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Abstract. In this work, a novel topology optimization method for the synthesis of
nanophotonic energy concentrators is proposed. The forward problem is governed by
the Maxwell equations in the frequency domain. The basic idea consists in finding the
best two phase material distribution that concentrates the energy in a given target do-
main. More precisely, a shape functional measuring the electrical energy of the system
within a small region of the nanodevice is maximized with respect to silicon and glass
spatial distribution by using the topological derivative method. Therefore, since the
resulting optimization method is based on a scattering problem formulation, any issues
that would come from eigenmode calculations are here avoided. In addition, the pro-
posed shape functional can be properly defined both outside or overlapping the design
(moving) domain itself, increasing the range of applications of the proposed approach.
The associated topological gradient is rigorously derived and used to devise a simple
and efficient black/white binary topology design algorithm, which naturally conforms
to practical fabrication constraints for nanodevices. Finally, a set of numerical experi-
ments are presented showing different features of the proposed approach, including its
capability in selectively producing the required hot-spots within the nanodevices.

1. Introduction

Nano- and micro-fabrication technologies have enabled the development of devices built
in nanometre scales. These devices are today found in applications ranging from commu-
nications and agriculture, to medicine and construction. That is because the scientific and
engineering applications of nanostructured devices are equally diverse, providing cutting-
edge platforms for research and development in electronics, mechanics, optics, acoustics,
and many other technology fields [1].

In this work, we are interested in the design of nanostructures for applications in optics.
Optical nanowires are the equivalent of optical fibers but for communications inside the
chip. They are conventionally composed by two dielectric materials with distinct refractive
indices. The material with high index is used as the waveguide core, which is surrounded
by the low-index material, known as waveguide cladding [2, 3]. Light remains confined in
the high-index material and can be guided, filtered, modulated and freely processed by
linear and non-linear devices designed in the same platform. The distribution of the two
materials establishing the functionality of the devices gives birth to a number of design
challenges to which topology optimization methods are a successful general approach.

Many topology optimization methods have been proposed since the publication of the
seminal paper by Bendsøe and Kikuchi [4], including the most used SIMP method [5].
Specifically in nano optics, topology optimization has been subject of intensive research
for the last two decades and different approaches have been proposed, such as bio-inspired
methods [6], pixel-by-pixel optimization [7], level-set methods [8] and transformation op-
tics [9]. For a comprehensive overview on applications of topology optimization methods
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in nanophotonics, see for instance [10, 11]. A recent approach which has been success-
fully applied in the context of design of nanophotonic devices is based on the topological
derivative method [12].

The topological derivative concept was introduced in 1999 by Sokolowski & Zochowski [13].
The topological derivative represents the sensibility of a given shape functional with
respect to singular domain perturbations, such as holes, inclusions, source-terms and
cracks [14]. The topological derivative has been conceived to deal with structural topol-
ogy optimization. More recently, it has been applied for solving varying other problems
such as antenna design in hyperthermia therapy, inverse reconstruction problems, mul-
tiscale material design and fracture mechanics modelling. A detailed explanation of the
topological derivative method and its applications can be found in [15] and [16], respec-
tively.

In this paper, we are interested in the optimal design of structures that concentrate
energy, such as resonators, that could be used in the fields of non-linear optics or photo-
voltaics, for example. Because the problem of designing a high-quality resonator is known
to be ill-posed [17], we propose the use of the topological derivative method to formulate
the optimization problem directly in terms of the energy density in the objective region,
instead of the quality factor of the structure. The forward problem is governed by the
Maxwell’s equation in the frequency domain. The basic idea consists in maximizing the
energy of the system within a small region of the optical device, with respect to silicon
dioxide (SiO2) and silicon (Si) distribution by using the topological derivative method. In
particular, the associated topological derivative is used to devise a topology optimization
algorithm specifically designed to deal with black/white material distribution. In con-
trast to [12] where the shape functional is concentrated far from the design domain, in
this work we deal with a moving domain problem in which the shape functional is con-
centrated within the design domain itself, leading to a more complicated scenario from
the theoretical point of view. This work presents the derivation of the sensitivity analysis
for this type of problem and, using a topological derivative based optimization algorithm,
shows the application of the derived equations in the optimization of nanophotonic energy
concentration in a few different scenarios.

