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Abstract. We construct a new operator splitting scheme to describe a fluid-driven brit-
tle fracture propagation in a Biot medium based on a time-scale separation assumption.
In this context, we propose an alternate hybrid time-stepping scheme where in the in-
jection step, prior to fracture advance, we explore the framework of the fixed stress split
scheme with hydrodynamic subsystem solved ahead of the geomechanics for a frozen to-
tal mean stress. Conversely after convergence of the fixed stress split iterations, when the
pore pressure exceeds a critical value, the coupling between poromechanics and fracture
propagation is accomplished by considering a fast time-scale, with frozen pore-pressure
and Darcy velocity fields. Such a latter step is performed in a separate iteration loop
with the elasticity sub-system incorporating the Francfort-Marigo variational model for
a thin damage region. In this setting, the evolution of the damaged zone is governed
by the sensitivity of the associated shape functional with respect to the nucleation of
a small damaged zone, which is computed within the framework of the topological de-
rivative method. The resulting approach is algorithmically described in details. A nu-
merical assessment of the model is constructed by performing a series of benchmark
examples, showing different features of the proposed approach such as characterization
of fracture-activation pressure, crack path forecast, and the ability to capture kinking
and bifurcations and quantifying the effects of the in situ stress field on the crack path.

1. Introduction

Hydraulic fracturing is a process largely applied by oil and gas industries. Such a well
stimulating-based technique, also commonly referred to as fracking, was first proposed in
[14] and consists in increasing the production area along with enhancing the permeability
of the geological formation. The induced fracture network is typically generated by pump-
ing an aqueous phase with controlled composition at high pressure through a pressurized
wellbore [11]. Furthermore, in order to extend the size of the propagation region, substan-
tial pressure increase is required in order to overcome the porous medium resistance along
with the in situ stress state in the rock layers above the well. The main drawbacks of
the technique are related to environmental impacts associated with hydrocarbon leakage
to adjacent water resources and possible trigger of induced seismicity. Nevertheless, in
spite of the above issues, from the economical point of view, fracking has been considered
one of the most viable techniques commonly adopted to enhance hydrocarbon recovery.
Among other aspects, such environmental and economical issues reinforce the need for de-
tailed studies on this subject, particularly the necessity of developing robust and accurate
computational models with the ability to monitor, optimize and improve our knowledge
on the mechanics underlying the process in order to perform it safely.

1.1. The hydraulic fracturing modeling. The construction of models to describe hy-
draulic fracturing has been subject of many studies over the last years, see for instance
[8, 21, 35, 37, 43]. To date, since the forerunner Griffith theory of linear elastic fracture
mechanics, crack propagation has been extensively studied with different approaches, (see
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[16] for an exhaustive review) where we may distinguish two different schools of thought,
one based on discontinuous models whereas the other is hinged upon continuous mod-
els. The first comprises the well-known discontinuous (discrete-type) models, where we
may highlight Barenblatt’s Cohesive Zone Model [4] and the enriched-based finite element
methods, such as XFEM, wherein the displacement discontinuities are captured by the
design of richer approximation spaces [26]. In this setting, the advance of the discontinuity
is tracked explicitly by updating the enriched basis functions. On the other hand, the lat-
ter group of theories hinges upon continuous, or smeared out, diffusive-based approaches
based on minimization of the total energy of a cracked solid. Such a family of smeared
out type-approaches avoids the need of enrichment and constant updates of finite element
basis functions, allowing the use of standard Galerkin methods in the discretization of the
system flow and mechanics stemming from the fixed stress split scheme. In this setting,
among the proposed continuum damage theories, we may highlight the functional-based
approach constructed by Francfort and Marigo [17, 18], who also developed the proper
mathematical framework for the underlying variational method. Two popular models ly-
ing in this category are the phase field fracture model [12, 13] and topological derivative
based approaches [41, 42]. Phase field fracture models (PFF), hinging upon the regularisa-
tion procedure proposed in [7], were inspired by Ambrosio and Tortorelli [3] in the context
of elliptic perturbation of the free-discontinuity problem, which commonly appears in im-
age segmentation problems [27]. When applied to crack propagation, PFF-models rely
upon the regularised version of Griffith’s isotropic brittle fracture problem based on the
minimization approach of a total energy, given by the sum of a stored elastic compo-
nent and the dissipated surface energy associated with the crack, which is envisioned as
a lower (d − 1)-dimensional hyper-surface. In spite of its versatility in modeling a wide
diversity of fracture networks, along with the capability of handling topologically complex
geometries, owing to the lack of coercivity of the corresponding shape functional, the dis-
continuity in PFF-models requires the characterization of a regularization length scale, so
that the sharp crack is smeared over a localization band, described by the so-called crack
phase field parameter. Thus, PFF-model is typically regarded as an approximation of
the Francfort and Marigo’s variational approach to fracture in the vanishing limit of the
regularization parameter. Despite the underlying damage mechanism, the constitutive
laws of PFF-models exhibit crucial differences compared to those of continuum damage
models (CDM). As shown in [23], the evolution law for the grow of the damaged zone is
not embedded in the classical continuum damage models, but rather, incorporated in the
evolution of the phase-field parameter in the perturbed Euler-Lagrange equations.

1.2. Hydraulic fracturing variational approach. The variational approach of Franc-
fort and Marigo combined with the phase-field regularised formulation do not consist
of the unique approximation methodology. Alternative methods seated on the topolog-
ical derivative concept, which quantifies the sensitivity of the elastic-damage functional
with respect to an infinitesimal singular domain perturbation, have drawn increasingly
attention to tackle fracture propagation problems characterized by the evolution of sharp
interfaces dividing healthy and fully damaged zones [1, 39, 40]. In addition to the un-
derlying physical nature of the Francfort–Marigo variational functional based on damage
mechanisms, the approach has also shown great ability to capture crack propagation
with high accuracy. More specifically, the framework of topology optimization combined
with sharp-damage based models has shown great capability and remarkable flexibility in
modeling numerically the evolution of abrupt interfaces [1, 39, 40]. In this context, rather
than adopting elliptic regularization, the derivative of the shape functional with respect
to perturbations in the non-damaged phase can be computed within the framework of a
gradient descent method and combined with a level set-type method. It is remarkable
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to observe that in this alternative context, unlike the empirical damage formulations, the
evolution of the damage front is consistently advected in the direction of the (minus)
shape functional gradient, which can be precisely quantified by the topological derivative.

