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Abstract. In this work, a novel approach for solving a damage identification problem
in plate structures based on the topological derivative method is proposed. The for-
ward problems are governed by the elastodynamic Kirchhoff and Reissner-Mindlin plate
bending models in the frequency domain. The inverse problem consists in finding a set
of damages from pointwise domain measurements of the plate displacement field. The
damage is represented by a variation in the plate thickness, which is assumed to be
given by a piecewise constant function. A shape functional measuring the misfit between
the available data (measurements) and the displacements computed from the model is
minimized with respect to the geometrical support of the unknown damage distribution,
by using the topological derivative method. Finally, some numerical experiments are
presented, showing different features of the proposed approach in detecting and locating
damages of varying sizes and shapes by taking into account noisy data.

1. Introduction

The identification of damages in their initial stage is of paramount importance in many
physical and engineering problems. The damage process in structures may be catastrophic
once it becomes out of control and could lead the structure to either a fail or even to the
total collapse. Therefore, the continuous monitoring of the structure focusing in the
identification of damages in the early stage promote important benefits, such as security
for those who depend on it, reduced maintenance cost and increasing on the lifetime of
the structure. In the work by Rytter (1993), the damage inspection methods are classified
in four levels: detection of the presence of damage in the structure (level 1), location of
the region affected by the damage (level 2), indication of the severity of the damage (level
3) and prediction of the remaining lifetime of the structure (level 4). In addition, damage
identification methods based on dynamic tests are usually classified into four categories:
time domain methods (Koh et al., 2003; Majumder and Manohar, 2003; Sandesh and
Shankarb, 2009), frequency domain methods (Araújo dos Santos et al., 2005; Lee et al.,
2003; Salawu and Williams, 1995), methods based on impedance (Liang et al., 1994; Park
and Inman, 2007; Sun et al., 1995) and modal analysis (Corrêa et al., 2016; Stutz et al.,
2005; Tenenbaum et al., 2013).

Important contributions in the damage inspection procedure have been reported in
the literature. Many methods of damage location (level 2) are based on modifications
of the flexibility matrix, the curvature of the vibration modes and the modal flexibility
and the modal strain energy method, which are based on the vibration characteristics
of the structure in the presence of damages (Bernal, 2002; Pandey and Biswas, 1994;
Pandey et al., 1991; Shin et al., 2012; Tomaszewska, 2010). Optimization methods based
on stochastic approaches have been successful applied for solving this class of problems.
In the work by (Stutz et al., 2015), a comparative analysis between the Particle Swarm
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Optimization, Luus-Jaakola Optimization Method, Simulated Annealing Method, Par-
ticle Collision Method and Differential Evolution Method is presented. Hybridization
between stochastic and deterministic optimization methods can be found in the papers
by Begambre and Laier (2009); Tenenbaum et al. (2013). See also applications of Genetic
Algorithms (Rao et al., 2004; Tenenbaum et al., 2013) and Neural Networks (Lee et al.,
2005) in the structural damage quantification stage (level 3).

In this work, we propose a novel approach to simultaneously deal with structural dam-
age detection (level 1) and location (level 2) based on the topological derivative method,
which will be referred to as damage identification. The topological derivative concept,
introduced in the fundamental paper by Soko lowski and Żochowski (1999), represents
the sensitivity of a given shape functional with respect to the nucleation of an infinites-
imal singular domain perturbation, such as holes, cracks or inclusions. The topological
derivative method has applications in many different fields, including shape and topol-
ogy optimization (Amstutz and Novotny, 2010; Novotny et al., 2007), inverse problems
(Canelas et al., 2014; Ferreira and Novotny, 2017), image processing (Auroux et al., 2007;
Belaid et al., 2008), fracture (Van Goethem and Novotny, 2010) and damage evolution
modelling (Xavier et al., 2020). See also important contributions in the elastic-wave imag-
ing problems (Guzina and Chikichev, 2007; Guzina and Pourahmadian, 2015; Tokmashev
et al., 2013) and inverse scattering problems (Carpio and Rapún, 2008; Carpio and Rapún,
2012; Funes et al., 2016). The topological derivative method can be seen as a particular
case of the broader class of asymptotic methods fully developed in the books by Am-
mari et al. (2013) and Ammari and Kang (2004), for instance. See also related works by
Nazarov and Plamenevskij (1994); Maz’ya et al. (2000).