This paper is organized as follows. In Section 2, the forward problem we are dealing
with is introduced. The shape functional to be minimized and its related topological
derivative are discussed in Section 3. The resulting topology design algorithm based on
the topological derivative and a level-set domain representation method is presented in
Section 4. A set of numerical experiments showing different features of the proposed
methodology is presented in Section 5. Finally, the paper ends with some concluding
remarks through Section 6. For the reader convenience, the proof of the main theoretical
result of the paper is relegated to the Appendix A.

2. Problem Formulation

In this section the topology optimization problem we are dealing with is presented. It
consists in the design of optical devices that concentrate energy in a target region. The
Maxwell’s system written in the frequency domain is considered as governing equations.
We want to maximize the energy of the system within a small region of the optical device,
with respect to silicon dioxide (SiO2) and silicon (Si) distribution.

More precisely, let us consider an open and bounded domain D ⊂ Rd, with d = 2, 3. A
near-field domain is denoted as B ⊂ D. The optimization region is given by Ω ⊂ B, which
is split into two disjoints subdomains Ω1 and Ω2, such that Ω = Ω1∪Ω2 and Ω1∩Ω2 = ∅,
with Ω1 and Ω2 representing regions with refractive indices n1 and n2, respectively. We
also define a target domain ω ⊂ B, as illustrated in Figure 1.
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Figure 1. Domain definitions for the electromagnetic problem and the
calculation of the topological derivative.

The weak form of the electromagnetic scattering problem is stated as follows: find
E ∈ V , such that∫

D

(
∇× E · ∇ ×W − k2

0n
2E ·W

)
dx =

∫
D
Q ·Wdx ∀ W ∈ V (2.1)

where k0 is the wavenumber in vacuum and n is the refractive index assumed to be a
piecewise constant function. Finally, the space V is defined as

V := {W ∈ Hcurl(D;Cd) : ν ×W = 0 on Γ}, (2.2)

where ν is the exterior unit normal vector to D, Hcurl(D;Cd) is used to denote the
standard complex-valued Hilbert space of vector functions W : D 7→ Cd, such that
W ∈ L2(D;Cd) and ∇×W ∈ L2(D;Cd). Outside B, the formulation can be extended to
include anisotropic and magnetic materials, as required when open domains are simulated
with the help of a Perfectly Matched Layer (PML) approach. Finally, the electric energy
density of the system can be written as

u(E) = k2
0n

2‖E‖2. (2.3)

Finally, the quantity we are interested in is given by the electric energy stored in ω,
namely

U(ω) =

∫
ω

k2
0n

2‖E‖2dx. (2.4)

3. Topological Derivative Method

In this section we present the main theoretical result of the paper. It is given by the
topological derivative of the shape function (2.4). The result is summarized through the
following theorem:

Theorem 1. Let us consider the shape functional U(ω) defined in (2.4). Its associated
topological derivative, with respect to the nucleation of a small inclusion endowed with
different refractive index from the background, is given by

DT U(ω)(x) = (γ2 − 1)k2
0n

2(‖E‖2χω + <{E · V })(x), (3.1)
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where E is solution to equation (2.1) and χω is the characteristic function of region ω,
defined as

χω =

{
1, if x ∈ ω,
0, if x /∈ ω.

(3.2)

In addition, function V is solution to the following adjoint problem: For all W ∈ V, find
V ∈ V, such that∫

D

(
∇× V · ∇ ×W − k2

0n
2V ·W

)
dx = 2

∫
ω

k2
0n

2E ·Wdx. (3.3)

where (·) is used to denote the complex conjugate of (·). Finally, γ(x) is the contrast on
the refractive index defined as

γ(x) =

{
n2

n1
, x ∈ Ω1,

n1

n2
, x ∈ Ω2,

(3.4)

where n1 and n2 are reflective index of Si and SiO2, respectively.

Proof. The proof of this result is presented in Appendix A. �

Remark 2. The additional term in (3.1), which follows multiplied by the characteristic
function χω, comes out from the contribution of the shape functional itself that is given by
integral over the moving domain Ω. This term represents the main theoretical contribution
with respect to [12], where the shape functional is concentrated far from the design domain.