The Francfort-Marigo variational formulation has been successfully explored within
the aforementioned methods giving rise to a wide range of different frameworks, such as
the ones based on level-set [1], phase-field [7] and topological derivative [40] approaches.
In particular, the topological derivative method consists of a natural tool to deal with
fracture mechanics modeling. Within this framework applied to fracking, Xavier et al.
[42] considered a forward poroelastic model with a stress-free reference state governed by
a semi-coupled flow/geomechanics system, with the hydrodynamics treated as a sequence
of stationary states. In spite of these time-scale assumptions, the approach proposed
in [42] allows for dealing with multiple crack tips and detecting numerous crack paths
simultaneously. Moreover, it has shown flexibility in capturing the activation pressure
along with incorporating phenomena such as kinking and bifurcations in the discrete
network.

1.3. A hybrid sequential scheme for hydraulic fracturing. In this work we aim at
extending the methodology developed in [42] to the fully transient poroelastic forward
problem adopting the framework of sequential schemes applied to Biot’s poroelasticity
model. Since the seminal papers [5, 6] for soil consolidation, coupled hydro-mechanical
effects have been described by the so-called fully coupled formulations where mechanics
and hydrodynamics are solved simultaneously [29]. Despite its prominence, particularly
for consolidation [24], fully-coupled models exhibit several drawbacks. Among them we
may highlight the compatibility between the finite element spaces for pressure and dis-
placements in order to fulfill stability requirements, particularly in the nearly incompress-
ible (undrained) conditions [28, 29, 30, 34], which may incur the appearance of oscillations
in the pore pressure field. Moreover, the discretization of the fully-coupled formulation
sometimes leads to the resolution of unpractical systems with a large number of degrees of
freedom, imposing huge computational costs, highly challenging code management, along
with precluding the use of different time steps for flow and mechanics. To remedy these
deficiencies, a family of sequential coupling algorithms has been recently devised, which
consists of a trustworthy approach. Within this alternative context, several schemes seated
on operator splitting methods have been constructed which pursue the partitioning of the
global system into sub-problems with coupling enforced in an iterative fashion. Without
attempting to be exhaustive, we refer to [15, 36, 38]. In this general context, different for-
mulations have been constructed, where we may highlight the fixed drained and undrained
splits, where the geomechanics subsystem is solved ahead of the flow. The former is con-
ditionally stable whereas the accuracy of the latter deteriorates substantially with the
grow of the undrained Biot modulus in the nearly incompressible limit [22]. Among the
schemes where hydrodynamics is solved first, we may highlight the fixed strain and stress
splits. The former behaves conditionally stable whereas the unconditional stable fixed
stress split is far more efficient, since the source term involving the time-derivative of
the total mean stress admits a much slower characteristic time scale compared to the
other poromechanical variables. Among the wide diversity of sequential schemes, the un-
conditional stable fixed stress split, based on freezing the total mean stress in the flow
equations, has shown enormous efficiency and unconditional stability [2, 20, 22, 25], and
is now recognized as a potential sequential algorithm for coupling flow and geomechanics.
In the above context, it is worth mentioning the underlying implicit nature of the fixed
stress split which does not suffer from the drawbacks of explicit schemes.
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The purpose of this work is to explore the Francfort-Marigo framework under a different
perspective, by proposing an alternative computational model to describe crack propa-
gation in brittle poroelastic media, seated on a continuum damage theory with abrupt
interfaces, also exploring the good features of the fixed stress split scheme. In this new
context, the associated shape functional for modeling the damage evolution phenomenon
is minimized with the help of the topological derivative method. The synergy between
the above ingredients, all together, allows to construct an innovative description of crack
propagation in poroelastic media. In contrast to PFF-type approaches, an essential fea-
ture underlying the computational model proposed herein is the avoidance of the necessity
of introducing additional regularized unknowns in the poroelastic model, as the theory
attributes two distinct values for the poroelastic coefficients, each one corresponding to
the healthy/damaged sub-domains. Our aim is two-fold. As a first goal, the Francfort-
Marigo shape functional is minimized with the help of the topological derivative method,
where we proceed beyond the quasi-steady approach proposed in [42], in the context
of transient fixed stress representation of the poroelasticity system. In addition to the
well-known time-scale assumption underlying the fixed stress split scheme, the target de-
scription of crack propagation, addressed in the subsequent stage to the fixed stress split
scheme, entails the characterization of a secondary time-scale which dictates the evolu-
tion of poroelastic variables during fracking. For brittle geomaterials, we explore the
separation between the characteristic time-scales underlying fracture evolution and fluid
percolation, by postulating a frozen pore pressure field during crack propagation. Based
on this key assumption, we can construct a hybrid time-evolution scheme for the forward
and optimization sub-systems. In addition, the topological derivative formula associated
with the quasi-static scenario derived [42] can be promptly adapted to the current tran-
sient context. Our second goal relies on exploring the effects of in situ stress profiles
upon the crack propagation patterns. Within the variational statement of the fixed stress
split version of the poroelasticity system such a contribution appears as an additional
component in the linear functional in the right-hand side of the weak form. Different
contrasts between vertical and horizontal in-situ stresses are analysed and shown to have
a profound impact on the numerical crack patterns.

1.4. Paper organization. The resulting framework is algorithmically presented in de-
tails and substantiated with a set of numerical experiments. The discrete-in-time formu-
lation relies strongly on the aforementioned time-scale assumption and shall be referenced
herein to as hybrid formulation, where the flow subsystem of the fixed stress split problem
is solved within the usual freezing of the total mean stress in the time-increments prior
to fracking. In contrast, in the iterative process seated on the topological derivative for
describing crack propagation, the flow subsystem remains frozen and only the material
properties of the elastic subsystem are updated based on the topological derivative. To
illustrate the performance of the proposed approach, a series of benchmark examples is
presented showing different features of the formulation such as characterization of activa-
tion pressure, crack path forecast including kinking and bifurcations as well as effect of
in situ stress upon the crack path. The framework proposed herein can be summarized
as follows:

(1) At a new time step, run the fixed stress split algorithm for solving the hydrome-
chanical system;

(2) After convergence, evaluate the topological derivative and check for the crack
propagation criterion;
(a) If the criterion is fulfilled, increase the damaged region according to the topo-

logical derivative, solve the geomechanical subsystem and go to (2);
(b) Otherwise, return to (1);
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In particular, the work is organized as follows. In Section 2, the hydro-mechanical
model of fracking is introduced. In Section 3, the associated topological derivative is
adapted from the quasi-static case derived in [42]. The topology optimization algorithm
is presented in Section 4. The numerical experiments are driven in Section 5. Finally,
some concluding remarks are presented in Section 6.

