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Abstract. In this paper, a noniterative method for solving an inverse source problem
governed by the two-dimensional time-fractional diffusion equation is proposed. The
basic idea consists in reconstructing the geometrical support of the unknown source
from partial boundary measurements of the associated potential. A Kohn-Vogelius type
shape functional is considered together with a regularization term penalizing the relative
perimeter of the unknown set of anomalies. Identifiability result is derived and unique-
ness of a minimizer is ensured. The shape functional measuring the misfit between the
solutions of two auxiliary problems containing information about the boundary measure-
ments is minimized with respect to a finite number of ball-shaped trial anomalies by using
the topological derivative method. In particular, the second-order topological gradient
is exploited to devise an efficient and fast noniterative reconstruction algorithm. Finally,
some numerical experiments are presented, showing different features of the proposed ap-
proach in reconstructing multiple anomalies of varying shapes and sizes by taking noisy
data into account.

1. Introduction

Inverse problems of time-fractional differential equations have attracted great attention
from many researchers, particularly in recent years because of their role in many practical
domains, which are used in modeling several phenomena in different areas of science such
as biology [21, 43], chemistry [62, 63], mechanics [39, 47], physics [64], economy [46],
environment [65], and control theory [41]. See also [42] and references therein.

In this paper, we analyze an inverse source problem governed by the two-dimensional
time-fractional diffusion equation of order α ∈ (0, 1). The aim is to reconstruct the spatial
component (with an unknown support) present in the source term of a time-fractional
diffusion equation from the knowledge of partial boundary measurements. This kind of
inverse problems arises, for example, in anomalous diffusion phenomena in heterogeneous
media. More precise and detailed information concerning this problem can be found in
[48].

There are several works treating the reconstruction of the spatial component in the
source term of a time-fractional diffusion equation from an internal observation data, or
final overdetermining data, or total/partial boundary measurements. Sakamoto and Ya-
mamoto discussed in [49] an inverse problem of determining a spatially varying function
of the source by final overdetermining data, while Wang et al., in [55], used a reproduc-
ing kernel space method to solve an inverse space-dependent source problem from the
final observation data. Then, Wei and Wang, in [57, 58], proposed a modified quasi-
boundary value method for identifying the space-dependent source term with the help
of final observation data. Wang et al., in [54], used the Tikhonov regularization method
and a simplified Tikhonov regularization method to solve the inverse space-dependent
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problem and established the convergence estimates. The unique recovery of the space-
dependent source by interior observation was proved in [29, 30] using Duhamel’s principle
and unique continuation principle, which also gave an iterative reconstruction algorithm.
In [66], Zhang and Xu proposed a numerical method to determine the space-dependent
source term from the Cauchy data at one end of a one-dimensional domain. More recently,
in [48], Rundell and Zhang determined a source which is supported in a geometrical do-
main from external boundary measurements. On the other hand, the classical parabolic
case (i.e. α = 1) has been studied by many authors [20, 22, 26]. Similar inverse problems
arise from many important applications and have received considerable recent attention.
The reconstruction of the time-dependent source term or coefficient in the time-fractional
diffusion equation is one such problem, see for instance [12, 37, 50, 56, 59, 61].

In most of the works mentioned above, the proposed reconstruction approaches are
based on iterative algorithms. In the present paper, we address the problem of multiples
anomalies reconstruction from partial boundary measurements with the help of a nonit-
erative method. The proposed approach is based on the Kohn-Vogelius formulation and
the topological derivative method [44]. More precisely, we aim to reconstruct an unknown
space-dependent source term which is supported in ω∗ ⊂ Ω, where Ω ⊂ R2 with boundary
∂Ω, from a partial boundary measurement of the associated potential on the boundary
Σ ⊂ ∂Ω. In order to overcome the ill-posedness, the considered inverse problem is re-
formulated as a self-regularized topology optimization one where the mass distribution
is the unknown variable. The considered misfit function contains two main terms. The
first one is defined by a Kohn-Vogelius type functional measuring the misfit between the
solutions of two auxiliary problems containing information about the boundary measure-
ments. The second one involves a regularization term penalizing the relative perimeter
of the unknown domains. To reconstruct the location, size, shape and number of the
mass density distributions in the geometrical domain Ω, an asymptotic expansion of the
Kohn-Vogelius functional with respect to a finite number of ball-shaped trial anomalies is
computed using the topological derivative method. The second-order topological gradient
is exploited to develop an efficient and fast noniterative reconstruction algorithm.