The goal of this work is to find a nanodevice in which the energy of the system is
maximized in ω. Therefore, from (2.4), we define the energy-shape functional to be
minimized as

J (E) = −
∫
ω

k2
0n

2‖E‖2dx. (3.5)

According to Theorem 1, the topological derivative of J (E) defined in (3.5), with
respect to the nucleation of a small inclusion endowed with different refractive index from
the background, is given by

DT J (E)(x) = −DT U(ω)(x). (3.6)

4. Topology Design Algorithm

Following the original ideas introduced by Amstutz & Andrä [18], in this section we
present a topology design algorithm based on the topological derivative of the energy-
shape functional combined with a level-set domain representation method for solving the
optimization problem we are dealing with. Therefore, let Ψ : Ω 7→ R be a level-set
function of the form {

Ψ(x) < 0, if x ∈ Ω1,

Ψ(x) > 0, if x ∈ Ω2.
(4.1)

We define the steepest descent direction g as

g(x) :=

{
−DT J (E)(x), if Ψ(x) < 0,

+DT J (E)(x), if Ψ(x) > 0.
(4.2)

where DT J (E) is given by (3.6). Then, g can be written as

g(x) = −(n2
1 − n2

2)k2
0(‖E(x)‖2χω(x) + <{E(x) · V (x)}). (4.3)
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The angle θ between the level-set function Ψ and the descent direction g is given by

θ = arccos

[ 〈g,Ψ〉L2(Ω;Rd)

‖g‖L2(Ω;Rd)‖Ψ‖L2(Ω;Rd)

]
, (4.4)

so that θ = 0 represents a local optimality condition, which has been rigorously derived
in [19].

From these elements, a topology optimization algorithm can be devised. In particular,
for a generic iteration j ∈ N, the updated level-set function is governed by the following
equation derived in [18, Section 3.2] with the help of Euler’s scheme on a sphere and
trigonometric formulas:

Ψj+1 =
1

sin θj

[
sin((1− k)θj)Ψj + sin(kθj)

gj
‖gj‖L2(Ω;Rd)

]
, (4.5)

where k is a step size determined by a line-search procedure in order to decrease the
value of the shape functional. The algorithm is initialized by setting Ψ0 = −1 or Ψ0 = 1
for the whole optimization region, or any spatial distribution of these two values. The
process ends when the condition θj < εθ is satisfied at some iteration j, where εθ is
a given small numerical tolerance. If k is found to be smaller then a given numerical
tolerance εk and the local optimality condition is not yet satisfied, namely θj > εθ, then
a mesh refinement of the domain is carried out in order to increase the set of possible
local minima. At this stage, the level-set defined in the coarse mesh is mapped to the
new refined mesh by using standard interpolation of the element shape functions and
the process is continued. The material properties n1 or n2 are assigned to elements of
the mesh depending on whether they are at points with Ψj(x) < 0 (Si) or Ψj(x) > 0
(SiO2). The elements eventually crossed by the phase interface (defined by Ψj(x) = 0)
will have value n1 by choice. Obviously, according to the above procedure, the resolution
of the optimal material distribution depends directly on the fineness of the adopted mesh.
The overall optimization procedure is conveniently summarized in pseudo-code format in
Algorithm 1.

It is important to highlight that the topological derivative was specifically designed
to deal with shape and topology optimization problems in which black/white solutions
are required. In contrast to traditional topology optimization methods, the topological
derivative formulation does not require a material model concept based on intermediary
densities, so that interpolation schemes are unnecessary. These features are crucial in the
design of nanophotonic devices, since the limitations arising from material model proce-
dures are here naturally avoided. Specifically in this context, the decent direction g(x)
from (4.3) is continuous on the interface between Ω1 and Ω2 where the level-set function
vanishes (Ψ(x) = 0), so that no any special treatment is needed. In addition, the topo-
logical derivative has the advantage of providing an analytical form for the topological
sensitivity, which allows one to obtain the optimal design in a few iterations. There-
fore, the resulting topology optimization procedure summarized through Algorithm 1 is
remarkably efficient and of simple computational implementation, since it features only
a minimal number of user-defined algorithmic parameters. On the other hand, with the
algorithm being based on a gradient descent approach, it is not possible to make guaran-
tees regarding the global optimality of any outcomes, which will depend upon the chosen
initial guess. Nonetheless, the outcome is guaranteed to be a local optimum of the shape
functional for a sufficiently refined mesh [19].
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Algorithm 1: The topology design algorithm

Input: Ω, Ψ0, εk, εθ
Output: Ω?

