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Abstract. The main issue with existing constraint aggregation and regularization ap-
proaches (e.g. p-norm, p-mean and KS approaches) is that very high exponents are
required to reduce the bias when the number of active constraints is large. In practice,
the exponent employed for such approaches is limited due to numerical reasons. Thus, the
results often present significant bias that may affect the quality of the designs obtained.
In this work we propose a novel probabilistic constraint aggregation/regularization ap-
proach that does not suffer from such issues, allowing for very sharp regularization of
extreme values (maximum or minimum) even in the presence of a large number of closely
spaced values (e.g. several active constraints). Bias estimates for the p-norm and the
proposed approach are also derived, that can be employed for choice of appropriate regu-
larization parameters. The proposed approach is compared with p-norm regularization in
the context of structural topology optimization considering maximization of the first nat-
ural vibration frequency. The topology optimization problem is solved with the help of
an efficient algorithm based on the topological derivative method combined with a level-
set representation of the design domain. In the numerical examples we demonstrate that
very small aggregation bias can be obtained with the proposed approach. In contrast, the
same is not possible with the p-norm approach, because the required exponent becomes
too large and blocks the algorithm from running. These results demonstrate that the
proposed probabilistic approach is more appropriate for regularization and aggregation
in the presence of closely spaced values.

1. Introduction

An important topic for structural and multidisciplinary optimization is that of regular-
ization and constraint aggregation approaches. By constraint aggregation we mean: to
group several smooth constraints into a single (or small number of) smooth constraint.
By regularization, on the other hand, we mean: to make smooth approximations to oth-
erwise non-smooth quantities, such as extreme values (i.e., minimum/maximum eigen-
values). Note that constraint aggregation and regularization are not the same thing
strictly speaking. However, these two subjects are closely related because most existing
approaches for aggregation and regularization are based on the p-norm, the p-mean or the
KS function (Kreisselmeier and Steinhauser, 1979). For this reason, we do not distinguish
between the two for the rest of this paper.

The literature concerning aggregation approaches for structural optimization is so vast
that it is difficult to present a fair perspective of the subject. A recent and detailed
literature review can be found in the works by Fernández et al. (2019) and da Silva
et al. (2021). The works by Yang and Chen (1996); Duysinx and Sigmund (1998); Poon
and Martins (2007); Paŕıs et al. (2009); Le et al. (2010); Paŕıs et al. (2010); Kennedy and
Hicken (2015); Gao et al. (2015); Verbart et al. (2017); Wang and Qian (2018) also present
a general overview of the subject. See also the works by Torii et al. (2015); Torii and de
Faria (2017); Ferrari and Sigmund (2019); Quinteros et al. (2021); Dalklint et al. (2021)
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for an overview of regularization schemes in the context of eigenvalues-based structural
optimization problems.

The main idea behind regularization approaches is to make a smooth approximation to
an otherwise non-smooth (or singular) functional, such as maximum or minimum values
in a set. This occurs, for example, in problems involving buckling or vibration frequen-
cies, where one is frequently interested in smallest magnitude eigenvalues. Since the
minimum/maximum operators may become non-smooth, when minimum/maximum val-
ues are not unique, the resulting quantity of interest (e.g. smallest magnitude eigenvalue)
may also become non-smooth. It is then necessary to employ some smooth approximation
to the quantity of interest, in order to be able to employ widely available optimization
algorithms that require the functions involved to be smooth. In the case of aggregation
approaches, the idea is to transform a set of constraints into a single one. In this way
it is possible to ensure that all constraints are satisfied by controlling only the aggregate
constraint. This can be accomplished, for example, by taking the maximum value among
the constraints (or the minimum, depending on the context). However, this direct aggre-
gation approach leads to non-smooth aggregate constraints. For this reason, constraint
aggregation generally requires an additional regularization step, where the otherwise non-
smooth maximum/minimum operator is now replaced by some smooth approximation.
In both cases, the problem is that the maximum and minimum operators are not always
differentiable (i.e., not always smooth). This can lead to numerical issues during the
optimization procedure, such as slow convergence rate and poor solutions, since most
optimization algorithms widely available were developed for smooth problems.

A largely employed approach to overcome non-smooth maximum/minimum operators
is to replace them by p-norm, p-mean and KS functions. Unfortunately, p-norm, p-
mean and KS maximum aggregation approaches share a common issue: when we have
several closely spaced extreme values, very high exponents are required in order to produce
sharp approximations1. This is a serious issue in stress-constrained topology optimization
problems, for example, where the number of constraints is usually very large and the
structure is generally almost fully stressed. In these situations, very large exponents
are usually required (e.g. 50, 100, 200), leading to serious numerical difficulties related
to rounding errors and possibly blocking the computational routines from running. The
issue is so serious that some authors proposed cluster aggregation approaches, where local
constraints are not aggregate into a single constraint, but rather aggregated into a set
of cluster constraints, each containing a limited number of local constraints (Paŕıs et al.,
2010). By limiting the number of local constraints per cluster it is then possible to employ
lower exponents in order to get sharp approximations.