The rest of this paper is organized as follows. Section 2 states the inverse source
problem. In Section 3, the considered inverse problem is rewritten in the form of a
topology optimization one, which consists of minimizing a Kohn-Vogelius type functional
with respect to a set of ball-shaped anomalies. While in Section 4, we present some
theoretical results concerning uniqueness of the inverse problem and the considered opti-
mization problem. Then, in Section 5, we derive a second-order asymptotic expansion of a
Kohn-Vogelius type functional with respect to a finite number of circular anomalies. The
resulting reconstruction method is presented in Section 6, together with the associated
reconstruction algorithm. In Section 7, we present numerical examples that demonstrate
the effectiveness of the devised reconstruction algorithm. Finally, the paper ends with
some concluding remarks in Section 8.

2. Problem statement

Let Ω be an open bounded domain in R2 with sufficiently smooth boundary ∂Ω. We as-
sume that the diffusion process in Ω is governed by the following time-fractional boundary
value problem  ∂αt u−∆u+ u = F ∗ in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),
u(., 0) = 0 in Ω,

(2.1)

where u represents the concentration for the diffusion process, T > 0 is a given fixed final
time, and ∂αt denotes the Caputo fractional left derivative of order 0 < α < 1 with respect
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to t and is defined by (see, e.g., [33, p.91])

∂αt u(x, t) :=
1

Γ(1− α)

∫ t

0

(t− τ)−α
∂u

∂τ
(x, τ)dτ, (2.2)

where Γ denotes Euler’s Gamma function, which is defined on each complex number z ∈ C
with positive real part (i.e. R{z} > 0), by

Γ(z) =

∫ ∞
0

sz−1e−sds. (2.3)

The Caputo derivative is of use to modeling phenomena which takes account of interac-
tions within the past and also problems with non-local properties. In this sense, one can
think of the equation as having “memory”. Generally, from a physical view-point the
fractional diffusion equation is obtained from a fractional Fick law which describes trans-
port processes with long memory, see, e.g., [19] and the references therein. Particularly,
in the current paper, the model (2.1) represents a so-called anomalous diffusion process
generalizing classical, Brownian diffusion based on the heat equation (see, e.g., [48]).

Note that if α tends to 1, the fractional derivative ∂αt tends to the classical first-order
derivative ∂tu, and thus the corresponding solution u of the model (2.1) converges to the
solution of a parabolic diffusion equation [24, p. 68].

In this work, we assume that the source term F ∗, in the governing equation (2.1), is
unknown and must be reconstructed from a partial measurement of boundary data. It is
well known that the boundary measurement is insufficient to uniquely determine a general
source F ∗ (see, e.g., [31, Section 1.3.1]), and additional assumptions have to be imposed in
order to restore unique recovery. To overcome this difficulty, in this work, we assume that
the source term F ∗ receives contribution from space and time variables in a decomposed
format. More precisely, we aim to determine an unknown source of the form

F ∗(x, t) = f ∗(x)µ(t), (2.4)

where f ∗ is a space-dependent source magnitude function whereas µ denotes the attenu-
ation factor with time in the diffusion phenomena.

Keeping the above points in mind, in this article, we are interested in studying the
following inverse source problem.

Inverse problem. Let µ be a given non-null function in C1([0, T ]) satisfying µ(0) 6= 0
and Σ ⊂ ∂Ω be an arbitrary open subset of ∂Ω with non zero measure. Assume that
the spatial component f ∗ is supported in an unknown sub-domain ω∗ ⊂ Ω; i.e. f ∗ = χω∗

where χω∗ is the characteristic function of ω∗. The inverse problem, we investigate in this
paper, is about determining the location and shape of the spatial component f ∗ = χω∗

from the additional inversion input data

ϕ(x, t) = ∂νu(x, t), (x, t) ∈ Σ× (0, T ), (2.5)

where ν is the outward unit normal vector to ∂Ω.

Remark 1. The boundary data ϕ for which this problem has a solution f ∗ are said to be
compatible.

To address this inverse problem, in the current article, we develop an alternative ap-
proach based on the Kohn-Vogelius formulation and the second-order topological deriva-
tive concept.

3. Optimization problem

In this section, we exploit the Kohn-Vogelius formulation and formulate our inverse
source problem as an optimization one. To this end, we first introduce the set of the
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admissible sources terms. It contains the characteristic functions having the form

A(Ω) = {χω : Ω 7→ R | ω ⊂ Ω is a Lebesgue measurable set}. (3.1)

The Kohn-Vogelius formulation rephrases the inverse problem into a topological op-
timization one. In fact, this formulation leads to define two auxiliary problems for any
given admissible space-dependent source χω ∈ A(Ω).

