where each resulting
square is divided into four triangles, leading to 102.400 elements. The set of admissible
locations X is obtained by selecting 181 uniformly distributed interior nodes from the
finite elements mesh. In order to verify the robustness of the method with respect to
noisy data, the true source term f ⋆ is corrupted with White Gaussian Noise (WGN). In
particular, the target source f ⋆ is replaced by

f ⋆
σ(x) = f ⋆(x) + στ(x), (6.1)

where τ : Ω 7→ R is a normal random variable of zero mean and σ corresponds to the noise
level. Note that in this context, noisy data can be interpreted as modeling uncertainties.
In addition, to quantify the impact of the noisy data in the associated potential, the
following definition for the effective noise level is introduced

E =
∥z − zσ∥L2(Ω0)

∥z∥L2(Ω0)

× 100 [%], (6.2)

where z and zσ are the potentials obtained from the original f ⋆ and corrupted sources f ⋆
σ ,

respectively. Finally, we set ω = ∅, which means that all the examples are free of initial
guess.

6.1. Example 1. In this example we consider the reconstruction of two anomalies, one
L-shaped and another one circular. The experiment is free of noise, namely σ = 0%.
Figure 2(a) shows the target to be reconstructed in black together with the observable
domain Ω0 in grey, given by four quarter of circles of radius ρ0 = 0.01 each one. By
setting N = 4 trial balls, the obtained result is shown in Figure 2(b). Note that the
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target can be properly approximated by a number of balls, even for a small amount of
available information, in the case |Ω0|/|Ω| = π × 10−4.

(a) Target (b) Result

Figure 2. Example 1: Target to be reconstructed in black and observable
domain in gray (a), and obtained result for N = 4 trial balls (b).

6.2. Example 2. In this example we consider the reconstruction of a cross-shaped anom-
aly, as shown in Figure 3(a). The target is corrupted with σ = 80% of noise, according
to Figure 3(b). The observable domain Ω0 is given by four quarter of circles of radius
ρ0 each one, as in the previous example. However, in order to verify how sensitive is the
reconstruction with respect to Ω0, we consider different values for the radius ρ0. The
obtained results by setting N = 1 trial ball are presented in Figure 4 for ρ0 equal to 0.02,
0.04, 0.10 and 0.20, with σ = 80% of noise. From an analysis of these figures, in the
presence of noise, we observe that the less information is available, the worst is the result.
Note that for ρ0 = 0.2, the center of the trial ball coincides with the barycenter of the
cross-shaped anomaly and the resulting volumes are very close to each other, even for
such a high level of noise. In fact, let us introduce the quantity µξ := ∥ξ∗− ξ⋆∥ measuring
the distance between the barycenter ξ⋆ of the true cross-shaped anomaly of Figure 3(a)
and the found center ξ∗ of the trial ball. The convergence of the distance function µξ with
respect to the size ρ0 of the observable domain Ω0 is shown in Table 1, which confirms
what it is observed in Figure 4. For the reader convenience, the effective noise levels E
from (6.2), associated with each value of ρ0 and σ = 80%, are also reported in Table 1.

(a) Target (b) Source f⋆
σ

Figure 3. Example 2: Target to be reconstructed (a) and noisy source
term f ⋆

σ for σ = 80% (b).

6.3. Example 3. In this example we consider the reconstruction of three ball-shaped
anomalies of varying sizes. Figure 5 shows the target to be reconstructed in black together
with the observable domain Ω0 in grey, given by four quarter of circles of radius ρ0 as
in the previous examples, but with fixed ρ0 = 0.2. The target is corrupted with varying
levels of noise σ. The obtained results by setting N = 3 trial balls are presented in Figure
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Figure 4. Example 2: Obtained reconstructions in black for varying ob-
servable domains Ω0 in grey, with radius ρ0 equal to 0.02, 0.04, 0.10 and
0.20, respectively, N = 1 trial ball and σ = 80% of noise.

Table 1. Example 2: Convergence of the distance function µξ with respect
to the size ρ0 of the observable domain Ω0 and effective noise levels E .

ρ0 0.02 0.04 0.10 0.20
µξ 0.4243 0.0707 0.0707 0.0000
E 11.36% 25.35% 41.50% 80.04%

6 for σ equal to 0%, 10%, 20% and 40% of noise. From an analysis of these figures,
we observe that up to σ = 20%, the reconstruction can be considered acceptable. For
σ = 40% the solution starts to degrade. Finally, the effective noise levels E from (6.2) are
reported in Table 2.

Figure 5. Example 3: Target to be reconstructed in black and observable
domain in gray.

Table 2. Example 3: Effective noise levels E in [%].

σ 10 20 40
E 1.31 2.62 5.23

Before present the last example, let us show two more results based on the same target
to be reconstructed. In the first case, we consider the observable domain Ω0 as shown in
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Figure 6. Example 3: Noisy source term f ⋆
σ (left) and reconstructions

obtained from N = 3 trial balls (right), with 0%, 10%, 20% and 40% of
noise, respectively.

Figure 7(a). By setting N = 4 trial balls in Algorithm 1, we obtain the result presented
in Figure 7(b), where a tinny fourth ball pointed by the red arrow has been found, as
expected. Finally, let us consider the case in which ω⋆ ⊂ Ω0 as shown in Figure 8(a),
violating the assumption that the target domain ω⋆ does not touch the observable domain
Ω0. The obtained result is presented in Figure 8(b), whose reconstruction is unexpected
good since expansion (4.13) does not account for ω⋆ ⊂ Ω0. Actually, in this case the
asymptotic analysis becomes more involved and some intermediate term between ε2i and
ε4i of the form ε4i ln(εi) would appear in the expansion (4.13).