1 begin
2 j ← 0;
3 Ωj ← Ψj;
4 compute the shape functional J (E) from (3.5);
5 compute the topological derivative DT J (E) according to (3.6);
6 compute the steepest descent direction g from (4.2);
7 compute θ according to (4.4);
8 Ψold ← Ψj; Jold ← J (E); Jnew ← 1 + Jold; k ← 1; θold ← θ;
9 while Jnew > Jold do

10 compute Ψnew according to (4.5);
11 Ψj ← Ψnew;
12 execute lines 3 and 4;
13 Jnew ← J (E);
14 k ← k/2;
15 end
16 if k < εk then
17 refine the mesh;
18 Ψj+1 ← Ψj; j ← j + 1;
19 go to line 3;
20 else
21 if θ > εθ then
22 Ψj+1 ← Ψj; j ← j + 1;
23 go to line 3;
24 else
25 return Ω? ← Ψj;
26 end
27 end
28 end

5. Numerical Experiments

In this section we present a set of numerical experiments showing different features
of the proposed approach. The wavelength is given by λ = 1.55 µm, which implies a
frequency of 193.4 GHz. For each example, the refractive indices of Si and SiO2 are set
as n1 = 2.847 and n2 = 1.444, respectively. The silicon index represents an effective
slab approximation for the 2D simulation of a 3D structure considering a 220 nm thick
silicon layer surrounded by silicon dioxide and operating in the quasi-transverse electric
mode [2]. For initial guess we consider the optimization domain Ω composed only by
SiO2 or only by Si. Since standard Galerkin method is used to discretize the BVPs, the
finite elements mesh is constructed in such a way that the Ihlenburg-Babuška condition is
fulfilled [20]. The PML layer has 1.0 µm of width. We also consider horizontal symmetry
condition. Finally, we set εθ = 1° as the threshold for the numerical optimality condition.
All numerical experiments were implemented in Matlab [21].

5.1. Example 1. In this example, the domain B is given by a rectangle of size 6.0 µm×
4.5 µm. The optimization domain Ω is given by a square of size 2.5 µm× 2.5 µm, centred



7

at the point (3.75, 0). The waveguide has 0.45 µm of width and 2.5 µm of length. The
source is given by

Q = i exp

(
− ‖x‖

2

0.01λ2

)
e2, (5.1)

where i is the complex unit, λ is the wave length and e2 is the canonical basis vector in
the vertical direction. Finally, the target domain ω is given by a circle with 272.2 nm of
radius located at the center of Ω. See sketch in Figure 2.

D

B
Ω

ω

e2

e1

Figure 2. Example 1. The wave guide made of Si appears in grey, the
SiO2 is represented by the white region and the PML is patterned. The
black dot represents the pole of the Gaussian source distribution and the
target ω is represented by a dotted circle.

We start by setting Ψ0 = 1 as initial guess (SiO2). The energy density distributions are
presented in Figures 3(a) and 3(b) for the initial and final configurations, respectively. The
optimality condition has been reached at iteration 27, and the obtained topology is shown
in Figure 4. The topology shows interesting features that resemble a resonator surounded
by a dielectric grating, which is a traditional reflective structure created by alternating
layers of two dielectric materials. At the same time, on the input side, the structure seems
to partially change in order to favor the energy transport from the waveguide to the ω
region through a segmented waveguide (waveguide/grating hybrid).

(a) initial energy density (b) final energy density

Figure 3. Example 1. Initial guess given by SiO2: Energy density distri-
butions. The target domain ω follows highlighted in solid blue line.

Now we consider Ψ0 = −1 as initial guess (Si). Figures 5(a) and 5(b) show the initial
and final energy density distributions, respectively. The resulting topology is presented in
Figure 6, which shares many features with the previous result despite the opposite initial
guess.
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Figure 4. Example 1. Initial guess given by SiO2: Resulting topology
mirrored horizontally.

(a) initial energy density (b) final energy density

Figure 5. Example 1. Initial guess given by Si: Energy density distribu-
tions. The target domain ω follows highlighted in solid blue line.

Figure 6. Example 1. Initial guess given by Si: Resulting topology mir-
rored horizontally.