• The first one is called the “Dirichlet problem”: Find uD(ω), such that ∂αt uD(ω)−∆uD(ω) + uD(ω) = χω µ in Ω× (0, T ),
uD(ω) = 0 on ∂Ω× (0, T ),

uD(ω)(., 0) = 0 in Ω.
(3.2)

• The second one is called the “Neumann problem”: Find uN(ω), such that
∂αt uN(ω)−∆uN(ω) + uN(ω) = χω µ in Ω× (0, T ),

uN(ω) = 0 on (∂Ω \ Σ)× (0, T ),
∂νuN(ω) = ϕ on Σ× (0, T ),

uN(ω)(., 0) = 0 in Ω.

(3.3)

These problems assume that the medium is big enough so that the potential decays to
zero on the portion of the boundary that is not measured (∂Ω \Σ). The solution to (2.1),
due to the uniqueness of the traces of uD(ω) and uN(ω) on Σ× (0, T ), is:

If χω = χω∗ ⇒ uD(ω) = uN(ω), (3.4)

where ω∗ is spacial support of unknown source which is the solution of inverse problem,
we are dealing with. According to this observation, we find the solution by formulating
the inverse problem as a topology optimization problem which minimizes the so-called
Kohn–Vogelius functional in the set of admissible sources (3.1):

Minimize
χω∈A(Ω)

Jρ(χω), (3.5)

where the shape functional Jρ(χω) is defined as

Jρ(χω) := J (uD(ω), uN(ω)) =

∫ T

0

(∫
Ω

|∇(uD(ω)− uN(ω))|2dx
)

dt+ ρPer(ω). (3.6)

Moreover, ρ > 0 is a regularization parameter and Per(ω) denotes the relative perimeter
of ω in Ω which is defined as

Per(ω) = sup
{∫

ω

div φ
∣∣∣ φ ∈ C1

c (Ω)2, |φ(x)|∞ ≤ 1, x ∈ Ω
}
, (3.7)

with | · |∞ denotes the `∞-norm in R2, defined by |x|∞ = max1≤j≤2 |xj| and C1
c (Ω) is the

space of continuously differentiable functions with compact support in Ω. Furthermore,
if Per(ω) < ∞, we say that ω has finite perimeter in the domain Ω. In this case, the
relative perimeter of ω coincides with the total variation of the distributional gradient of
the characteristic function of ω, namely: Per(ω) = |∇χω|(Ω).

For the sake of completeness of this section, let us briefly browse the history of this
kind of cost function. Its main idea was introduced in 1985 by Wexler et al. [60] where a
procedure to detect the unknown impedance from boundary measurements was proposed.
While, in 1987, Kohn and Vogelius [35] suggested a modification in Wexler’s procedure to
present it as an alternating choice by proposing a new misfit gap-cost functional. In 1990,
this formulation was first used for the numerical implementation of inverse conductivity
problems by Kohn and Mackenney [34] and then generalized to several other inverse
problems [1, 9, 10, 25].
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4. Mathematical analysis

This section is concerned with a mathematical analysis of the considered inverse prob-
lem. We will present two main theoretical results. The first one is devoted to the iden-
tifiability issue related to the inverse problem. The second one is concerned with the
existence and uniqueness of an optimal solution of the optimization problem (3.5). We
start our analysis by introducing some definitions as well as some useful results.

4.1. Notations and preliminary results. Let AC([0, T ]) be the space of functions v
which are absolutely continuous on [0, T ]. For 1 ≤ p < ∞, let Lp(Ω), H1

0 (Ω), H1(Ω),
and H2(Ω) be the usual classical Lebesgue and Sobolev spaces. By Hα(0, T ) we mean
the fractional Sobolev space on the interval (0, T ) (see Adams [2, Chapter VII]). For the
solution regularity of problems (3.2) and (3.3), we define the fractional Sobolev spaces

0H
α(0, T ) as

0H
α(0, T ) =


Hα(0, T ), if 0 < α < 1/2,{
g ∈ H1/2(0, T ) :

∫ T

0

|g(t)|2

t
dt <∞

}
, if α = 1/2,{

g ∈ Hα(0, T ) : g(0) = 0
}
, if 1/2 < α < 1.