6.4. Example 4. In this last example we consider the reconstruction of one ball-shaped
anomaly. The observable domain Ω0 is given by four quarter of circles of radius ρ0 each
one as in the previous examples, with ρ0 = 0.1. The set of admissible locations X is
obtained by selecting 21, 113, 481 and 1985 uniformly distributed interior nodes from
the finite elements mesh. The true location ξ⋆ does not belongs to the first three set of
admissible locations, but it belongs to the last one. The distance function µξ = ∥ξ∗− ξ⋆∥
is considered, where ξ⋆ is the center of the true anomaly and ξ∗ is the center of the trial
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(a) Target (b) Result

Figure 7. Example 3: Target to be reconstructed in black and observable
domain in gray (a), and obtained result for N = 4 trial balls (b). The red
arrow is pointing to the fourth tinny ball.

(a) Target (b) Result

Figure 8. Example 3: Target to be reconstructed in black and observable
domain in gray (a), and obtained result for N = 3 trial balls (b).

ball. In addition, we introduce the relative error function δα = |α∗− α⋆|/α⋆× 100 in [%],
where α⋆ is the size (volume) of the true anomaly whereas α∗ is the size of the trial ball.
The values of these quantities are reported in Table 3, showing that when the center of
the target anomaly does not belong to the set of admissible locations X, namely ξ⋆ /∈ X,
the algorithm returns a location ξ∗ which is the closest to ξ⋆. In addition, as expected,
the found size α∗ converges toward to the true one α⋆ when card(X) increases.

Table 3. Example 4: Convergence of the distance function µξ and relative
error function δα in [%] with respect to the set of admissible locations X.

card(X) 21 113 481 1985
µξ 0.066 0.022 0.022 0.000
δα 3.204 1.506 1.544 0.134

7. Concluding remarks

This paper is concerned with an inverse source problem related to the Poisson equa-
tion into two spatial dimensions. We have tackled the geometric reconstruction of source
locations from internal partial measurements of the potential field. This work is moti-
vated by various engineering applications, such as the gravimetry problem which deals
with the identification of the Earth’s mass density distribution from measurements of the
gravitational field of the surface. The considered inverse problem is reformulated as a self-
regularized topology optimization one. The unknown support of the mass distribution is
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characterized as the solution to an optimization problem minimizing a given least-square
functional.

The existence, uniqueness and stability of the optimization problem solution have been
established. The second-order topological derivative has been exploited for devising a
non-iterative reconstruction algorithm, which is free of initial guess, in the sense that
ω = ∅, and very robust with respect to noisy data. Our proposed approach is general
and can be adapted for solving various inverse problems. In particular, the first order
topological derivative gives qualitative information about the hidden anomalies and in-
duces iterative algorithms to reconstruct them. In contrast, the second order topological
derivative induces non-iterative reconstruction algorithms given quantitative information
on the location and size (volume) of the hidden anomalies. These features are crucial
for solving a class of inverse imaging problems in which the stability is the main issue.
As supported by the numerical experiments, the resulting second order algorithm is in
fact very resilient with respect to noisy data. The main drawback of our approach is
the computational cost when M ≈ 2N and N increases, remembering that M is the
number of admissible locations and N is the number of trial balls. However, it can be
combined with well-established and more computationally sophisticated iterative methods
[10, 13, 29, 33, 45].

On the other hand, several mathematical issues of high interest have not been discussed
in the paper. The identifiability problem is one of them. The full identifiability issue is,
however, up to our knowledge, still an open problem which deserves further investigation.

References

[1] A. B. Abda, M. Hassine, M. Jaoua, and M. Masmoudi. Topological sensitivity analysis for the
location of small cavities in stokes flow. SIAM Journal on Control and Optimization, 48:2871–2900,
2009.

[2] G. Allaire, F. Jouve, and N. Van Goethem. Damage and fracture evolution in brittle materials by
shape optimization methods. Journal of Computational Physics, 230(12):5010–5044, 2011.

[3] H. Ammari, H. Kang, H. Lee, and J. Lim. Boundary perturbations due to the presence of small
linear cracks in an elastic body. Journal of Elasticity, 113:75–91, 2013.

[4] S. Amstutz, I. Horchani, and M. Masmoudi. Crack detection by the topological gradient method.
Control and Cybernetics, 34(1):81–101, 2005.

[5] S. Amstutz and A. A. Novotny. Topological optimization of structures subject to von Mises stress
constraints. Structural and Multidisciplinary Optimization, 41(3):407–420, 2010.

[6] Yu E Anikonov, BA Bubnov, and GN Erokhin. Inverse and ill-posed sources problems, volume 9.
Walter de Gruyter, 2013.

[7] H. Attouch, G. Buttazzo, and G. Michaille. Variational analysis in Sobolev and BV spaces: applica-
tions to PDEs and optimization. SIAM, New York and London, 2014.

[8] D. Auroux, M. Masmoudi, and L. Belaid. Image restoration and classification by topological as-
ymptotic expansion. In Variational formulations in mechanics: theory and applications, Barcelona,
Spain, 2007.
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