In this context, the goal of this work is threefold. First, we demonstrate why it is
infeasible to obtain sharp approximations using p-norm and KS based approaches when
the number of closely spaced values is large. We then propose a novel probabilistic
aggregation/regularization approach that avoids employment of high order exponents.
This allows sharp approximations even in the presence of a large number of closely spaced
extreme values. Finally, we present relative bias estimates for the p-norm approach and
the proposed approach. These estimates should be useful for parameter tuning and can
be employed for adaptive schemes in the future.

The rest of this paper is organized as follows. In Section 2 we discuss some properties
of the p-norm and KS approaches. Relative bias estimates for these approaches are also

1By sharp we mean an approximation that is close to the exact value. In this case, a sharp aggrega-
tion/regularization approach is one that gives a value close to the maximum/minimum.
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presented. We then propose a novel probabilistic approach in Section 3, that avoids high
order exponents. Bias estimates for this approach are also derived and compared with the
p-norm approach. In Section 4 we describe the optimization problem and the algorithm
employed to test the proposed approach. Numerical examples are presented in Section 5.
The conclusions of this work are summarized in Section 6.

2. p-norm regularization

Here we present a brief review of the p-norm approach. The p-mean approach is very
similar to the p-norm approach, apart from the fact that it produces a lower bound for the
maximum value. For this reason, the p-mean approach is not addressed here. Consider
the maximum value

λmax = max
i∈Nn

|λi|, with Nn = {1, 2, · · · , n}. (2.1)

The p-norm regularization scheme follows from the property

λmax = lim
p→∞

∥λ∥p, (2.2)

where

λp = ∥λ∥p =

(
n∑

i=1

λp
i

)1/p

, (2.3)

is the p-norm of the vector λ. This regularization scheme only makes sense if λi is always
non-negative, because the p-norm converges to the maximum component in absolute value.

In practice we take p large enough and write the approximation

λp ≈ λmax. (2.4)

For finite p this approximation is smooth (i.e., is continuously differentiable) as long as
λi are continuously differentiable. It is also known that

λmax ≤ λp, (2.5)

i.e., the regularization scheme produces an upper bound. A p-norm approach for regular-
ization of the minimum was presented by Torii and de Faria (2017) and employed in the
works by Quinteros et al. (2021) and Dalklint et al. (2021).

2.1. KS regularization: a p-norm point of view. The KS (Kreisselmeier and Stein-
hauser, 1979) regularization scheme is given by

λKS =
1

pKS

ln

(
n∑

i=1

exp (pKSλi)

)
, (2.6)

where pKS is the KS regularization parameter. Note that we can write

λKS = ln

(
n∑

i=1

(exp (λi))
pKS

)1/pKS

= ln ∥ exp(λ)∥pKS
,

(2.7)

where exp(λ) represents the vector with components
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exp(λ) =
{
eλ1 , eλ2 , · · · , eλn

}
. (2.8)

This puts in evidence that the KS regularization approach is a kind of p-norm approach
involving exponential. Employment of exponential can be viewed as a very smart way
of accounting for the possibility of negative λi. From the properties of the p-norm we
conclude that

lim
pKS→∞

ln ∥ exp(λ)∥pKS
= λmax, (2.9)

and

ln ∥ exp(λ)∥pKS
≥ λmax. (2.10)

These results also indicate a more general family of aggregation schemes, given by

λ = g−1 (∥g(λ)∥p) , (2.11)

where g is an increasing homeomorphism and g−1 its inverse. Appropriate choices of g can
then be employed to obtain aggregation schemes with desirable properties. In particular,
for p-norm and KS approaches we take g := id(·) (the identity function) and g := exp(·),
respectively. Here we do not study this subject in more details, even though it clearly
deserves further investigation in the future.

2.2. Sharpness of p-norm and KS approaches. In this section we demonstrate why
very high powers p must be employed to get λ close to λmax when we have closely spaced
extreme values. Here we define this property as sharpness of the regularization scheme,
i.e., the difference between the true maximum/minimum value and the corresponding
regularization scheme.