More precisely, we deal with damage detection and location in plate structures. The
forward problems are governed by the elastodynamic Kirchhoff and Reissner-Mindlin plate
bending models in the frequency domain. The inverse problem consists in finding a set
of damages from pointwise domain measurements of the plate displacement field. The
damage is represented by a variation in the plate thickness, which is assumed to be given
by a piecewise constant function. Therefore, the damaged region to be reconstruct is
characterised by a set of geometrical domains within the plate structure. The basic idea
consists in minimizing the difference between the available data (measurements) and the
displacements computed from the forward problem, with respect to a set of admissible
geometrical domain representing the damage distribution, by using the topological deriv-
ative method.

This paper is organized as follows. In Section 2 the topological derivative is introduced
for Kirchhoff (Section 2.1) and Reissner-Mindlin (Section 2.2) plate theories. The exis-
tence of the associated topological derivative is proved and the topological derivative is
stated in its closed form. Some numerical experiments are presented in Section 3, showing
different features of the proposed approach in detecting and locating damages of varying
sizes and shapes by taking into account noisy data. Finally, the paper ends with some
concluding remarks in Section 4.

2. The Topological Derivative Method

In this Section, we present the topological derivative method in the context of damage
identification in plate structures. We start by introducing the definition of the topological
derivative itself. Therefore, let us consider an open and bounded domain D ⊂ R2 which is
subject to a non-smooth perturbation confined in a small ball Bε(x̂) of size ε and center at

x̂ ∈ D, with Bε(x̂) ⊂ D. We also introduce a characteristic function x 7→ χ(x) associated
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to the unperturbed domain, namely χ = 1D such that

|D| =
∫
D

χ, (2.1)

where |D| is the Lebesgue measure of D. The characteristic function associated with the
topological perturbed domain is defined by the mapping x 7→ χε(x̂;x), x ∈ R2. In the case
of a perforation, for instance, χε(x̂) = 1D − 1Bε(x̂), so that the topologically perturbed
domain is obtained as Dε = D \ ωε. Finally, we assume that a given shape functional
ψ(χε(x̂)), associated with the topologically perturbed domain, admits a topological as-
ymptotic expansion of the form

ψ(χε(x̂)) = ψ(χ) + f(ε)T (x̂) + o(f(ε)), (2.2)

where ψ(χ) is the shape functional associated to the unperturbed domain, f(ε) is a positive
function such that f(ε) → 0, with ε → 0, and o(f(ε)) is the remainder. The function
x̂→ T (x̂) is then defined as the topological derivative of ψ at x̂. For more details, see for
instance the book by Novotny and Soko lowski (2020).

Let us consider a plate represented by a two-dimensional domain D ⊂ R2 as shown in
Figure 1. We assume that the boundary of D, denoted by ∂D, is a curvilinear polygon
of class C1,1 (Amstutz and Novotny, 2011). The damage is represented by a variation in
the plate thickness, which is assumed to be given by a piecewise constant function of the
form

h(x) :=

{
h0, if x ∈ Ω,

h1, if x ∈ ω, (2.3)

where h0 > 0 is assumed to be constant and h1 = h1(x) is a positive piecewise constant
function such that h1 < h0 in D, and D = Ω∪ω, with Ω∩ω = ∅. Therefore, Ω represents
the healthy part of D whereas ω is the damaged region. Note that the smaller thickness
h1 is used to represent loss of stiffness and mass caused by delamination or corrosion, for
example, but not necessary a reduction on the thickness itself.

h

Figure 1. The working domain from the paper by Amstutz and Novotny
(2011).

The inverse problem we are dealing with consists in finding the damaged distribution
from pointwise measurement of the plate displacement. We assume that h0 and h1 are
given, so that we have to find the support of the damage region ω? associated with h?

according to (2.3). We will show later that this assumption can be weakened.
Since the unknown is now given by a geometrical domain ω, then the inverse problem

can be written in the form of a topology optimization problem. More precisely, we want



4

to minimize a shape functional measuring the misfit between the available data (measure-
ment) and the solution computed from the model problem, with respect to the support
ω of the damaged region, namely

Minimize
ω⊂D

J (u, θ). (2.4)

The shape functional J (u, θ) is defined as

J (u, θ) =
N∑
i=1

∫
D

(|u− u∗|2 + ‖θ − θ∗‖2)δ(x− xi), (2.5)

where δ(x, xi) is the Dirac delta function with pole at xi ∈ D, u : D → R and θ : D →
R2 are the transverse displacement and rotation vector field of the plate, respectively,
according to the model problem we are dealing with. In addition, (u∗, θ∗) is the pointwise
measurement of the plate displacement and xi, i = 1, · · · , N , represent the locations of
the sensors (accelerometers), with N the number of sensors.