2. A sequential formulation for crack propagation in poroelastic media

In the subsequent developments, we present the steps underlying the new sequential
two-stage methodology seated on an operator splitting scheme for describing propagation
of a brittle crack in a Biot medium.

2.1. A fixed stress split scheme for the sharp damage problem. We begin by
stating the extended poroelastic formulation to describe localized sharp damage between
two distinct subdomains due to the presence of a crack. In the context of sequential
coupling for flow and mechanics subsystems, the Biot model is rephrased within the
framework of the fixed stress split scheme (see [25] for details). Thus, consider an open
and bounded geometric domain Ω ⊂ Rd(d = 2, 3) representing a poroelastic medium with
strong localized contrast in the poromechanical properties in the vicinity of the crack.
Within the current setting of sharp damage brittle behavior, the domain Ω contains a
subdomain ω occupied by a preexisting fracture with degrading properties. Denoting t
the characteristic time (0 < t < T ), within the context of the fixed stress split scheme,
we seek the rock displacement u(x, t) and pore pressure p(x, t) fields satisfying [20]{

div(σ(u)) = α∇p− div(σ0) in Ω× (0, T ) ,

β∗∂tp− div(k∇p) = − α

K
∂tσtot in Ω× (0, T ) ,

(2.1)

endowed with appropriate initial and boundary conditions. In (2.1), σtot denotes the total
mean stress, σ0 and σ(u) the in-situ (prior to fracking) and time-dependent components
of the effective stress tensor, whereas k, K, α and β∗ designate the hydraulic conduc-
tivity tensor, bulk modulus of the rock matrix, the Biot-Wilis coefficient and overall
compressibility of the solid/fluid mixture, respectively. By denoting C the elastic tensor
of the matrix and {KS, KF , ϕL} the undrained and fluid bulk moduli and the Lagrangian
porosity, for an isotropic rock skeleton, the hydraulic conductivity k reduces to a scalar
and the tensor C can be represented by the pair of Lamé coefficient {λ, µ} in the form
C = 2µI + λ(I ⊗ I), where I and I are the fourth and second order identity tensors,
respectively. Therefore, we have the reduced constitutive laws

σ(u) = λdiv(u)I + 2µε(u), with ε(u) =
1

2
(∇u+∇u⊤), (2.2)

and

α = 1− K

KS

and β∗ =

(
1

M
+

α2

K

)
, with

1

M
=

α− ϕL

KS

+
ϕL

KF

, (2.3)

where M represents the Biot’s modulus and

µ =
E

2(1 + ν)
and λ =

νE

(1 + ν)(1− 2ν)
, (2.4)

with E and ν the Young modulus and the Poisson ratio of the rock skeleton, respectively.
Finally, the total mean stress σtot is given by

σtot = σ0 +Kdiv(u)− αp , with σ0 =
1

3
tr(σ0) . (2.5)
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It is worth noting that owing to the avoidance of including intrusively regularised un-
knowns in the field-equations, the above formulation preserves the traditional structure
of the poroelastic model. On the other hand, one has to keep track of the highly localized
discontinuity property underlying the set of coefficients {λ, µ, α, k, β∗}. More precisely,
since the domain Ω contains the subdomain ω representing the damaged zone, the pa-
rameters assume distinct values in the matrix Ω\ω and fracture ω, giving rise to localized
jumps in their magnitude across the sharp interface ∂ω.

2.2. Crack propagation based on damage with abrupt interface. We now proceed
by presenting the damage model which will be subsequently explored in the second stage of
the operator splitting methodology. To this end, we begin by introducing an indicator-like
function ρ in the form

ρ = ρ(x) :=

{
1, if x ∈ Ω\ω ,
ρ0, if x ∈ ω ,

(2.6)

with 0 < ρ0 ≪ 1. The two-value image of the indicator function characterizes the region
Ω\ω as the healthy (undamaged) medium, whereas ω represents the degrading sub-portion
occupied by the crack (Figure 1). Such an abrupt damage behavior is described by the
traditional heterogeneous constitutive law for the effective stress tensor σ(u) = ρ(x)Cε(u).

Figure 1. Geological block containing a pre-existing crack. The outer
boundary is decomposed in disjoint subsets ∂Ω = Γb ∪ Γr ∪ Γt ∪ Γl.

In the sequel, we attach the Francfort-Marigo damage model to the evolution of the
degrading region. Such an approach hinges upon the minimization of the shape functional
Fω(u, p)

Fω(u, p) = J (u, p) + κ|ω| , (2.7)

with respect to perturbations in the topology of the crack region ω. In (2.7), κ|ω| is the
Griffith’s energetic dissipation term with the symbol | · | used to denote the Lebesgue
measure of the damaged phase ω. The parameter κ represents a material property that
quantifies the resistance to damage. Such a parameter satisfies the bound [18]

κ <
1− ρ0

2
Cε(u) · ε(u) . (2.8)

In addition, J (u, p), defined as

J (u, p) = 1

2

∫
Ω

σ(u) · ε(u)−
∫
Ω

αp div(u) +

∫
Ω

σ0 · ε(u) , (2.9)
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designates the total potential energy of the poroelastic system. It is worth pointing out
that from (2.7), the Francfort-Marigo functional incorporates the geomechanical compo-
nent of a typical Biot medium supplemented by a dissipation term associated with crack
propagation. For application of the methodology based on the topological derivative, we
refer to the canonical picture depicted in Figure 1. In this setting, we consider a geo-
logical block subject to tractions induced by the in-situ stress on the top boundary Γt,
along with symmetry conditions on the left Γl and right Γr sides, aiming at mimicking
the interactions with the adjacent blocks; as well as clamped condition on the bottom
Γb. We also consider absence of normal flux on both Γl ∪ Γr and Γb \ Γω together with
reference pressure and well (injection) pressure prescribed on Γt and Γω, respectively.
In what follows, we present the weak form of the flow and mechanics subsystems. To

this end, in light of the boundary conditions described above, we introduce the appropriate
functional spaces. For the mechanical sub-system, let the spaces U and V defined as