Suppose the values are sorted as to satisfy

λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0, (2.12)

and we have m repeated maximum values

λmax = λ1 = λ2 = · · · = λm ̸= 0, m ≤ n. (2.13)

In the analysis below, the particular cases where λmax = 0 or m = n are trivially
satisfied and, therefore, we will assume without loss of generality that λmax > 0 and
m < n. Taking into account Eq. (2.11) and assuming that g is a function, the p-norm
then results

λ = g−1

[ n∑
i=1

(g(λi))
p

]1/p
= g−1

[mg(λi)
p +

n∑
i=m+1

(g(λi))
p

]1/p ,

(2.14)

and for p → ∞ we have
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lim
p→∞

λ = lim
p→∞

g−1

m1/pg(λmax)

[
1 +

1

m

n∑
i=m+1

(
g(λi)

g(λmax)

)p
]1/p

= g−1

(
lim
p→∞

[m1/pg(λmax)]

)
= λmax.

(2.15)

From the above result we conclude that when we have m repeated maximums, for large
p → ∞ we have approximately

λ = g−1(m1/pg(λmax)) . (2.16)

Note that for the p-norm approach we have2

λp = m1/pλmax. (2.17)

The error of the p-norm approach is given by

ep = λp − λmax =
(
m1/p − 1

)
λmax, (2.18)

and we get the inconvenient factor (m1/p − 1), that hinders convergence to the true
maximum. This is an issue mainly when we get several closely spaced extreme values
(i.e., when m is large). That is why very large values of p must be employed in stress
constraint aggregation in order to get sharp estimates, for example.

With KS function things are not much different. In this case

λKS =
1

pKS

ln(m) + λmax, (2.19)

The error of the KS function is given by

eKS = λKS − λmax =
1

pKS

ln(m), (2.20)

and we get another inconvenient term 1/pKS ln(m) hindering convergence again.
From Eqs. (2.3) and (2.6) we observe that the p-norm and the KS approach will have

the same effective exponent when we take pKS = p/λmax. In this case we have

eKS − ep =
λmax

p
ln(m)−

(
m1/p − 1

)
λmax

=

(
ln(m)

p
−
(
m1/p − 1

))
λmax.

(2.21)

For p → ∞ both terms in parenthesis converge to zero with similar rate and we thus
conclude that

lim
p→∞

(eKS − ep) = 0 (2.22)

when pKS = p/λmax. This means that the two approaches are asymptotically equivalent
under the above circumstances. These results indicate that the two approaches should
have similar behavior in practice, as long as the same effective exponent is employed.

2For the p-mean approach we would get ∥λ∥p = (m/n)1/pλmax.
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This occurs because both are based on the p-norm. For this reason, we do not distinguish
between the KS and p-norm approaches further in this work.

Finally, note that the relative bias of the p-norm approach results

ϵp =
ep

λmax

= m1/p − 1.
(2.23)

Solving Eq. (2.23) for p gives

p =
1

logm (1 + ϵp)
, (2.24)

that can be employed to set p in order to get relative bias ϵp for a given m.
For m = 10 and ϵp = 1/100, for example, Eq. (2.24) gives p = 231.41. This puts in

evidence that p-norm approaches are unfeasible in practice when m is large (i.e., when we
get several closely spaced extreme values), since too large values for p are required in this
case. If we consider only two closely spaced extreme values (i.e., m = 2) and ϵp = 1/100,
Eq. (2.24) now gives p = 69.66. We observe that even in this case a high power p is
required, that may lead to computational issues in some situations. Note that the p-mean
and KS approaches will also lead to similar limitations because of their similarity to the
p-norm approach.

3. Proposed probabilistic regularization approach

In order to overcome the issues point-out in the previous section we propose a novel
probabilistic regularization scheme. We consider first regularization of the maximum
value. Regularization of the minimum is very similar, as demonstrated latter.

Consider then the maximum value

λmax = max
i∈Nn

λi, with Nn = {1, 2, · · · , n}. (3.1)

The difficulty with this direct approach is that the maximum value may be non-differentiable.
Suppose the values are sorted as to satisfy Eq. (2.12). Then the maximum value is non-
differentiable when it is not unique, i.e., when the situation from Eq. (2.13) occurs.

In this work we avoid non-differentiability of λmax by applying random perturbations
to λi. Consider the perturbations3

αi = Yiλi, i ∈ Nn, (3.2)

where Yi are independent random variables. Here we assume that Yi have continuous
uniform distribution on the interval [1 − h/2, 1 + h/2], i.e., with the probability density
given by (Rubinstein and Kroese, 2008)

f(y) =

{
1
h

if 1− h/2 ≤ y ≤ 1 + h/2

0 otherwise
. (3.3)

In this case, the expected value E [Yi] and the variance V [Yi] result (Rubinstein and
Kroese, 2008)

3Note that shift perturbations αi = Yi + λi could also have been employed, by taking E[Yi] = 0.
Besides, other distributions can also be employed for Yi.
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E [Yi] = 1, (3.4)

V [Yi] =
h2

12
. (3.5)

We then take the regularization scheme

λh = E [αmax (Y )] , (3.6)

where Y = {Y1, Y2, · · · , Yn} and

αmax (Y ) = max
i∈Nn

αi

= max
i∈Nn

(Yiλi).
(3.7)