A quite general approach to deal with the resulting topology optimization problem is
based on the topological derivative method (Novotny and Soko lowski, 2013, 2020). In
the context of this work, the topological derivative represents the sensitivity of the misfit
shape functional with respect to the introduction of a perturbation of size ε and center
at an arbitrary point x̂ ∈ D representing a small ball-shaped damaged region Bε(x̂) ⊂ D.
The perturbed counterpart of the plate thickness h is denoted as hε = γεh, with

γε(x) :=

{
1, if x ∈ D \Bε(x̂),

γ, if x ∈ Bε(x̂),
(2.6)

where γ = γ(x) is used to denote the contrast in the plate thickness, namely

γ(x) :=

{
h1/h0, if x ∈ Ω,

h0/h1, if x ∈ ω,
(2.7)

remembering that Ω = D \ ω and ω are used to represent the healthy and damaged
regions of the plate, respectively. From these elements, two topological perturbations are
possible. If Bε(x̂) ⊂ Ω, then hε = h0 in Ω \Bε(x̂) and hε = h1 in Bε(x̂)∪ω. Otherwise, if

Bε(x̂) ⊂ ω, then hε = h1 in ω \Bε(x̂) and hε = h0 in Bε(x̂)∪Ω. These general situations
are considered for the sake of completeness. However, we are interested in the particular
case in which h = h0 in D, so that hε = h0 in D \ Bε(x̂) and hε = h1 in Bε(x̂). We will
come back to this discussion in Section 3.

According to (2.6), the perturbed counterpart of the shape functional is given by

J (uε, θε) =
N∑
i=1

∫
D

(|uε − u∗|2 + ‖θε − θ∗‖2)δ(x− xi), (2.8)

for xi /∈ Bε(x̂), i = 1, · · · , N , where uε : D → R and θε : D → R2 are the transverse
displacement and rotation vector field of the plate, respectively, associated with the per-
turbed counterpart of the model problem we are dealing with. Finally, let us introduce
the following fourth-order polarization tensor associated with the plate bending model

Pγ = − 1− γ3

1 + γ3β

(
(1 + β)I +

1− γ3

2

α− β
1 + γ3α

I⊗ I

)
, (2.9)

where the symbols I and I are used to denote the second and fourth order identity tensor,
respectively. The coefficients α and β will be defined later according to the model problem
we are dealing with, either Kirchhoff or Reissner-Mindlin.
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2.1. Kirchhoff problem. The theory of Kirchhoff plates is based on the kinematic as-
sumption in which the normal fibers to the middle plane of the plate remain normal during
deformation and do not suffer variations in their length. Therefore, both transverse shear
and normal deformations are null. The transverse displacement (or deflection) of the plate
in the time harmonic regime written in the frequency domain is solution to the following
variational problem:

u ∈ U :

∫
D

h3M(u) · ∇∇η − k2
∫
D

huη =

∫
D

bη ∀η ∈ U , (2.10)

where k is the wave number defined as k2 = ρ(2πf)2, with f the working frequency and
ρ the material density, h is the plate thickness, b is the source-term, u : D → R is the
transverse displacement and θ = ∇u is the rotation. In addition, M(u) the moment
tensor, namely

M(u) =
E

12(1− ν2)
[(1− ν)I + νI⊗ I]∇∇u, (2.11)

with I and I used to denote the second and fourth order identity tensors, respectively,
whereas E is the Young modulus and ν is the Poisson ratio. The set of kinematically
admissible displacements U is defined as

U := {ϕ ∈ H2(D) : ϕ|∂D = 0}. (2.12)

Note that, from (2.12), the plate is assumed to be simply supported on ∂D. According
to (2.6), the perturbed counterpart of the variational problem (2.10) reads

uε ∈ U :

∫
D

h3εM(uε) · ∇∇η − k2
∫
D

hεuεη =

∫
D

bη ∀η ∈ U . (2.13)

Finally, we assume that the quantity k2 is neither an eigenvalue of (2.10) nor (2.13).

2.1.1. Existence of the topological derivative. The existence of the topological derivative
associated with the problem we are dealing with is ensured by the following result:

Lemma 1. Let u and uε be the solutions of the variational problems (2.10) and (2.13),
respectively. Then, the following a priori estimate holds true

‖uε − u‖H2(D) ≤ Cε, (2.14)

with constant C independent of the small parameter ε.