V = U := {φ ∈ H1(Ω;R2) : φ|Γb
= 0, φ · n|Γr∪Γl

= 0} , (2.10)

whereas for the flow problem introduce the set P and the space Q in the form

P := {ϕ ∈ H1(Ω) : ϕ|Γt
= p0, ϕ|Γω

= p} , (2.11)

with p0 and p the reference (initial), and injection pressures, respectively and

Q := {ϕ ∈ H1(Ω) : ϕ|Γt
= 0, ϕ|Γω

= 0} . (2.12)

We then have to find u ∈ U , such that∫
Ω

σ(u) · ε(v) =
∫
Ω

αp div(v)−
∫
Ω

σ0 · ε(v) , ∀v ∈ V . (2.13)

In addition, for the hydrodynamics we seek p ∈ P , such that∫
Ω

β∗∂tp q +

∫
Ω

k∇p · ∇q = −
∫
Ω

α

K
∂tσtot q , ∀q ∈ Q . (2.14)

Considering the initial condition p(x, 0) = p0, the function p = p(t) represents the path in
the time domain associated with the prescribed pressure on Γω. For the sake of simplicity,
we consider linear grow in the form

p(t) :=

{
p0 + rt, 0 < t < t∗ ,
p∗, t∗ ≤ t < T ,

(2.15)

with p0 the reference pressure at t = 0 and r the increment pressure rate over Γω. In
addition, t∗ designates the characteristic time of the injection and p∗ the maximum well
pressure.

Hence, following the Francfort-Marigo model of sharp interface damage, for a frozen in
time pore pressure field pc(x) = p(x, tc), crack propagation is governed by the following
minimization problem

Minimize
ω⊂Ω

Fω(u, pc), subject to (2.13) , (2.16)

where pc is the critical pressure in which the fracture starts to grow at the critical time
tc. Here, we shall refer to as the critical pressure of activation, the value of pressure on
Γω capable of triggering crack propagation.

An inherent difficulty of problems with stress singularities based on the Francfort-
Marigo model is that the strain energy density rises locally to unbounded values at the
crack tip, and thus above any finite threshold. In this sense, following the strategy pro-
posed in [41, 42] regarding the characterization of the critical pressure of crack activation
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pc, the parameter κ is replaced by κδ defined as

κ = κδ :=
κs

δ
, (2.17)

where κs denotes a new material property and δ is the width of the initial damage.

3. Topological derivative method

In order to complete the underlying steps of the evolving hybrid algorithm, it remains
to build-up a method for solving the optimization problem (2.16). Such a task is accom-
plished herein within the framework of the topological derivative method [31].

The topological derivative is defined as the first term (correction) of the asymptotic
expansion of a given shape functional with respect to a small parameter related to the
size of singular domain perturbations, such as holes, inclusions and cracks [32]. The
well-established framework, built-up on the topological derivative concept, exhibits high
potential to be naturally explored in the current context as a steepest-descent direction
in the optimization process, likewise any method based on the gradient of a cost func-
tional. In this context, the topological derivative method has been successfully applied in
many different areas, such as shape and topology optimization, inverse problems, image
processing, multi-scale material design and mechanical modeling including damage and
fracture evolution phenomena [33].

We proceed herein within the same context of exploring the topological derivative
method to minimize the Francfort-Marigo shape functional (2.7) with respect to the nu-
cleation of a small damaged inclusion, which can occur anywhere in the domain during
the crack nucleation/propagation process. Within the hybrid-evolving scheme further
discussed herein, under a frozen pore pressure field, the topological derivative associ-
ated with elastic subsystem derived in [42], under stationary flow, can be explored in a
straightforward fashion to the current transient scenario, as stated in the following result:

Theorem 1. The topological derivative of the shape functional defined in (2.7), with
respect to the nucleation of a small circular inclusion with different mechanical properties
from the background, is given by the sum

DTFω(x) = DTJ (x) + κδDT |ω|(x), ∀x ∈ Ω , (3.1)

with DT |ω|(x) given by

DT |ω|(x) =
{

+1, if x ∈ Ω\ω,
−1, if x ∈ ω,

(3.2)

and DTJ (x) represented in the form

DTJ (x) = Pγσ(u) · ε(u)(x) + (1− γα)
1 + a

1 + aγ
αpdiv(u)(x)− (1− γα)

2

2ρµ(1 + aγ)
α2p2(x) , (3.3)

where Pγ is the polarization tensor, namely

Pγ = −1

2

1− γ

1 + bγ

(
(1 + b)I+

1

2
(a− b)

1− γ

1 + aγ
I⊗ I

)
, (3.4)

with the coefficients a and b defined as

a =
λ+ µ

µ
and b =

λ+ 3µ

λ+ µ
, (3.5)

with the pair {µ, λ} given by (2.4). Finally, the parameters γ and γα denote the contrasts
in ρ and α, respectively.

Proof. The proof of this result can be found in [42], where the general case in which the
permeability is also sensitive to the topological perturbation has been considered. □
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Remark 2. It should be noted that, the same formula (3.1) holds true for heterogeneous
media, provided the heterogeneity is locally Lipschitz continuous [19].

The underlying iterative gradient descent-based algorithm follows the original ideas
proposed in [40], where a small inclusion is nucleated in the region where the topologi-
cal derivative is negative which provides the descent direction for the Francfort-Marigo
shape functional. Computationally, the algorithm is designed to nucleate inclusions with
compatible size to the initial damaged region according to the sign of the topological de-
rivative. In order to introduce this idea, let DTF∗

ω be the minimum value of the associated
topological derivative, i.e.,

DTF∗
ω := min

x∈ω∗
DTFω(x) , (3.6)

with ω∗ used to denote the subset where the topological derivative attains negative values,
i.e.,

ω∗ := {x ∈ Ω : DTFω(x) < 0} . (3.7)

From these elements, the inclusion to be nucleated within the region ω∗, denoted by ωβ,
is defined as

ωβ := {x ∈ ω∗ : DTFω(x) ≤ (1− β)DTF∗
ω} , (3.8)

where β ∈ (0, 1) is chosen in such a way that |ωβ| ≈ πδ2/4 with δ used to represent the
thickness of the initial damage.