Note that the regularization parameter h actually defines the range of perturbations
applied to λi.
The quantity αmax (Y ) is non-differentiable for

y1λ1 = y2λ2 = · · · = ynλn, (3.8)

where yi are realizations of the random variables. However, the above condition defines a
zero measure set with respect to the probability density of the random vector Y (Loève,
1977; Shriryaev, 1995), unless λ1 = λ2 = ... = λn = 0. In other words, the probability of
occurrence of the above event is null if some λi ̸= 0. In this case the expected value λh is
actually differentiable for h > 0. Also note that

lim
h→0

E [αmax (Y )] = λmax, (3.9)

since in this case the perturbations are removed. This demonstrates that the regularization
converges to the exact value for h → 0.
Invoking the Dominated Convergence Theorem (Loève, 1977; Shriryaev, 1995), sensi-

tivity with respect to a design parameter τ results

dλh

dτ
=

d

dτ
E [αmax (Y )]

= E
[
d

dτ
αmax (Y )

]
,

(3.10)

that can be estimated with Monte Carlo Simulation (MCS) by (Rubinstein and Kroese,
2008)

λh ≈ 1

N

∑
y∈S

αmax(y), (3.11)

dλh

dτ
≈ 1

N

∑
y∈S

dαmax(y)

dτ
, (3.12)

with

αmax(y) = max
i∈Nn

(yiλi), (3.13)
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where S is a sample of size N for the random vector Y , y are realizations of the random
vector and yi are components of y. In order to avoid oscillations due to random sampling
we recommend taking a fixed sample during the entire optimization procedure. This is
known as Common Random Variable Approach (Rubinstein and Kroese, 2008).

Note that evaluation of Eqs. (3.11) and (3.12) does not require additional evalua-
tions of λi and its sensitivity, because sampling only requires random scaling of λi and
identification of the resulting maximum for each realization of Y . For this reason, the
computational cost of evaluating Eqs. (3.11) and (3.12) can be neglected in comparison
to the computational cost for evaluation of λi and its sensitivities.

Regularization of the minimum can be written as

λh = E [αmin (Y )] , (3.14)

with

αmin (Y ) = min
i∈Nn

αi. (3.15)

This is another advantage of the proposed approach: regularization of the maximum and
regularization of the minimum are very similar in practice. Note that this is not true for
the p-norm and the KS approaches, that were originally conceived for regularization of
the maximum and require some adaptation in order to be applied for regularization of
the minimum (Torii and de Faria, 2017). Finally, it should be stressed that the proposed
probabilistic approach does not require the values λi to be non-negative.

3.1. Sharpness of the proposed approach. We now evaluate the sharpness of the
proposed aggregation approach. For m repeated maximum values and small h → 0 we
have

αmax (Y ) = max
i∈Nm

αi

= max
i∈Nm

(Yiλi)

= λmax max
i∈Nm

Yi,

(3.16)

and thus

λh = λmaxE
[
max
i∈Nm

Yi

]
. (3.17)

From Order Statistics we know that (David and Nagaraja, 2003)

E
[
max
i∈Nm

Yi

]
= E[Yi] + km

√
V[Yi], (3.18)

where km is a constant that depends on m, with k2 = 0.5744, k10 = 1.4171, k100 = 1.6978
and k1000 = 1.7286 for the continuous uniform distribution4. Also note that for the uniform
distribution km is bounded by

4Note that for Yi with Normal distribution we have k2 = 0.5642, k10 = 1.5388, k100 = 2.5076 and
k1000 = 3.2414 (David and Nagaraja, 2003). These values are, in general, higher than those obtained for
Yi with uniform distribution. Consequently, employment of Yi with Normal distribution would reduce the
sharpness of the estimates for large m. That is the reason why we choose Yi with uniform distribution in
this work. However, for small m (e.g. m ≤ 10) employment of Yi with Normal distribution would likely
lead to very similar results.
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km ≤
√
3, (3.19)

because E [maxi∈Nm Yi] must lie in the range of the distribution. Thus, for m repeated
values we get, from Eq. (3.5),

λh =

(
1 +

√
3

6
kmh

)
λmax ≤

(
1 +

1

2
h

)
λmax , (3.20)

for h → 0. We again get an inconvenient term of the form kmh
√
3/6 that hinders conver-

gence when we have closely spaced extreme values, as occurs for the p-norm and the KS
approaches.

However, there is no computational issues arising from small h in this case, since there
are no high order exponents involved. For this reason, we are able to get sharp estimates
by taking h very small. This is the main advantage of the proposed approach. The reg-
ularization parameter can be reduced indefinitely without breaking-down the algorithm.
This allows very sharp regularization.