Proof. Let us rewrite the variation problem (2.10) using the definition for the contrast
(2.6) as follows∫

D

h3εM(u) · ∇∇η − k2
∫
D

hεuη =

(γ3 − 1)

∫
Bε

h3M(u) · ∇∇η − k2(γ − 1)

∫
Bε

huη +

∫
D

bη. (2.15)

After subtracting (2.15) from (2.13), we have∫
D

h3εM(ũε) ·∇∇η−k2
∫
D

hεũεη = (1−γ3)
∫
Bε

h3M(u) ·∇∇η−k2(1−γ)

∫
Bε

huη, (2.16)

where ũε = uε − u. Let us consider a decomposition of the form ũε = vε + wε. Then
vε ∈ U is solution to∫

D

h3εM(vε) · ∇∇η = (1− γ3)
∫
Bε

h3M(u) · ∇∇η − k2(1− γ)

∫
Bε

huη, (2.17)
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whereas wε ∈ U is solution to∫
D

h3εM(wε) · ∇∇η − k2
∫
D

hε(wε)η = k2
∫
D

hεvεη. (2.18)

By taking into account the well-posedness of the variational problem (2.18), we obtain
(Monk, 2003)

‖wε‖H2(D) ≤ C1‖vε‖L2(D) ≤ C1‖vε‖H2(D). (2.19)

On the other hand, by setting η = vε as test function in the variational problem (2.17),
there is∫

D

h3εM(vε) · ∇∇vε = (1− γ3)
∫
Bε

h3M(u) · ∇∇vε − k2(1− γ)

∫
Bε

huvε. (2.20)

From the Poincaré inequality (Quarteroni and Valli, 1997), it follows

c‖vε‖2H2(D) ≤
∫
D

h3εM(vε) · ∇∇vε. (2.21)

Therefore, we get

‖vε‖2H2(D) ≤ C2

[
(1− γ3)

∫
Bε

h3M(u) · ∇∇vε − k2(1− γ)

∫
Bε

huvε

]
(2.22)

with C2 = 1/c. After applying the Cauchy-Schwartz inequality (Quarteroni and Valli,
1997), there is

‖vε‖2H2(D) ≤ C3ε‖∇∇vε‖L2(Bε) + C4ε‖vε‖L2(Bε) ≤ C5ε‖vε‖H2(D). (2.23)

Finally, from the triangular inequality in ũε = vε+wε combined with the estimates (2.19)
and (2.23), we obtain the required result, namely

‖ũε‖H2(D) = ‖wε + vε‖H2(D) ≤ ‖wε‖H2(D) + ‖vε‖H2(D) ≤ Cε, (2.24)

with C = (1 + C1)C5 independent of the small parameter ε. �

2.1.2. Topological derivative formula. By setting the constants α and β in the definition
of the polarization tensor (2.9) as follows

α =
1 + ν

1− ν
and β =

1− ν
3 + ν

, (2.25)

we can present the main result of this section, namely:

Theorem 2. The topological derivative of the tracking-type shape functional J (u, θ) from
(2.5), where θ = ∇u, with respect to the nucleation of a small damage represented by a
piecewise constant variation in the plate thickness, is given by

T (x) = h3PγM(u) · ∇∇v(x) + k2(1− γ)huv(x), ∀x ∈ D \ {x1, · · · , xN}, (2.26)

where u is solution to (2.10), k is the wave number, h is the plate thickness and γ its
contrast. The polarization tensor Pγ is defined by (2.9) together with the coefficients
α and β according to (2.25). Moreover, function v is solution to the following adjoint
problem: Find v ∈ U , such that∫
D

h3M(v) · ∇∇η − k2
∫
D

hvη = 2
N∑
i=1

∫
D

δ(x− xi)[(u− u∗)η + (∇u− θ∗) · ∇η] ∀η ∈ U ,

(2.27)
where (u∗, θ∗) is the target obtained from pointwise measurement of the plate displacement.
Finally, we assume that the quantity k2 is not an eigenvalue of problem (2.27).
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Proof. The proof of this result follows the same steps as presented in the paper by (Am-
stutz and Novotny, 2011) combined with the reasoning used in the proof of Lemma 1,
since we are dealing with a non-coercive counterpart of the problem considered in the
work by (Amstutz and Novotny, 2011). �

2.2. Reissner-Mindlin problem. The Reissner-Mindlin problem is based on the kine-
matic assumption that the normal fibers to the middle plane of the plate remain straight
during the deformation process and do not suffer variations in the length, but they not
necessarily remain normal to the middle plane. Consequently, the transverse shear de-
formations are not negligible and the normal deformations are null. By neglecting the
rotational inertia effects, the transverse displacement and rotations of the plate in the time
harmonic regime written in the frequency domain is solution to the following variational
problem: Find (θ, u) ∈ U , such that∫