It should be noted that the proposed optimization approach obviates the necessity of
postulating empirical damage evolution laws to describe crack propagation, leading to a
framework more grounded in fundamental issues.

4. The hybrid splitting scheme

We now proceed by incorporating the minimization step associated with the calcula-
tion of the topological derivative in the time evolution splitting scheme. As mentioned
previously, we shall restrict our analysis to brittle fractures by invoking the underlying
hypothesis of propagation occurring in a much faster time-scale compared to the char-
acteristic time inherent to fluid percolation. Such a time-scale assumption hinges upon
the phenomenon associated with cracks in brittle materials which grow with speeds much
faster than the Darcy velocity. Whence, we assume crack propagation to be instantaneous,
so that the pressure field remains frozen as the crack grows. Based on this hypothesis, the
pressure field becomes insensitive to the topological perturbations and consequently only
the geomechanical system is modified in the sensitivity analysis procedure, by updating
the two-value poroelastic coefficients in the healthy and damaged subregions.

The aforementioned discussion suggests pursuing what we refer to as an hybrid scheme,
where, in contrast to the fixed stress scheme associated with the predictor step, which
strongly relies on a frozen total mean stress in the fluid flow module, the optimization
loop, based on the topological derivative, strongly relies on a frozen pore pressure field
during crack propagation.

In what follows, we present the hybrid algorithm within the context of the time-stepping
method. In the framework of the fixed stress (2.13) and (2.14), we consider the backward
Euler method in the following form∫

Ω

σ(un) · ε(v) =
∫
Ω

αpndiv(v)−
∫
Ω

σ0 · ε(v) , ∀v ∈ V , (4.1)∫
Ω

β∗pn+1q +∆t

∫
Ω

k∇pn+1 · ∇q =
∫
Ω

β∗pnq −
∫
Ω

α

K

(
σn+1,m
tot − σn

tot

)
q , ∀q ∈ Q , (4.2)

where ∆t is the time step, the index n designates the discrete time andm is associated with
the iterations between flow and mechanics. Moreover, within the current time-stepping



10

scheme, the pressure prescribed on Γω is increased by adopting N uniform increments
according to (2.15).

Hence, by highlighting the time-scale assumption of the forward poroelastic problem,
the total mean stress remains frozen during the iterations performed in the pressure
equation until the following convergence criterion is fulfilled,

|σn+1,m+1
tot − σn+1,m

tot |2

|σn+1,m
tot |2

< tol , (4.3)

with tol used to denote a prescribed numerical tolerance. Once the fixed-stress itera-
tive scheme has converged, the topological derivative field is evaluated in order to verify
whether crack propagation phenomenon will be triggered or not. More precisely, crack
propagation will only be activated if the region of negative topological derivative ω∗ sat-
isfies |ω∗| ≥ πδ2. Such a methodology avoids the need of introducing another unknown
to the system, as commonly adopted in phase-field type models. In Figure 2 we depict
the steps of the proposed hybrid scheme, which are further detailed in the form of a
pseudo-code described by Algorithm 1.

New time step

New coupling iteration

Solve hydrodynamics with fixed total mean stress

Solve the geomechanical subsystem

Converged?

Evaluate DTFω and compute ω∗

|ω∗| ≥ πδ2/4?

Optimization process with fixed pressure:
Solve geomechanical subsystem, nucleate ωβ and compute ω∗

Yes

No

Yes

No

Figure 2. Sketch of the steps of the Hybrid scheme.
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Algorithm 1: Damage evolution algorithm.

Input : Ω, ω, δ, N , p0, r
Output: Optimal topology ω⋆

1 for i = 1 : N do
2 increment the time and the prescribed pressure on Γω according to (2.15);
3 solve problems (2.14) and (2.13) with fixed stress split scheme;
4 evaluate DTFω according to (3.1);
5 compute the threshold ω∗ from (3.7);
6 while |ω∗| ≥ πδ2/4 do
7 intensify the mesh at the crack tip;
8 solve the elasticity system (2.13);
9 evaluate the topological derivative DTFω;

10 compute the threshold ω∗ from (3.7);

11 compute the threshold ωβ from (3.8);

12 nucleate a new inclusion ωβ inside ω∗;

13 update the damaged region: ω ← ω ∪ ωβ;
14 solve the elasticity system and evaluate DTFω;
15 compute the threshold ω∗;
16 end while
17 end for

As mentioned previously, in contrast to the algorithm proposed in [42] under the quasi-
static regime, here the pore pressure field remains frozen during the optimization step
associated with crack propagation. Consequently, under our hybrid framework of distinct
time-scale assumptions in the fixed stress and optimization steps, it is remarkable to ob-
serve that only the elasticity system (2.13) is solved during the latter step in the context
of Algorithm 1. When combined with the fixed stress scheme, such an assumption sim-
plifies enormously the complexity underlying the coupling between the two phenomena.
More specifically, the splitting between the two stages obviates the necessity of computing
explicitly the dependence of the topological derivative on the pore pressure field.

Finally, we remark that, unlike Discrete Fracture Models (DFM), our approach does
not treat fractures as (d − 1)-dimensional quantities which would require an additional
reduced pressure equation. Here, the Francfort-Marigo functional is associated with the
full d-dimensional damage theory rather than fracture in the strict sense. Consequently
fracture nucleation and propagation are computed as localized heterogeneities dictated
by the topological derivative.