From Eq. (3.20) we observe that the bias of the proposed approach results

eh = λh − λmax

=

√
3

6
kmhλmax,

(3.21)

and the relative bias results

ϵh =
eh

λmax

=

√
3

6
kmh, (3.22)

for h → 0. Thus, by setting h as

h =
2
√
3

km
ϵh, (3.23)

we should get a relative bias close to ϵh.
Besides, from Eq. (3.19) we also get

h ≥ 2ϵh. (3.24)

Thus, by setting h as

h = 2ϵh, (3.25)

we should get a relative bias smaller than ϵh no matter how many closely spaced extreme
values we have (i.e., for any value of m). For ϵh = 1/100 we get h = 2/100, for example.
Again, note that these results hold for small h (i.e., h → 0).

3.2. Comparison to the p-norm approach. In Table 1 we present suggested values for
h when the Probabilistic Regularization Approach is employed. The values were obtained
with Eq. (3.23). The results are not exact in practice because the expressions hold for
h → 0.

Suggested values for the parameter p of the p-norm approach are presented in Table
2. The values were obtained with Eq. (2.24) and were rounded up to the next integer.
The results are also not exact in practice because the expressions hold for p → ∞. These
results can also be easily adapted for the p-mean and the KS approaches.
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Table 1. Suggested values for h in Probabilistic Regularization Approach

ϵh m = 2 m = 10 m = 100 m ≥ 1000
10.0% 0.6031 0.2445 0.2040 0.2004
5.0% 0.3015 0.1222 0.1020 0.1002
1.0% 0.0603 0.0244 0.0204 0.0200
0.5% 0.0302 0.0122 0.0102 0.0100
0.1% 0.0060 0.0024 0.0020 0.0020

Table 2. Suggested values for p in p-norm Approach

ϵp m = 2 m = 10 m = 100 m = 1000
10.0% 8 25 49 73
5.0% 15 48 95 142
1.0% 70 232 463 695
0.5% 139 462 924 1386
0.1% 694 2304 4608 6912

From Tables 1 and 2 we observe that the approaches can be tuned to have equivalent
sharpness. In order to get a relative bias close to 5% in the presence of two closely spaced
extreme values (m = 2), for example, we can take h = 0.3015 and p = 15.

However, from Table 2 we observe that very high values must be taken for p in the
presence of several closely spaced extreme values (e.g. m ≥ 10) if we require a relative
bias smaller than 1%. For m = 10, for example, if we require a relative bias equal to
1% we should take p close to 232. This would likely lead to numerical issues. Even for
m = 2 and a relative bias of 1% we already need a large value for p (p = 70). This puts in
evidence that the p-norm approach (and the related p-mean and KS approaches) quickly
become infeasible from the computational point of view if m is large and a small relative
bias is required.

From Table 1 we observe that small values for h are required in the presence of several
closely spaced extreme values (e.g. m ≥ 100) if small relative bias is demanded. However,
employment of very small values for h do not lead to numerical issues, as demonstrated
in the numerical examples. For this reason the proposed approach is able to obtain sharp
approximations even in the presence of several closely spaced extreme values.

4. Application problem

In order to illustrate the effectiveness of the proposed regularization approach, we apply
the concepts previously developed to the problem of structural topology optimization for
maximization of the first natural vibration frequency.

4.1. Problem setting. We assume that the natural vibration frequencies of the structure
are ordered as

ω1 ≤ ω2 ≤ ω3 ≤ · · · , (4.1)

where ωi are the vibration frequencies of the structure. In this case

ω1 = min
i∈N

ωi, N = {1, 2, · · · } (4.2)
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is the fundamental vibration frequency of the structure. Here we consider the optimization
problem: Find the design parameter τ , such that

min

[
F (τ) = µ1

1

ω(τ)
+ µ2V (τ)

]
, (4.3)

where V (τ) is the volume of material, ω(τ) is the regularized minimum obtained with
the p-norm approach or the proposed probabilistic approach and µ1, µ2 > 0 are given
weights. This is a multi-objective optimization problem where we wish to maximize ω(τ)
and minimize the volume of material employed. Although the formulation is simple, it is
appropriate for the comparisons made in this work.