D

h3M(θ) · (∇ϕ)s +

∫
D

hQ(θ, u) · (ϕ−∇η)− k2
∫
D

huη =

∫
D

bη ∀(ϕ, η) ∈ U , (2.28)

where k is the wave number defined as k2 = ρ(2πf)2, with f the working frequency and
ρ the material density, h is the plate thickness, b is the source-term, u : D → R is the
transverse displacement and θ : D → R2 is the rotation vector field. In addition, M(θ) is
the generalized bending moment tensor and Q(θ, u) is the generalized shear tensor given,
respectively, by

M(θ) =
E

12(1− ν2)
[(1− ν)I + νI⊗ I](∇θ)s (2.29)

and,

Q(θ, u) =
5E

12(1 + ν)
(θ −∇u), (2.30)

with I and I used to denote the second and fourth order identity tensors, respectively,
whereas E is the Young modulus and ν is the Poisson ratio. The set of kinematically
admissible displacements U is defined as

U := {(φ, ϕ) ∈ H1(D,R2)×H1(D) : ϕ|∂D = 0}. (2.31)

Note that, from (2.31), the plate is assumed to be simply supported ∂D. According to
(2.6), the perturbed counterpart of the variation problem (2.28) reads: Find (θε, uε) ∈ U ,
such that∫

D

h3εM(θε)·(∇ϕ)s+

∫
D

hεQ(θε, uε)·(ϕ−∇η)−k2
∫
D

hεuεη =

∫
D

bη ∀(ϕ, η) ∈ U . (2.32)

Finally, we assume that the quantity k2 is neither an eigenvalue of (2.28) nor (2.32).

2.2.1. Existence of the topological derivative. The existence of the topological derivative
associated with the problem we are dealing with is ensured by the following result:

Lemma 3. Let (θ, u) and (θε, uε) be the solutions of the variational problems (2.28) and
(2.32), respectively. Then, the following a priori estimates hold true

‖θε − θ‖H1(D,R2) ≤ C1ε and ‖uε − u‖H1(D) ≤ C2ε, (2.33)

with constants C1 and C2 independent of the small parameter ε.

Proof. The demonstration of these results follows the same arguments as in the proof of
Lemma 1. �
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2.2.2. Topological derivative formula. Now, let us set the constants α and β in the defi-
nition of the polarization tensor (2.9) as follows

α =
1 + ν

1− ν
and β =

3− ν
1 + ν

. (2.34)

Then we can present the main result of this section, which is stated as:

Theorem 4. The topological derivative of the tracking-type shape functional J (u, θ) from
(2.5), with respect to the nucleation of a small damage represented by a piecewise constant
variation in the plate thickness, is given by

T (x) = h3PγM(θ) · (∇φ)s(x) + hPγQ(θ, u) · (φ−∇v)(x) + hk2(1− γ)uv(x), (2.35)

for all x ∈ D \ {x1, · · · , xN}, where (θ, u) is solution to (2.28), k is the wave number,
h is the plate thickness and γ its contrast. The fourth-order polarization tensor Pγ is
defined by (2.9) together with the coefficients α and β according to (2.34). In addition,
the second-order polarization tensor Pγ is given by

Pγ = −2
1− γ
1 + γ

I. (2.36)

Moreover, function v is solution to the following adjoint problem: Find (φ, v) ∈ U , such
that∫

D

h3M(φ) · (∇ϕ)s +

∫
D

hQ(φ, v) · (ϕ−∇η)− k2
∫
D

hvη =

2
N∑
i=1

∫
D

δ(x− xi)[(u− u∗)η + (θ − θ∗) · ϕ] ∀(ϕ, η) ∈ H(D), (2.37)

where (u∗, θ∗) is the target obtained from pointwise measurement of the plate displacement.
Finally, we assume that the quantity k2 is not an eigenvalue of problem (2.37).

Proof. The proof of this result follows the same steps as presented in the paper by Sales
et al. (2015) combined with the reasoning used in the proof of Lemma 1, since we are
dealing with a non-coercive counterpart of the problem considered in the work by Sales
et al. (2015). �

3. Numerical Results

By setting ω = ∅, the solutions to the model problems and the associated topological
derivatives are evaluated in the homogeneous domain with uniform thickness h0, free of
any anomaly. On the other hand, in order to produce synthetic data, the measurements
(u∗, θ∗) are obtained as solutions to the model problems defined in the heterogeneous
domain with thickness h? by setting ω = ω?, where ω? is the support of the true anom-
alies we are looking for. More details will be given later on while setting the numerical
experiments.