Finally, the histories of the angle θ and the energy evaluated in ω during the iterative
process for both examples are presented in Figure 7, where we can see that the optimality
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condition, in this case, has been reached at iteration 24. Table 1 shows a summary of the
obtained results, including the number of iterations and the final energy evaluated in ω
for the two experiments, with the result for the first only 23% below the second.
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0.5

1

1.5

2
10-3

0

50

100

150

200

Figure 7. Example 1. Histories of the angle θ and energy evaluated in ω
during the iterative process.

Table 1. Example 1. Number of iterations and final obtained energy
evaluated in ω.

Ψ0 # iterations U(ω)
+1 27 1.5215× 10−3

−1 24 1.9764× 10−3

5.2. Example 2. In this example, the domain B is given by a rectangle of size 7.1 µm×
4.5 µm. The optimization domain Ω is given by a square of size 2.5 µm× 2.5 µm, centred
at the point (3.85, 0). The waveguide has 0.5 µm of width and 4.0 µm of length, divided
in two parts as shown in Figure 8. The source Q is uniformly distributed over the vertical
line Γ of height h = 0.4 µm and centre at (0.6, 0), namely

Q = iδΓe2, (5.2)

where i is the complex unit, e2 is the canonical basis vector in the vertical direction and δΓ

is used to denote the Dirac delta-function concentrated on Γ. Finally, the target domain
ω is given by a circle with 272.2 nm of radius located at the center of Ω. See again Sketch
in Figure 8.

We start by setting Ψ0 = −1 as initial guess (Si). The initial and final energy density
distributions for this example are shown in Figures 9(a) and 9(b), respectively. The
resulting topology is presented in Figure 10. The optimality condition has been reached
at iteration 6.

It is interesting to note that the existence of a second waveguide to the right of the
domain does not change the resulting topology significantly when compared to the first
examples: we can still identify a grating-like structure to the right of ω and a hybrid
waveguide/grating to the left. In practice, the grating structure isolates the region ω from
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Figure 8. Example 2. The wave guide made of Si appears in grey, the
SiO2 is represented by the white region and the PML is patterned. The
vertical line in black represents the region Γ where the source Q is uniformly
distributed and the target ω is represented by a dotted circle.

(a) initial energy density (b) final energy density

Figure 9. Example 2. Initial guess given by Si: Energy density distribu-
tions. The target domain ω follows highlighted in solid blue line.

Figure 10. Example 2. Initial guess given by Si: Resulting topology
mirrored horizontally.
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the second waveguide, as can be seen in the energy density distribution in Figure 9(b),
justifying the little impact it has in the final topology.

It is well known that there is a lack of sufficient optimality conditions for such topology
optimization problems [22], so that the final solution may strongly depend on the initial
guess or any heuristic used in the minimization process. Therefore, in order to enforce the
algorithm to land in some possible better local minimum, we impose a volume constraint
of 25% over silicon material. Figure 11 and 12 show the final energy density distribution
and the resulting topology. The optimality condition has been reached at iteration 21.
By comparing Figures 9(b) and 11, we note a slice improvement on the obtained solution.

Figure 11. Example 2. Volume-constrained case: Final energy density
distribution. The target domain ω follows highlighted in solid blue line.

Figure 12. Example 2. Volume-constrained case: Resulting topology mir-
rored horizontally.

Now, we set Ψ0 = 1 as initial guess (SiO2). The energy density distributions are
presented in Figures 13(a) and 13(b) for the initial and final configurations, respectively.
The obtained topology is shown in Figure 14. The optimality condition has been reached
after 20 iterations.

The histories of the angle θ and the energy evaluated in ω during the iterative process
are presented in Figure 15. Finally, a summary of the obtained results is reported in
Table 2, showing the number of iterations and the final obtained energy evaluated in ω
for the three experiments. Together with the results from the first example, these results
are an evidence of the abundance of local optima in the design of nanophotonic energy
concentrators. This is indicative that the method should be successful even with the
inclusion of further restrictions, such as fabrication constraints.
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(a) initial energy density (b) final energy density

Figure 13. Example 2. Initial guess given by SiO2: Energy density dis-
tributions. The target domain ω follows highlighted in solid blue line.

Figure 14. Example 2. Initial guess given by SiO2: Resulting topology
mirrored horizontally.
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Figure 15. Example 2. Histories of the angle θ and energy evaluated in
ω during the iterative process. ∗Volume-constrained case.
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Table 2. Example 2. Number of iterations and final obtained energy
evaluated in ω. ∗Volume-constrained case.