The natural vibration frequencies are given by

ωi =
√

λi, (4.4)

where λi are the eigenvalues, solutions to the following spectral problems: Find (λi, ui),
such that  −divσ(ui) = λiρui in D,

ui = 0 on ΓD,
σ(ui)n = 0 on ΓN ,

(4.5)

where ui are the associated eigenfunctions. The hold-all domain is denoted as D, with
boundary ∂D = ΓD∪̇ΓN . The stress tensor σ(ui) and the parameter ρ are given by:

σ(ui) = τCε(ui) and ρ = τρ0t, (4.6)

with the thickness t and density ρ0 assumed to be constant everywhere. The linearized
Green tensor is defined as follows

ε(ui) =
1

2
(∇ui +∇u⊤

i ). (4.7)

The elasticity tensor is written as

C =
tE

1− ν2
((1− ν)I+ ν(I⊗ I)), (4.8)

in which E is the Young modulus and ν the Poisson ratio, both considered constants
everywhere. In addition, I and I are the fourth and the second order identity tensors,
respectively. Finally, the statement of the problem is complemented with the definition
of a piecewise constant function τ , such that:

τ(x) :=

{
1, if x ∈ Ω,
γ0, if x ∈ D \ Ω, (4.9)

where Ω is the closure of Ω and 0 < γ0 ≪ 1 is used to mimic voids.
For the probabilistic approach we employ the regularization scheme from Eq. (3.14)

directly. We again emphasize that the sample employed for MCS is kept fixed during
the optimization procedure in order to avoid numerical oscillations arising from MCS
variability.

Since the p-norm approaches are tailored to address regularization of the maximum,
a transformation scheme must be used in order to allow regularization of the minimum.
The scheme employed here for p-norm regularization of the minimum is given by (Torii
and de Faria, 2017)
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ω =
1

∥ q ∥p
, (4.10)

with

q =

{
1

ω1

,
1

ω2

, · · · , 1

ωn

}
. (4.11)

4.2. Topological derivative method. The optimization problem (4.3) is solved with
the help of a level-set domain representation method combined with the topological deriv-
ative concept (Amstutz and Andrä, 2006). The associated topological derivative is given
by:

Theorem 1. Let us consider that the λi-th eigenvalue of Eq. (4.5) is simple. Then, its
topological derivative, with respect to the nucleation of a small inclusion endowed with
different material from the background, is given by

DT λi = −Pγσ(ui) · ε(ui)− (1− γ)λiρ∥ui∥2∫
D
ρ∥ui∥2

, (4.12)

where ui is the eigenvector associated with the λi-th eigenvalue of Eq. (4.5) and γ(x) is
the contrast on the material properties defined as

γ(x) =

{
γ0, x ∈ Ω,

γ−1
0 , x ∈ D \ Ω,

where 0 < γ0 ≪ 1. We are interested into two particular cases, which are:
Case 1. Let us consider x ∈ Ω. In this case, τ = 1 and a small portion of material is
removed. Then the topological derivative reads

DT λi = −P0σ(ui) · ε(ui)− λiρ0t∥ui∥2∫
D
ρ∥ui∥2

. (4.13)

where the polarization tensor P0 is written as

P0 =
4

1 + ν
I− 1− 3ν

1− ν2
(I⊗ I). (4.14)

Finally, the topological derivative of the volume V (τ) is trivially given by

DT V = −1. (4.15)

Case 2. Now, let us consider x ∈ D \Ω. In this case τ = γ0 ≪ 1 and a small portion of
material is added. Then the topological derivative can be written as

DT λi = −P∞σ(ui) · ε(ui) + λiρ0t∥ui∥2∫
D
ρ∥ui∥2

. (4.16)

with the polarization tensor P∞ given by

P∞ = − 4

3− ν
I− 1− 3ν

(1 + ν)(3− ν)
(I⊗ I). (4.17)

Finally, the topological derivative of the volume V (τ) is trivially given by

DT V = +1. (4.18)
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Proof. See, for instance, the paper by Amstutz (2011). □

The topological derivative of the shape functional F (τ) from Eq. (4.3) is given by

DT F = −µ1

ω2DT ω + µ2DT V, (4.19)

where DT ω has to be derived according to the regularization procedure we are dealing
with. From Theorem 1, the topological derivatives of the regularized fundamental vibra-
tion frequency of the structure are given by

DT ω =
n∑

i=1

(
qi

∥q∥p

)p+1

DT ωi, (4.20)

in the case of p-norm regularization (Eq. 2.3) and by

DT ω ≈ 1

N

∑
y∈S

DT αmax(y), (4.21)

in the case of the probabilistic approach regularization (Eq. 3.11), with

αmax(y) = max
i∈Nn

(yiωi). (4.22)

Finally, DT ωi is simply obtained as follows

DT ωi =
DT λi

2
√
λi

, (4.23)

with DT λi and DT V given by Theorem 1.