Note that in order to use the results from Theorems 2 and 4 for solving the inverse
problem we are dealing with, it is necessary to know the contrast γ from (2.7) a priori.
It means to know how much the plate is damaged. However, this information in general
is not available. In order to deal with this more difficult scenario, we take γ → 0 (or
equivalently h1 → 0, provided that h = h0 (ω = ∅) and h1 < h0) in Theorems 2 and 4
and use the obtained results for solving the minimization problem (2.4) by considering
the sensitivity associated with h1 → 0. More precisely, we have:
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Corollary 5. For h = h0, the limit case γ → 0 (h1 → 0) in (2.26) is well defined and
given by

T (x) = h30P0M(u) · ∇∇v(x) + k2h0uv(x), ∀x ∈ D \ {x1, · · · , xN}, (3.1)

where the polarization tensor P0 is written as

P0 =
−1

3 + ν

(
4I +

1 + 3ν

1− ν
I⊗ I

)
. (3.2)

Corollary 6. For h = h0, the limit case γ → 0 (h1 → 0) in (2.35) is well defined and
given by

T (x) = h30P0M(θ) · (∇φ)s(x)− 2h0Q(θ, u) · (φ−∇v)(x) + h0k
2uv(x), (3.3)

for all x ∈ D \ {x1, · · · , xN}, where the polarization tensor written as

P0 =
−1

1 + ν

(
4I− 1− 3ν

1− ν
I⊗ I

)
. (3.4)

The basic idea consists in plotting the topological derivative field T (x) according to
Corollaries 5 and 6. It is expected that the more T (x) is negative, the more likely x ∈ D
is within the damage region ω? ⊂ D, given qualitative information on the detection and
location of the damaged zone.

Based on the former discussion, in this section some numerical experiments are pre-
sented. The objective is to show different features of the proposed method when solving
the inverse problem of damage location in plate structure. We consider a simply sup-
ported square-shaped plate of dimensions (1 × 1)m2. The wave number is defined as
k2 = ρ(2πf)2, where ρ is the material density and f is the working frequency to be
defined later. The physical material properties of the plate made with steel are Young
Modulus E = 210GPa, Poisson ratio ν = 0.3 and density ρ = 7800kg/m3. We consider
synthetic data produced numerically. More precisely, the background thickness is set as
h0 = 0.01m whereas the damaged region ω? has thickness h1(x) < h0 to be specified later
on, inducing loss of mass and stiffness of the plate.

In the identification process, we consider a number M of measurements produced by
pointwise sources bj(x) = b0δ(x−xj), where b0 = 102N is the source intensity and xj ∈ D
are their locations, with j = 1, · · · ,M . More precisely, a concentrated transverse load is
applied at the point xj and the associated measurement (u∗j , θ

∗
j ) is obtained. Then, the

shape functional to be minimized is given by the sum

J ((u1, θ1), · · · , (uM , θM)) =
N∑
i=1

M∑
j=1

∫
D

(|uj − u∗j |2 + ‖θj − θ∗j‖2)δ(x− xi), (3.5)

where (uj, θj) is the plate displacement field obtained by setting b = bj in (2.10) or
(2.28), according to the model problem we are dealing with. The associated topological
derivatives are then obtained simply by the sum of the contribution of each measurement.

The target (u∗j , θ
∗
j ) is evaluated as a restriction at the points xi ∈ D, i = 1, · · · , N , of

the solution to (2.10) or (2.28) for b = bj, by considering different configurations of the
damage ω?, where xi represent the locations of the sensors. Moreover, by setting ω = ∅,
the displacement field (uj, θj) is obtained after solving (2.10) and (2.28) for b = bj and
h = h0, uniform.

In addition, we consider multi-frequency approach as proposed in the papers by Park
(2013) and Park (2017). More precisely, we follow the ideas introduced in the works by



10

Louër and Rapún (2019) and Pena and Rapún (2020), which consist in defining a weighted
topological derivative in the form

T ∗(x) =

Nf∑
`=1

µ`T`(x), (3.6)

where Nf is the number of frequencies, T`(x) is the topological derivative associated with
the `-th frequency and µ` is the weight computed as

µ` =

∣∣∣∣min
x∈D
T`(x)

∣∣∣∣−1 . (3.7)

The directs (2.10,2.28) and adjoints (2.27,2.37) problems are solved numerically by using
the Finite Element Method according to Batoz (1982) and Katili (1993) for Kirchhoff
and Reissner-Mindlin plate bending problems, respectively. More precisely, the square-
shaped plate is split into 100 uniform squares. Then, each smaller square is divided into
4 identical triangles. In order to fulfill the Ihlenburg-Babuška condition (Ihlenburg and
Babuška, 1995), each triangle is divided into 4 more triangles in such a way that the initial
pattern is preserved. This procedure is repeated three times, leading to 25600 triangles.
The resulting mesh is then used to discretize the boundary value problems.