5. Numerical experiments

We shall henceforth illustrate the application of the new numerical modeling in the sim-
ulation of propagation of brittle fractures in poroelastic media. For the sake of simplicity,
we consider numerical examples in two spatial dimensions, where the reference domain
Ω is identified with a (5 × 5)m2 square aiming at mimicking a single geological block of
the reservoir under plane strain conditions. Such a selected region of analysis contains
preexisting fractures represented by an initial nucleated damage region characterized by
length h and width δ, along with their hydromechanical properties. We remark that, due
to the presence of the infilling material (proppant), the input permeability of the damage
zone is not ruled by the cubic law of parallel plates but rather dictated by the infill prop-
erty [10, 42]. The total time interval (0, T ) of gradual pore pressure increase is divided
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into N uniform increments. In the simulations we adopt T = 24 hours, N = 200 and an
increment pressure rate r = 2/3 MPa/h and t∗ = 12 hours in (2.15). In all simulation,
the convergence of the fixed-stress split was rapidly reached, taking around 2 to 4 iter-
ations to fulfill condition (4.3). Without loss of generality, we neglect the effects of the
reference pressure by setting p0 = 0, so that the distribution of the in situ effective stress
balances the overburden. Moreover, in order to compute the in situ stress profile in a
pre-processing step, we consider the geological block subjected to a vertical stress σv ap-
plied on the upper boundary Γt (see Figure 1) along with oedometric conditions imposed
by horizontal displacement constraint on the lateral interfaces Γl and Γr. Recalling our
plane strain assumption, a horizontal stress σh is induced with magnitude depending on
the Poisson ratio. We remark that the nature of the in-situ stress profile, locally dictated
by the pair {σv, σh}, plays an essential role in the direction of fracture propagation.

In the notation that follows the subscripts (·)m and (·)f are adopted to identify proper-
ties in matrix and fracture, respectively. The tolerance for the coupling iterations is set as
tol = 1× 10−6. The parameter ℓ is introduced to represent the diameter of the inclusion
to be nucleated ωβ, which has been assigned heuristically as ℓ = (2/3)δ in order to fulfill
the condition |ωβ| ≈ πδ2/4.
The spatial discretization associated with the parabolic and elasticity subsystems, (4.1)

and (4.2), is performed using the standard Galerkin method adopting linear triangular
finite elements.

5.1. Canonical example. In this first example, a vertical joint is located in the middle
of the lower interface, adjacent to the injection well, as shown in Figure 3. The input
data is displayed in Table 1.

Figure 3. Canonical example: One block of the reservoir containing a
single geological fracture.

As quoted before, we adopt the same strategy of [41, 42] in order to quantify the critical
pressure of crack activation pc. Such a scalar represents the pore pressure values in which
the first inclusion is nucleated. In this setting, we perform numerical experiments with
different input values of the width δ associated with the initial damage

δ ∈ {1/20, 1/40, 1/80, 1/160, 1/320}m . (5.1)
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Table 1. Canonical example: Parameters.

Parameter Value Parameter Value
h 1.0 m E 30 GPa
δ Eq. (5.1) ρ0 10−4

p0 0 MPa ν 0.3
p∗ 4 MPa Km 25 GPa
t∗ 12 h Kf 2.5 MPa
κs 60.0 J/m β∗

m 0.037 GPa−1

σv 3.5 MPa β∗
f 0.40 MPa−1

αm 0.75 km 15 mD
αf 1.0 kf 15 D

The critical pressures obtained from the tests are then normalized with respect to the
first value of the sequence p0c associated with δ = 1/20m, as illustrated in Figure 4.
Furthermore, the introduction of parameter κδ from (2.17) allows to cope with reliable
values of the critical pressure (blue dashed line). On the other hand, in the absence of
such correction factor, the critical pressure decreases as the width δ becomes smaller (red
dashed line). We also remark that the result reported in Figure 4 can be envisioned as a
numerical evidence of the Γ-convergence of the proposed damage approach to a hydraulic
fracture model [9].

A well-known limitation of approaches based on the Francfort-Marigo damage model is
the fact that it is not able to distinguish between traction and compression states. In this
sense, in order to avoid crack propagation under compressive stress, we have adopted the
heuristic numerical scheme proposed in [40]. The basic idea consists in checking whether
the trace of the stress tensor is positive, namely tr(σ(u(x))) > 0, to allow for crack growth.

0 50 100 150 200 250 300 350
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

without correction
with correction

Figure 4. Canonical example: Convergence test for the critical pressure.

The ability of the model in successfully characterize the critical pressure allows to
perform reliable numerical simulations. In fact, by setting δ = 1/40m, the first computed
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critical pressure p0c = 3.44 MPa suggests fracture activation at t = 5.5 hours, which ratifies
the necessity of incorporating transient effects in the fixed-stress split formulation. Figure
5(a) illustrate the crack tip in the finite element mesh whereas Figure 5(b) displays the
topological derivative field immediately before the first propagation. Moreover, in the
evolution process, the following subsequent values of the critical pressures are computed,
p0c = 3.60 MPa, p1c = 3.64 MPa, p2c = 3.68 MPa, p3c = 3.72 MPa and p5c = 3.76 MPa.
Finally, in Figure 6 we display the scenario of initial damage along with the subsequent
path of propagation obtained with the corrected approach. As expected, adopting the
correction procedure, we observe a straight crack path which is typical of the problem
setting. The final mesh used to discretize the domain Ω has 755250 elements and a total
of 255 iterations were performed in the optimization process.

(a) finite element mesh (b) topological derivative field

Figure 5. Representation of the finite element mesh and topological de-
rivative field at the crack tip.

(a) initial fracture (b) final fracture

Figure 6. Canonical example: Damage evolution.

5.2. Effects of rock heterogeneity. We consider the same geometry and boundary
conditions of the previous example with both permeability k and Young modulus E fields
corrupted by an uncorrelated White Gaussian Noise (WGN) perturbation of zero mean
and standard deviation τ . The corresponding parametrizations read as kτ = k(1 − τps)
and Eτ = E(1 + τes), with s : Ω→ R a function assuming random values in the interval
(0, 1) and τp = 0.5 and τe = 2.0 the related noise levels. In Figure 7 we depict a single
realization of the random fields. Input parameters are presented in Table 2. The damage
evolution associated with each critical pressure is presented in Figure 8. We remark that
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the effects of matrix heterogeneity manifest in the appearance of phenomena such as
kinking and bifurcations stemming from perturbation in the hydromechanical properties.
The final mesh used to discretize the domain Ω has 1008122 elements and a total of 156
iterations were performed in the optimization process.

Table 2. Heterogeneous medium: Parameters.

Parameter Value Parameter Value
h 1.0 m E 17 GPa
δ 0.0625 m ρ0 10−4

p0 0 MPa ν 0.3
p∗ 4 MPa Km 9.45 GPa
t∗ 12 h Kf 0.945 MPa
κs 150.0 J/m β∗

m 0.12 GPa−1

σv 3.5 MPa β∗
f 0.60 MPa−1

αm 0.75 km 40 mD
αf 1.0 kf 40 D

(a) corrupted Young modulus (b) corrupted permeability

Figure 7. Heterogeneous medium: Corrupted properties.