4.3. Topology optimization algorithm. Now, we have all elements to explain the
topology design algorithm proposed by Amstutz and Andrä (2006). It consists basically
in achieving a local optimality condition for the minimization problem (4.3), given in
terms of the topological derivative and a level-set function. In particular, the domain
Ω ⊂ D and the complement D\Ω are characterized by a level-set function Ψ of the form:

Ω = {x ∈ D : Ψ(x) < 0} and D \ Ω = {x ∈ D : Ψ(x) > 0}, (4.24)

where Ψ vanishes on the interface between Ω and D \ Ω. A local sufficient optimality
condition for problem (4.3), under a class of domain perturbations given by ball-shaped
inclusions, can be stated as

DT F (x) > 0 ∀x ∈ D, (4.25)

where DT F (x) is the topological derivative of the shape functional F (τ) at x ∈ D. There-
fore, let us define the quantity

G(x) :=

{
−DT F (x) if Ψ(x) < 0,
+DT F (x) if Ψ(x) > 0,

(4.26)

which allows to rewrite the condition from Eq. (4.25) in the following equivalent form:{
G(x) < 0 if Ψ(x) < 0,
G(x) > 0 if Ψ(x) > 0.

(4.27)

We observe that Eq. (4.27) is satisfied, where the quantity G coincides with the level-set
function Ψ up to a strictly positive factor, namely ∃ φ > 0 : G = φΨ. In order to fulfil this
condition numerically, we start by choosing an initial level-set function Ψ0. In a generic
iteration k, we compute the function Gk associated with the level-set function Ψk. Thus,
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the new level-set function Ψk+1 is updated according to the following linear combination
between the functions Gk and Ψk:

Ψ0 : ∥Ψ0∥L2(D) = 1,

Ψk+1 = (1− w)Ψk + w
Gk

∥Gk∥L2(D)

∀k ∈ N ,
(4.28)

where w ∈ (0, 1] is a step size determined by a line-search performed in order to decrease
the value of the objective function F (ρ). For more details, see the book by (Novotny and
Sokolowski, 2020, Ch. 5), where the resulting topology design algorithm is presented in
pseudo-code format.

5. Numerical examples

In all the following examples the material has elastic modulus E = 210x109N/m2,
Poisson coefficient ν = 0.3 and specific weight ρ0 = 8000kg/m3. The structure is under
plane stress considering thickness t = 0.1m. We also take γ0 = 0.001, µ2 = 1/ω0 and
µ1 = 1/V0, where ω0 and V0 are the volume and the regularized fundamental vibration
frequency of the initial design (i.e. obtained with the domain completely filled with
material). The relative bias of the regularization schemes is evaluated as

ϵ =
ω − ω1

ω1

. (5.1)

A sample of size N = 105 was employed for MCS required by the proposed Probabilistic
Approach. The sample is kept fixed during the entire optimization procedure.

In this work the value of the parameters p and h are kept constant during the opti-
mization procedure. In practice we recommend employment of continuation approaches
to progressively increase/reduce the values of these parameters. Here we do not employ
continuation approaches because we wish to compare only the aggregation schemes in its
original forms.

5.1. Example 1: Portal. The first example was taken from the paper by Torii and de
Faria (2017) and considers the structural domain from Fig. 1. The displacements at the
lower border are constrained and a concentrated non structural mass equal to 104kg is
included at the center of the upper border. A uniform mesh with 64,000 triangular finite
elements is used. Symmetry of the structure is not enforced.

2
1

1 4 1

Figure 1. Portal

We observe two dominant closely spaced vibration frequencies, related to lateral and
horizontal vibration modes (i.e., m = 2). In order to ensure a relative bias close to 1%
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we then employ the p-norm approach with p = 70 (see Table 2). After 40 iterations we
get the design presented in Figure 2 (top). The values of the objective function F , the
relative volume V/V0, the fundamental vibration frequency ω1 and the relative bias ϵ are
presented in Table 3. Note that the relative bias obtained with p = 70 is very close to
the target of 1%. This confirms that the estimates from Table 2 are accurate enough for
practical applications.

p = 70

h = 6%

h = 3%

Figure 2. Portal designs

Table 3. Comparison of portal designs

Approach Iterations F V/V0 ω1 ϵ
p = 70 40 1.6722 51.2104% 257.38 0.8436%

h = 6.0% 40 1.6769 54.4729% 263.98 0.9506%
h = 3.0% 52 1.6703 53.8104% 262.67 0.4439%
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We now solve the problem with the proposed probabilistic approach. In order to ensure
a relative bias close to 1% we take h = 6.0% (see Table 1). After 40 iterations we
get the design presented in Figure 2 (middle). The information about this solution is
also presented in Table 3. We observe that the design obtained is different from that
obtained with the p-norm, even though they have very similar objective function. Thus,
the designs seem to be equivalent local optima. We also observe that the relative bias
of the regularization is again close to the target value of 1%, confirming accuracy of the
estimates from Table 1.

If we wish to reduce the relative bias to 0.5% we should take p = 140. However, the
optimization algorithm was not able to run with such a high exponent, due to numerical
issues. We then employed the probabilistic approach with h = 3.0% (see Table 1). After
52 iterations we obtain the design presented in Figure 2 (bottom). Detailed information
of this design is presented in Table 3. Indeed, the relative bias is very close to the target
value of 0.5%.