Since we are considering synthetic data, in order to alleviate the so-called inverse crime,
eventually the target (u∗j , θ

∗
j ) is computed in a finer mesh obtained after repeating the last

step of the above procedure two more times, leading to 409600 elements. At the same
time, the measurements are corrupted with White Gaussian Noise (WGN). In practice,
several external factors may generate significant changes in the dynamic response of the
accelerometers used to measure the data (u∗j , θ

∗
j ), such as acoustic noise, temperature

variations and humidity. Therefore, noisy data in our context can be interpreted as
uncertainties in the displacement measurements and the finer mesh is used to represent
modeling inaccuracy. Finally, we consider M = 64 pointwise sources according to Figure
2(a). A number of N = 24 or N = 69 accelerometers are distributed either as in Figure
2(b) or Figure 2(c), respectively, depending on the example to be presented.

(a) (b) (c)

Figure 2. Pointwise source locations (a) and two accelerometers configu-
rations with 24 points (b) and 69 points (c).

In summary, we consider four numerical examples. The pointwise sources distribution
as in Figure 2(a) are used in all of them. In Examples 1-3, a number of 24 accelerometers
is considered according to Figure 2(b). In Example 4, we consider 69 accelerometers as
shown in Figure 2(c). The working frequency is set in the range from 4Hz to 180Hz, with
increment of 4Hz, so that the number of frequencies in (3.6) is given by Nf = 45 for all
examples.
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3.1. Example 1: Identification of two simultaneous damages of different sizes
endowed with very low contrast. In this first example, we consider the identification
of two simultaneous circular damages of different sizes endowed with low contrast (γ =
0.99). The bigger damage of radius 0.04m is centered at (0.40, 0.60), whereas the smaller
damage with radius 0.02m is centered at (0.70, 0.40), as shown in Figure 3. The resulting
topological derivative fields T ∗(x) are presented in Figures 4(a) and 4(b) for Kirchhoff
and Reinssner-Midlin plate models, respectively. From an analysis of these figures, we
observe that the topological derivative is more negative in the neighborhood of the hidden
damages, as expected. The bigger damage is more evident as also expected.

Figure 3. Example 1: Target ω? to be reconstructed given by two si-
multaneous circular damages with radii 0.04m and 0.02m at the posi-
tions (0.40, 0.60) and (0.70, 0.40), respectively, both endowed with contrast
γ = 0.99.

(a) (b)

Figure 4. Example 1: Obtained result for Kirchhoff (a) and Reissner-
Mindlin (b) plate models by considering 24 sensors distributed as in Figure
2(b).

3.2. Example 2: Identification of two simultaneous damages of same sizes en-
dowed with different contrasts. In this example we deal with the identification of
two simultaneous circular damages of the same sizes and different contrasts. In par-
ticular, the damages have radius 0.02m and centers at (0.40, 0.60) and (0.70, 0.40) with
contrasts γ = 0.90 and γ = 0.80, respectively, as shown in Figure 5. The resulting
topological derivative fields T ∗(x) are presented in Figures 6(a) and 6(b) for Kirchhoff
and Reinssner-Midlin plate models, respectively. As expected, the topological derivative
is more negative in the neighborhood of the hidden damages. The damage with higher
contrast (γ = 0.80) becomes more evident as also expected.
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Figure 5. Example 2: Target ω? to be reconstructed given by two simul-
taneous circular damages with radius 0.02m at the positions (0.40, 0.60)
and (0.70, 0.40), endowed with different contrasts γ = 0.90 and γ = 0.80,
respectively.

(a) (b)

Figure 6. Example 2: Obtained result for Kirchhoff (a) and Reissner-
Mindlin (b) plate models by considering 24 sensors distributed as in Figure
2(b).