In a Banach space Y , we denote the weak convergence of a sequence {Xn}n≥1 to X by

Xn ⇀ X in Y as n→∞.
Now, we need some auxiliary results, which will be used in the sequel.

Definition 2. (see [33]). Let g ∈ L2(0, T ), then for α > 0 the Riemann-Liouville integral
operator Iα0+ and the backward Riemann-Liouville integral operator IαT− are defined by

Iα0+g(t) =
1

Γ(α)

∫ t

0

(t− τ)α−1g(τ)dτ, 0 < t ≤ T, (4.1)

and

IαT−g(t) =
1

Γ(α)

∫ T

t

(t− τ)α−1g(τ)dτ, 0 < t ≤ T. (4.2)

Moreover, the Caputo derivative ∂αt can be rewritten as

∂αt g(t) = I1−α
0+ g′(t), 0 < t ≤ T. (4.3)

Lemma 3. Let g ∈ L2(0, T ), for α, γ > 0 we have

(Iα0+o I
γ
0+)g(t) = (Iγ0+o I

α
0+)g(t) = Iα+γ

0+ g(t). (4.4)

Proof. See Lemma 1.3(iv) in [36]. �

On the basis of [49, Theorem 2.1(i)] and [17, Proposition 5.2], we give the unique
continuation result as follows:

Lemma 4. For given a(x) ∈ L2(Ω) and Σ is a nonempty part of ∂Ω, let v be the solution
to the following fractional diffusion equation with the homogeneous Dirichlet boundary
condition: ∂αt v(x, t)−∆v(x, t) + v(x, t) = 0, (x, t) ∈ Ω× (0, T ),

v(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),
v(x, 0) = a(x), x ∈ Ω.

(4.5)

Then problem (4.5) admits a unique solution v ∈ C ([0, T ];L2(Ω))∩C ((0, T ];H2(Ω) ∩H1
0 (Ω)) .

Moreover,

∂νv = 0 on Σ× (0, T ) implies v = 0 in Ω× (0, T ).



6

Lemma 5. (Duhamel’s principle). Let F (x, t) = f(x)κ(t), where f ∈ L2(Ω) and κ ∈
C1[0, T ]. Let ψ be the solution to the fractional diffusion equation ∂αt ψ(x, t)−∆ψ(x, t) + ψ(x, t) = F (x, t), (x, t) ∈ Ω× (0, T ),

ψ(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),
ψ(x, 0) = 0, x ∈ Ω.

(4.6)

Then the weak solution ψ of the problem (4.6) can be represented as

ψ(·, t) =

∫ t

0

θ(t− s)ϑ(·, s)ds, 0 < t < T,

where ϑ solves the homogeneous problem ∂αt ϑ(x, t)−∆ϑ(x, t) + ϑ(x, t) = 0, (x, t) ∈ Ω× (0, T ),
ϑ(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),
ϑ(x, 0) = f(x), x ∈ Ω,

(4.7)

and θ ∈ L1(0, T ) is the unique solution to the fractional integral equation

I1−α
0+ θ(t) = κ(t), 0 < t < T.

Proof. See [38, Lemma 4.1]. �

Lemma 6. (Alikhanov inequality). For any function v(t) ∈ AC([0, T ]), one has the
inequality

1

2
∂αt v

2(t) ≤ v(t)∂αt v(t), 0 < α < 1.

Proof. The proof of this lemma can be found in [4, Lemma 1]. �

The well-posedness of the boundary value problems (3.2) and (3.3) are provided by the
following result.

Lemma 7. Let f ∈ L2(Ω) be a spatial component in the source term of the time-fractional
diffusion problems (3.2) and (3.3). Then,

(1) the Dirichlet problem (3.2) has a unique weak solution uD ∈ 0H
α(0, T ;L2(Ω)) ∩

L2(0, T ;H2(Ω)∩H1
0 (Ω))∩C([0, T ];L2(Ω)). Moreover, there exists a constant c > 0

depending on Ω, T, α, and µ such that

‖uD‖Hα(0,T ;L2(Ω)) + ‖uD‖L2(0,T ;H2(Ω)) ≤ c‖f‖L2(Ω). (4.8)

(2) for given ϕ ∈ L2(0, T ;L2(Σ)), the Neumanne problem (3.3) has a unique weak
solution uN ∈ L2(0, T ;H1(Ω)) ∩ 0H

α(0, T ;L2(Ω)). Moreover, there exist some
constants c, C > 0 such that

∂αt ‖uN‖2
L2(Ω) + c‖uN‖2

H1(Ω) ≤ C
[
‖f‖2

L2(Ω) + ‖ϕ‖2
L2(Σ)

]
. (4.9)

Proof. Based on [29, Lemma 2.4] and [49, Theorem 2.2(i)], we can obtain the existence
and uniqueness of a weak solutions of the Dirichlet problem (4.5).