From these results we observe that the probabilistic approach is able to give similar
results to the p-norm approach. However, in the p-norm approach we are not able to
reduce the relative bias beyond a certain level, because the exponent required becomes too
large and causes numerical issues. The same difficulty does not occur for the probabilistic
approach.

The evolution of the objective function during the optimization procedure is presented
in Figure 3, for the three cases studied. We observe that no significant difference between
the three cases can be observed, apart from the fact that the algorithm took more itera-
tions to convergence for h = 3%. This indicates that no significant differences between the
p-norm approach and the proposed probabilistic approach are expected when equivalent
regularization parameters are employed, namely p = 70 and h = 6%.

0 10 20 30 40 50 60

Iterations

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

F

Objective Function

p = 70
h = 6%
h = 3%

Figure 3. Convergence of the objective function for portal designs

5.2. Example 2: Square domain. In the second example we consider the square struc-
tural domain from Fig. 4. The displacements at the corners are constrained and concen-
trated non structural masses equal to 104kg are located at the middle of each side. A
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uniform mesh with 57,600 triangular finite elements is used. Symmetry of the structure
is not enforced.

1
1

Figure 4. Square domain

Again, we start by solving the problem using the p-norm approach with p = 70 and
the probabilistic approach with h = 6.0%. It was observed that this problem also has two
closely spaced vibration frequencies, related to vertical and horizontal vibration modes.
Thus, these parameters should give a relative bias close to 1%.

The results are presented in Figure 5 (top and middle, respectively) and Table 4. The
designs again have similar properties (although they look a little different), indicating
that they seem to be equivalent local optima. We also observe that the relative bias is
very close to the target value of 1%, indicating again that the estimates from Tables 1
and 2 are accurate.

We then solve the problem with the probabilistic approach using h = 3.0%. This should
produce a relative bias of the regularization close to 0.5%. The results are also presented
in Figure 5 (bottom) and Table 4. We again observe that the relative bias is indeed close
to the target value. As occurs in the previous example, the algorithm was not able to run
with the p-norm approach for p = 140, because of numerical issues.

p = 70 h = 6% h = 3%

Figure 5. Square domain designs

Table 4. Comparison of square domain designs

Approach Iterations F V/V0 ω1 ϵ
p = 70 17 1.6870 51.1065% 1035.7 1.1029%

h = 6.0% 19 1.6762 49.9907% 1035.0 1.0097%
h = 3.0% 25 1.6571 47.6759% 1032.1 0.4829%
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The evolution of the objective function during the optimization procedure is presented
in Figure 6, for the three cases studied. We observe that no significant difference between
the three cases can be observed, apart from the fact that the algorithm took more itera-
tions to convergence and was able to obtain a slightly better design for h = 3%. Again,
this indicates that the proposed probabilistic approach should be equivalent to the p-norm
approach when equivalent regularization parameters are employed (p = 70 and h = 6%).

0 5 10 15 20 25

Iterations

1.65

1.7

1.75

1.8

1.85

1.9

1.95
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F

Objective Function

p = 70
h = 6%

h = 3%

Figure 6. Convergence of the objective function for square domain

6. Conclusions

In this work we reviewed the p-norm and the KS regularization approaches and proposed
a novel probabilistic approach. Sharpness estimates for the approaches are also provided.
These estimates should be useful for practical choice of parameters.

The results of this work demonstrate that very sharp aggregation with the p-norm and
the KS approaches is infeasible in the presence of closely spaced values. This occurs
because very high exponents are required in this case, leading to numerical issues and
blocking optimization algorithms from running. The proposed approach does not suffer
from this issue, since the regularization parameter can be reduced to very small values
to give very sharp regularization. For this reason, the proposed probabilistic approach is
more appropriate for regularization in the presence of closely spaced extreme values.

The estimates from Eqs. (2.16) and (3.20) can also be applied for other purposes. First,
these estimates can be employed to correct aggregation schemes, as proposed by Le et al.
(2010). Besides, for given parameters p or h it is possible to identify the approximate
number of closely spaced values (i.e., m) by checking the relative bias of the regulariza-
tion scheme. This strategy may be useful to estimate the number of closely spaced values
during the optimization procedure, allowing for adaptive choice of the regularization pa-
rameters during optimization.
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M. Loève. Probability Theory I. Springer-Verlag, New York, 4th edition, 1977.
A.A. Novotny and Jan Sokolowski. An Introduction to the Topologi-
cal Derivative Method. SpringerBriefs in Mathematics. Springer In-
ternational Publishing, 2020. doi: 10.1007/978-3-030-36915-6. URL
https://www.springer.com/gp/book/9783030369149.
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