5.3. Effects of stratification. We now analyze the effects of a depositional environment
upon the crack path by considering the geological block composed of two layers with
different Young modulus and a single permeability, namely E1 = 17 GPa and E2 = 2E1.
Input parameters are summarized in Table 3. The two scenarios treated in this example
are depicted in Figure 9. In the first one, designated by Case 1, the fracture propagates
towards the stiffer layer. In this setting, six distinct critical pressures have been detected.
The first one observed at t = 5 h (p0c = 3.36 MPa) and the last at t = 6 h (p5c = 3.90 MPa).
We may observe propagation occurring initially in the vertical direction tending to align
with the interface with the proximity of the stiffer layer, as shown in Figure 10(a). In
the second scenario, denoted as Case 2, fracture propagates towards the more soft layer.
Again, different critical pressures were observed, with p0c = 4.88 MPa at t = 7.3 h and
p3c = 5.20 MPa at t = 8 h. In this setting the fracture tends to propagate in the vertical
direction but with a slight deviation to the right, after crossing the interface between
the layers, as shown in Figure 10(b). The final mesh used to discretize the domain Ω
has 539008 elements in Case 1 and 526680 in Case 2 and a total of 180 iterations were
performed in the optimization process in both cases.
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(a) p0c = 6.40 MPa (b) p1c = 6.80 MPa (c) p2c = 6.88 MPa

(d) p3c = 6.96 MPa (e) p4c = 7.04 MPa (f) p5c = 7.12 MPa

Figure 8. Heterogeneous medium: Damage evolution.

Table 3. Stratified block: Parameters.

Parameter Value Parameter Value
h 1.0 m E1 17 GPa
δ 0.0625 m ρ0 10−4

p0 0 MPa ν 0.3
p∗ 4 MPa Km 9.45 GPa
t∗ 12 h Kf 0.945 MPa
κs 20.0 J/m β∗

m 0.12 GPa−1

σv 3.5 MPa β∗
f 0.60 MPa−1

αm 0.75 km 40 mD
αf 1.0 kf 40 D

5.4. Effects of stratification and heterogeneity. Likewise the previous example, we
now analyze the effects of the depositional environment by considering the geological block
composed of two layers with different Young modulus and permeabilities, namely E1 = 17
GPa and E2 = 2E1 and k1 = 40 mD and k2 = k1/2. Such properties are also corrupted by
a WGN of zero mean and standard deviation τ , according to the previous example. We
consider two distinct scenarios differing from each other by the spatial distribution of the
material properties as shown in Figure 11. In the scenario denoted by Case 1, five distinct
critical pressures were detected, particularly p0c = 4.72 MPa at t = 7 h and p4c = 5.72
MPa at t = 8.5 h. In addition to the presence of kinking and bifurcations reported in the
previous example, we also observe a trend in propagation towards the common interface.
On the other hand, a combination of in situ stress and heterogeneity also leads to the
counter-intuitive propagation across the more rigid layer. In a similar fashion, in Case 2
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(a) Case 1 (b) Case 2

Figure 9. Stratified block: Material distribution.

(a) Case 1 (b) Case 2

Figure 10. Stratified block: Final results.

we also observe kinks and bifurcations and propagation in both layers as shown in Figure
12. The final mesh used to discretize the domain Ω has 823810 elements in Case 1 and
929094 in Case 2 and a total of 150 iterations were performed in the optimization process
in both cases.

5.5. Effects of the Poisson ratio. In the subsequent numerical experiments, we aim
at analyzing the influence of the Poisson ratio upon the orientation of crack growth. To
this end, we have adapted the example discussed in [12, 42] to a scenario in which the
magnitude of the horizontal stress σh is directly computed from the pair {σv, ν}, under
the lateral displacement constraint which furnishes σh = σv ν/(1 − ν), under the plane
strain assumption. The preexisting crack is located at the center of the interface forming
an angle of 30◦ with respect to the horizontal axis (Figure 13). The input data used in
the simulation is summarized in Table 4. In this setting, we perform simulations with
different values of the Poisson’s ratio ν ∈ {0.1, 0.2, 0.3, 0.4}, which furnished a single
critical pressure p0c = 1.08 MPa at t = 1.5 h (see Figure 14). In all cases the final mesh
used to discretize the domain Ω has approximately 400000 elements and a total of 80
iterations were performed in the optimization process.

5.6. Interaction between multiple fractures. In this example, we consider the same
geological block containing three preexisting cracks. Two lie within the block whereas the



18

(a) Case 1 (b) Case 2

Figure 11. Stratified and heterogeneous block: Material distribution.

(a) Case 1 (b) Case 2

Figure 12. Stratified and heterogeneous block: Crack configuration after propagation.

Table 4. Poisson ratio effect: Parameters.

Parameter Value Parameter Value
h 1.0 m E 10 GPa
δ 0.0625 m ρ0 10−5

p0 0 MPa ν 0.3
p∗ 8 MPa Km 8.4 GPa
t∗ 12 h Kf 0.084 MPa
κs 1.85× 105 J/m β∗

m 0.01 GPa−1

σv 3.5 MPa β∗
f 1.03 MPa−1

αm 0.1 km 40 mD
αf 1.0 kf 40 D

third crack is located at the pressurized wellbore, as shown in Figure 15. In this scenario,
our aim is to highlight the complex task of determining the crack path under simultaneous
influence of the prescribed in situ stress state and mutual interactions between evolving
fractures. Input parameters used are presented in Table 5. The proposed framework
was capable of detecting fifteen distinct critical pressures. In particular we computed the
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δ

 

 

 

σv

h

Figure 13. Selected example of a geological block subject to lateral con-
straints and an prescribed overburden on the top boundary

Figure 14. Study of the influence of the Poisson ratio on crack pattern:
Zoom of the damage zone after propagation.

activation pressure value p0c = 4.24 MPa along with the last critical pressure p14c = 5.40
MPa. Finally, in Figure 16, we display the initial fracture locations along with the final
configuration after propagation. The final mesh used to discretize the domain Ω has
1555667 elements and a total of 246 iterations were performed in the optimization process.