3.3. Example 3: Identification of two simultaneous damages of same sizes en-
dowed with high contrast. In this example, we consider the identification of two simul-
taneous circular damages of the same sizes and high contrast. In particular, the damages
have radius 0.02m and centers at (0.40, 0.60) and (0.70, 0.40) with high contrast γ = 0.01,
as shown in Figure 7. Finally, as explained in the beginning of this section, the mea-
surements computed in a finer mesh are corrupted with White Gaussian Noise (WGN)
of varying levels. The obtained topological derivative fields T ∗(x) for 0%, 4%, 8% and
16% of WGN are presented in Figures 8 and 9 for Kirchhoff and Reissner-Mindlin plate
models, respectively. From an analysis of these figures, we observe that the two damages
are clearly identified even in the presence of noise. For 16% of noise, the result is rather
degraded, nevertheless it is still possible to identify the damaged region.

Figure 7. Example 3: Target ω? to be reconstructed given by two simul-
taneous circular damages with radius 0.02m at the positions (0.40, 0.60)
and (0.70, 0.40), respectively, both with high contrast γ = 0.01.
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(a) 0% (b) 4%

(c) 8% (d) 16%

Figure 8. Example 3: Obtained result with noisy data for Kirchhoff plate
model by considering 24 sensors distributed as in Figure 2(b).

(a) 0% (b) 4%

(c) 8% (d) 16%

Figure 9. Example 3: Obtained result with noisy data for Reissner-
Mindlin plate model by considering 24 sensors distributed as in Figure 2(b).

3.4. Example 4: Identification of three simultaneous damages of varying shapes
endowed with low contrast. In this example, the identification of three simultaneous
damages of the same contrast and different shapes and sizes are considered, as shown in
Figure 10. As before, the measurements are computed in a finer mesh and also corrupted
with White Gaussian Noise (WGN) of varying levels. The obtained topological derivative
fields T ∗(x) for 0%, 8%, 16% and 32% of WGN are presented in Figures 11 and 12 for
Kirchhoff and Reissner-Mindlin plate models, respectively. From an analysis of these
figures, we observe that the three damages are well identified even in the presence of high
level of noise. As point out in the paper by Louër and Rapún (2019), the multi-frequency
topological derivative approach is extremely resilient with respect to noisy data.
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Figure 10. Example 4: Target ω? to be reconstructed given by three
simultaneous damages of varying shapes and sizes, with contrast γ = 0.90.

(a) 0% (b) 8%

(c) 16% (d) 32%

Figure 11. Example 4: Obtained result with noisy data for Kirchhoff
plate model by considering 69 sensors distributed as in Figure 2(c).

(a) 0% (b) 8%

(c) 16% (d) 32%

Figure 12. Example 4: Obtained result with noisy data for Reissner-
Mindlin plate model by considering 69 sensors distributed as in Figure 2(c).
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4. Conclusions

In this paper, a novel approach for solving damage detection and localization problem in
Kirchhoff and Reissner-Mindlin plate bending models has been proposed. The topological
derivative method is used to minimize a tracking-type shape functional with respect to the
geometrical support of the unknown damage distribution. More precisely, the associated
topological derivative field is evaluated by using a simple post-processing procedure. As
expected, the more T (x) is negative, the more likely x ∈ D is within the damage region
ω? ⊂ D, given qualitative information on the identification of the damaged zone.

Numerical experiments are presented showing different features of the proposed method-
ology. In Examples 1, 2 and 3 only 24 sensors are located around the damages, whereas
in Example 4 there are 69 sensors uniformly distributed within the domain. Moreover, in
Examples 3 and 4 a finer mesh is used to produce the synthetic measurements which are
also corrupted with WGN of varying levels. In particular, the identification of two simul-
taneous circular damages of different sizes with very low contrast (h1 = 0.99h0) and of
same sizes and different contrasts (h1 = 0.9h0 and h1 = 0.8h0) are respectively considered
in Examples 1 and 2. In Example 3, the identification of two simultaneous damages of
same sizes with very high contrast (h1 = 0.01h0) has been considered. Finally, in Example
4, we deal with the identification of three simultaneous damages of varying shapes and
sizes, endowed with low contrast (h1 = 0.9h0).

Overall, the obtained results are satisfactory, so that the proposed approach can be con-
sidered promising in identifying a number of hidden damages in a Kirchhoff and Reissner-
Mindlin plate structure from pointwise domain measurements. As an adjacent conclusion,
we observed that the results obtained with the Reissner-Mindlin model are slightly better
than the ones obtained with the Kirchhoff model. However, the numerical experiments
reported in the paper are far to be exhaustive, so that any comparison between both
models is only speculative. Finally, our approach induces a level-set method representa-
tion of the solution to the inverse problem, which can be combined with well-established
and more computationally sophisticated iterative methods, such as the ones reported by
Baumeister and Leitão (2005); Burger (2001); Hintermüller and Laurain (2008); Isakov
et al. (2011); Tricarico (2013).
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