Ψ0 # iterations U(ω)
−1 6 6.7590× 10−2

−1∗ 21 1.4412× 10−1

+1 20 1.2546× 10−1

5.3. Example 3. In this example, the model problem is the same as the one described
in Section 5.1, but the target domain ω is now given by two disjoints balls ω1 and ω2

according to the sketch in Figure 16.

D

B
Ω ω1

ω2

e2

e1

Figure 16. Example 3. The wave guide made of Si appears in grey, the
SiO2 is represented by the white region and the PML is patterned. The
black dot represents the pole of the Gaussian source distribution and the
target ω = ω1 ∪ ω2 is represented by two dotted circles.

We consider Ψ0 = −1 as initial guess (Si). Figures 17(a) and 17(b) show the initial
and final energy density distributions, respectively. The optimization process has stopped
at iteration 89 with θ = 6.8◦, and the resulting topology is presented in Figure 18. In
particular, the history of the energy evaluated in ω during the iterative process is presented
in Figure 19.

(a) initial energy density (b) final energy density

Figure 17. Example 3. Initial guess given by Si: Energy density distri-
butions. The target domain ω follows highlighted in solid blue line.

In this case, the final topology shows interesting features that depart from the previous
ones. Because the energy concentration regions are at the edge and partially outside the
optimization domain, we do not see the same grating-like reflectors as clearly as before.
On the other hand, the guiding structures are more pronounced, seen as they must guide
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Figure 18. Example 3. Initial guess given by Si: Resulting topology
mirrored horizontally.
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Figure 19. Example 3. History of the energy evaluated in ω during the
iterative process.

the incoming light through a curved path. Furthermore, the initial portion of the structure
seems to act as a power splitter, dividing the input power among both target regions.

6. Conclusions

In this paper, a novel approach for topology design optimization of nanophotonic device
has been proposed. The forward problem is governed by Maxwell’s equations in the
frequency domain. The central idea consists in maximizing the electric energy within a
small region of the nanodevice, with respect to the Si and SiO2 spatial distribution. The
topological asymptotic expansion of the shape functional, with respect to the nucleation
of a small inclusion endowed with different material property from the back ground, has
been rigorously derived. The resulting topological derivative has been used to devise a
topology design algorithm based on a level-set domain representation method. Finally,
a number of numerical experiments has been presented, showing different features of the
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proposed approach, including its capability in producing energy-density hot-spots within
the target domain, allowing to maximize the energy in these regions, as expected. In
practice, fabrication constrains have to be considered together with design of the nano
structures to enable manufacturing using current lithography technology, so that further
developments are still required.
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Appendix A. Proof of the main result

In this appendix, the proof of the main result of the paper reported in Theorem 1 is
presented. Following the topological derivative method, let us introduce a topological
perturbation confined in a small region Bε(x0) ⊂ Ω of size ε and center at x0 ∈ Ω of the
form

γε(x) =

{
γ(x), x ∈ Bε(x0),

1, otherwise
(A.1)

where γ(x) is defined in (3.4). Then the topologically perturbed counterpart of problem
(2.1) is stated as: Find Eε ∈ V such that∫

D

(
∇× Eε · ∇ ×W − γ2

ε k
2
0n

2Eε ·W
)
dx =

∫
D
Q ·Wdx, ∀W ∈ V . (A.2)

From these elements, we can state an auxiliary result concerning the existence of the
topological derivative for the problem we are dealing with.

Lemma 3. Let E and Eε be the solutions of the variational problems (2.1) and (A.2),
respectively. Then, the following a priori estimate holds true:

‖Ẽε‖Hcurl(D;Cd) ≤ Cε
d
2

+δ, (A.3)

where C is a constant independent of the small parameter ε and 0 < δ < 1.

Proof. The proof of this result can be found in [12]. �

Hence, the perturbed counterpart of the electric energy defined in (2.4) is given by:

Uε(ω) =

∫
ω

k2
0n

2‖Eε‖2dx+

∫
Bε

(γ2 − 1)k2
0n

2‖Eε‖2χωdx, (A.4)

where χω is the characteristic function of the region ω. The solution Eε ∈ V to the
variational problem (A.2) can be decomposed as

Eε = E + Ẽε. (A.5)

By replacing (A.5) into (A.4), we obtain:

Uε(ω)− U(ω) =

∫
Bε

(γ2 − 1)k2
0n

2‖E‖2χω + 2

∫
ω

k2
0n

2<{E · Ẽε}dx+
2∑
i=1

Ei(ε), (A.6)
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where

E1(ε) =

∫
ω

k2
0n

2‖Ẽε‖2dx, (A.7)

E2(ε) =

∫
Bε

(γ2 − 1)k2
0n

2(2<{E · Ẽε}+ ‖Ẽε‖2)χωdx. (A.8)

The above remainders can be bound by using Lemma 3 as follows:

|E1(ε)| ≤ ‖Ẽε‖2
Hcurl(D;Cd) ≤ Cεd+2δ = o(εd), (A.9)

|E2(ε)| ≤ Cε
d
2‖Ẽε‖L2(Bε;Cd) ≤ Cε

d
2

+δ‖Ẽε‖Hcurl(D;Cd) ≤ Cεd+δ = o(εd). (A.10)

We can rewrite (A.2) by using the definition for the contrast (A.1) in the following form∫
D

(∇×Eε · ∇×W − k2
0n

2Eε ·W )dx =

∫
Bε

(γ2 − 1)k2
0n

2Eε ·Wdx+

∫
D
Q ·Wdx. (A.11)

Then, after subtracting (2.1) from (A.11) we obtain∫
D

(∇× Ẽε · ∇ ×W − k2
0n

2Ẽε ·W )dx =

∫
Bε

(γ2 − 1)k2
0n

2Eε ·Wdx. (A.12)

Now by setting W = Ẽε in (3.3) and W = V in (A.12) we have∫
D

(∇× Ẽε · ∇ × V − k2
0n

2Ẽε · V )dx = 2

∫
ω

k2
0n

2E · Ẽεdx (A.13)∫
D

(∇× Ẽε · ∇ × V − k2
0n

2Ẽε · V )dx =

∫
Bε

(γ2 − 1)k2
0n

2Eε · V dx. (A.14)

From the symmetry of both bilinear forms and after taking the real part of the above
equalities, the following important result holds true:∫

Bε

(γ2 − 1)k2
0n

2<{Eε · V }dx = 2

∫
ω

k2
0n

2<{E · Ẽε}dx. (A.15)

Therefore, we can rewrite (A.6) as

Uε(ω)− U(ω) =

∫
Bε

(γ2 − 1)k2
0n

2‖E‖2χωdx+

∫
Bε

(γ2 − 1)k2
0n

2<{Eε · V }dx+
2∑
i=1

Ei(ε).

(A.16)
After replacing Eε by E + Ẽε according to (A.5), we obtain

Uε(ω)− U(ω) =

∫
Bε

((γ2 − 1)k2
0n

2‖E‖2χω)(x0)dx

+

∫
Bε

((γ2 − 1)k2
0n

2<{E · V })(x0)dx+
5∑
i=1

Ei(ε), (A.17)

where

E3(ε) =

∫
Bε

(γ2 − 1)k2
0n

2<{Ẽε · V }dx (A.18)

E4(ε) =

∫
Bε

[((γ2 − 1)k2
0n

2E · V )(x)− ((γ2 − 1)k2
0n

2<{E · V })(x0)]dx (A.19)

E5(ε) =

∫
Bε

[((γ2 − 1)k2
0n

2‖E‖2χω)(x)− ((γ2 − 1)k2
0n

2‖E‖2χω)(x0)]dx (A.20)



17

Now, we can bound the remainders (A.18)–(A.20) as follows. By using Lemma 3, the
remainder E3(ε) can be bound as

|E3(ε)| ≤ Cε
d
2‖Ẽε‖L2(Bε;Cd) ≤ Cε

d
2

+δ‖Ẽε‖Hcurl(D;Cd) ≤ Cεd+δ = o(εd). (A.21)

From the Cauchy-Schwartz inequality and by taking into account the interior elliptic
regularity of functions E and V , the remainders E4(ε) and E5(ε) are bounded as

|E4(ε)| ≤ Cεd+1 = o(εd) (A.22)

|E5(ε)| ≤ Cεd+1 = o(εd) (A.23)

Finally, the topological asymptotic expansion of Uε(ω) is written as follows:

Uε(ω)− U(ω) = |Bε|(γ2 − 1)k2
0n

2(‖E‖2χω + <{E · V })(x0) + o(εd), (A.24)

which allows for promptly identifying the leading term of order O(εd).
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