5.7. Influence of the in situ stress. Finally, in our last set of simulations we consider
the example discussed in [44], of three preexisting horizontal cracks separated by a distance
d, as depicted in Figure 17. Unlike the previous cases, the injection well is located
at the left boundary of the block where the gradual pressure increase ruled by (2.15)
is enforced. In contrast with the previous examples, homogeneous Dirichlet boundary
conditions are prescribed on the other three boundaries. Two combinations of in situ
stresses are considered. In the first scenario we set σh = 2.0 MPa and σv = 1.0 MPa,
whereas in the second σh = 1.0 MPa and σv = 2.0 MPa. Following [44], our aim here
consists in computing the sensitivity of the hydraulic fracture pattern with the profile
of the in situ stress. Input parameters are presented in Table 6. In the first scenario,
only one critical pressure p0c = 4.16 MPa was observed. As expected, the central crack
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δ

θ2 h2

h1

h3

σv

θ1

δ

δ

Figure 15. Geological block containing three fractures before propagation.

Table 5. Multiple fractures: Parameters.

Parameter Value Parameter Value
h1 1.0 m θ1 π/8 rad
h2 1.0 m θ2 π/6 rad
h3 1.25 m E 17 GPa
δ 0.0625 m ρ0 10−4

p0 0 MPa ν 0.2
p∗ 8 MPa Km 9.45 GPa
t∗ 12 h Kf 0.945 MPa
κs 240.0 J/m β∗

m 0.12 GPa−1

σv 3.5 MPa β∗
f 0.60 MPa−1

αm 0.75 km 70 mD
αf 1.0 kf 70 D

propagates horizontally, while the upper and lower cracks initially deviate from that
pattern but with a trend of horizontal reorientation 18(a) (Case 1)). In contrast, in the
second scenario, two distinct critical pressures p0c = 5.28 MPa and p0c = 5.36 MPa were
detected. As expected, the three cracks grow toward the direction of maximum in situ
stress. Nevertheless, as depicted in Figure 18(b) (Case 2), a non-intuitive pattern in
which all three cracks bifurcate is also observed. Finally, for the sake of completeness,
considering Case 2 in Figure 19 we show the evolution of the damage with the iterations
inherent to the optimization process with a critical pressure p0c = 5.28 MPa. The final
mesh used to discretize the domain Ω has 1116074 elements in Case 1 and 1586462 in
Case 2. A total of 83 iterations were performed in the optimization process for Case 1,
while 138 were performed in Case 2.
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(a) initial fracture configuration (b) final configuration after propagation

Figure 16. Damage evolution in a scenario of mutual interacting fractures

d

h

σv

δ

σh

Figure 17. Influence of in situ stress: Block containing three horizontal cracks.

6. Conclusions

This paper aimed at the extension of the hydro-mechanical model of crack propagation
proposed in [42] to the transient regime. Within this framework, we constructed an alter-
native description of crack propagation in poroelastic media based on a hybrid approach
which explored the characteristic time-scales underlying the fixed stress split method
for poroelasticity and an optimization methodology relying on the topological derivative
concept. Unlike phase-field based-models, which entail regularization and introduce ex-
plicitly a parameter in the field-equations, the formulation proposed herein shows the
ability to handle the Francfort-Marigo damage functional in its original form, based on
the propagation of the abrupt interface between damaged and intact rock matrix.
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Table 6. Influence of in situ stress: Parameters.

Parameter Value Parameter Value
h 1.0 m E 17 GPa
δ 0.0125 m ρ0 10−2

p0 0 MPa ν 0.2
p∗ 8 MPa Km 9.45 GPa
t∗ 12 h Kf 94.5 MPa
κs 150 J/m β∗

m 0.07 GPa−1

σv 3.5 MPa β∗
f 0.01 MPa−1

αm 0.75 km 1 mD
αf 1.0 kf 1 D

(a) Case 1 (b) Case 2

Figure 18. Influence of in situ stress upon crack grow.

Implementation of the hybrid approach was performed within a straightforward post-
processing approach with the topological derivative envisioned as a gradient descent di-
rection for the Francfort-Marigo functional in the minimization procedure. The proposed
approach was capable of preserving the original structure of the equations governing the
hydro-mechanical coupling and only updates the poroelastic parameters within the two
distinct regions.

In addition, it is worth mentioning the remarkable property underlying Algorithm 1,
which consists of a local optimality condition based on the topological derivative that
has been fulfilled in all examples. More precisely, the crack path is characterized by
the evolution of the negative regions of the topological derivative field. Moreover, for a
sufficient refined mesh, as used in the numerical experiments presented in Section 5, any
mesh dependence with respect to the localization of these negative regions during the
crack advance – and therefore to the crack trajectory – has been observed. On the other
hand, owing to its gradient descent nature, it is not possible to ensure global optimality
of the outcomes. Nonetheless, the outcome can be envisioned as a local optimum of
the Francfort-Marigo shape functional. In spite of this drawback, the method has shown
reliability for reproducing existing results and producing acceptable/expected crack paths.
Furthermore, the avoidance of the necessity of introducing a regularization parameter,
like in phase-field theories, along with the allowance of using traditional Galerkin-type
methods (no need for basis enrichment), provides new perspectives for exploring the
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(a) iteration 1 (b) iteration 90

(c) iteration 110 (d) iteration 130

Figure 19. Influence of in situ stress: Damage path during the optimiza-
tion process for Case 2 at p0c = 5.28 MPa.

framework of the topological derivative in simulating crack propagation in poroelastic
media.

Computational simulations, performed in benchmark examples, illustrated the ability
of the method to capture important features in hydraulic fracturing such as bifurcation
of multiple cracks and characterization of critical pressures. Finally, it is remarkable to
see the non-intrusive form of the method wherein the computational of the topological
derivative is performed in the previously mentioned simple post-processing approach with
poroelastic parameters updated in distinct manners within the two sub-regions. Finally,
a stability analysis of the Picard scheme between the topological derivative loop and the
geomechanics subsystem of the fixed stress split remains an open issue and will be subject
of future work. In addition, the use of a prescribed injection rate rather than Dirichlet-
type pressure protocol will be treated in future works as well as the implementation of a
robust post-processing approach for evaluation of crack width during propagation.
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gas 333, 25651-075 Petrópolis - RJ, Brasil
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