Following the result of [32, Theorem 2.4], the Neumann problem (3.3) admits a unique
weak solution. Now, we prove the estimation (4.9).

By taking uN as a test function in the weak formulation of the Neumann problem (3.3),
we deduce∫

Ω

(∂αt uN)uNdx+

∫
Ω

(
|∇uN |2 + |uN |2

)
dx =

∫
Ω

µ f uNdx+

∫
Σ

ϕuNds. (4.10)
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Using Cauchy-Schwarz inequality and Trace theorem, we have∣∣∣ ∫
Ω

µ f uNdx+

∫
Σ

ϕuNds
∣∣∣

≤ c
(∫

Ω

|f |2dx
)1/2(∫

Ω

|uN |2dx
)1/2

+
(∫

Σ

|ϕ|2ds
)1/2(∫

Σ

|uN |2ds
)1/2

≤ c
[( ∫

Ω

|f |2dx
)1/2(∫

Ω

|uN |2dx
)1/2

+
(∫

Σ

|ϕ|2ds
)1/2(∫

∂Ω

|uN |2ds
)1/2]

≤ c
[( ∫

Ω

|f |2dx
)1/2(∫

Ω

|uN |2dx
)1/2

+
(∫

Σ

|ϕ|2ds
)1/2(∫

Ω

(|uN |2 + |∇uN |2)dx
)1/2]

.

(4.11)

In other hand, the Young inequality implies(∫
Ω

|f |2dx
)1/2(∫

Ω

|uN |2dx
)1/2

+
(∫

Σ

|ϕ|2ds
)1/2(∫

Ω

(|uN |2 + |∇uN |2)dx
)1/2

≤ γ1

∫
Ω

|uN |2dx+ γ2

∫
Ω

(|uN |2 + |∇uN |2)dx+ C1

∫
Ω

|f |2dx+ C2

∫
Σ

|ϕ|2ds

≤ γ

∫
Ω

(|∇uN |2 + |uN |2)dx+ C
[ ∫

Ω

|f |2dx+

∫
Σ

|ϕ|2ds
]
.

(4.12)

Now, we define 0C
1([0, T ]) = {v ∈ C1([0, T ]); v(0) = 0}. Then, from Lemma 2.2 in

Kubica et al. [36], we see that 0C1([0, T ])
0Hα(0,T )

= 0H
α(0, T ), hence we can choose un

in 0C
1[0, T ] such that

un −→ uN strongly in Hα(0, T ) as n −→ +∞.
Note that 0C

1([0, T ]) ⊂ AC([0, T ]). So, by applying the Alikhanov inequality (see Lemma
6), we obtain

1

2
∂αt u

2
n(t) ≤ (∂αt un(t))un(t). (4.13)

Since un −→ uN in Hα(0, T ), we have un(t) −→ uN(t) for almost all t ∈ (0, T ). Hence,
we get

(∂αt un(t))un(t) −→ (∂αt uN(t))uN(t) for almost all t ∈ (0, T ). (4.14)

Now, from relation (4.3) and Lemma 3 and the above convergence result, we obtain

Iα0+∂
α
t u

2
n(t) = u2

n(t) −→ u2
N(t) = Iα0+∂

α
t u

2
N(t) for almost all t ∈ (0, T ). (4.15)

Consequently, we see that

∂αt u
2
n(t) −→ ∂αt u

2
N(t) for almost all t ∈ (0, T ). (4.16)

By passing the limit n −→∞ in (4.13), from (4.14) and (4.16), we get

1

2
∂αt u

2
N(t) ≤ (∂αt uN(t))uN(t). (4.17)

Thus,
1

2
∂αt ‖uN‖2

L2(Ω) ≤
∫

Ω

(∂αt uN)uNdx. (4.18)

Finally inserting (4.11)-(4.12) and (4.18) in (4.10), we obtain the desired result. This
completes the proof. �

We provide the following lemmas which will be used in the proof of the existence of an
optimal solution to the optimization problem (3.5).
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Lemma 8. (see [29, Lemma 4.1]). For 0 < α < 1 and θ1, θ2 ∈ L2(0, T ), it holds∫ T

0

(
Iα0+θ1(t)

)
θ2(t) dt =

∫ T

0

θ1(t)
(
IαT−θ2(t)

)
dt. (4.19)

Lemma 9. (see [3, Lemma 4]). Let θ ∈ 0H
α(0, T ) ∩ C([0, T ]) and g ∈ C1([0, T ]). Then∫ T

0

(
∂αt θ
)
g dt = θ(T )I1−α

T− g(T )− θ(0)I1−α
T− g(0)−

∫ T

0

θ
(
I1−α
T− g

)′
dt. (4.20)

Lemma 10. (see [13, Theorem 6.3 in Chapter 5]). Let {On}n be a sequence of measurable
domains in Ω for which there exists a constant c > 0 such that

∀n, Per (On) ≤ c.

Then there exist a measurable set O∗ in Ω and a subsequence {Onk}k such that

χOnk → χO∗ in L1(Ω) as k →∞, (4.21)

and

Per(O∗) ≤ lim inf
k→∞

Per (Onk) ≤ c. (4.22)

4.2. Identifiability. In this section, we discuss the identifiability question related to the
considered inverse source problem. It is concerned to the well-posedness of the optimiza-
tion problem. We prove that the source f ∗ = χω∗ is uniquely determined from a partial
boundary measurement data ϕ on Σ× (0, T ). The established result is summarized in the
following theorem. The prove of this result follows similar arguments as appeared in [29].

Theorem 11. For a given µ ∈ C1([0, T ]) with µ(0) 6= 0 and Σ ⊂ ∂Ω an arbitrarily open
domain, let f ∗i = χω∗

i
∈ A(Ω), i = {1, 2} such that the solutions ui of the boundary value

problem ∂αt ui(x, t)−∆ui(x, t) + ui(x, t) = f ∗i (x)µ(t), (x, t) ∈ Ω× (0, T ),
ui(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),
ui(x, 0) = 0, x ∈ Ω,

(4.23)

satisfy

∂νu1 = ∂νu2 = ϕ on Σ× (0, T ); (4.24)

then f ∗1 = f ∗2 = f ∗; i.e ω∗1 = ω∗2 = ω∗.

Proof. Consider the difference W2,1 := u2 − u1, which is the solution to ∂αt W2,1(x, t)−∆W2,1(x, t) +W2,1(x, t) = (f ∗2 (x)− f ∗1 (x))µ(t), (x, t) ∈ Ω× (0, T ),
W2,1(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),
W2,1(x, 0) = 0, x ∈ Ω.

From Lemma 5, W2,1 has the representation

W2,1(x, t) =

∫ t

0

θ(t− τ)ϑ(x, τ)dτ, (x, t) ∈ Ω× (0, T ), (4.25)

where ϑ solves the homogeneous problem ∂αt ϑ(x, t)−∆ϑ(x, t) + ϑ(x, t) = 0, (x, t) ∈ Ω× (0, T ),
ϑ(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),
ϑ(x, 0) = f ∗2 (x)− f ∗1 (x), x ∈ Ω,

(4.26)

and θ(t) ∈ L1 (0, T ) is the unique solution to the fractional integral equation

I1−α
0+ θ(t) = µ(t), 0 < t < T. (4.27)
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Differentiating two sides of equality (4.25) with respect to x ∈ Σ ⊂ ∂Ω, we obtain

∂νW2,1(x, t) =

∫ t

0

θ(t− τ)∂νϑ(x, τ)dτ, (x, t) ∈ Σ× (0, T ). (4.28)

If we apply the Riemann-Liouville integral operator to (4.28) and change the order of the
integrations, we obtain

I1−α
0+ ∂νW2,1(x, t) =

1

Γ(1− α)

∫ t

0

1

(t− τ)α

∫ τ

0

θ(τ − ξ)∂νϑ(x, ξ)dξdτ

=
1

Γ(1− α)

∫ t

0

∂νϑ(x, ξ)

∫ t

ξ

θ(τ − ξ)
(t− τ)α

dτdξ

=

∫ t

0

∂νϑ(x, ξ)
[ 1

Γ(1− α)

∫ t−ξ

0

θ(τ)

(t− ξ − τ)α
dτ
]
dξ.

In other hand, from (4.1) and (4.27), we deduce that

I1−α
0+ ∂νW2,1(x, t) =

∫ t

0

∂νϑ(x, ξ)I1−α
0+ θ(t− ξ)dξ

=

∫ t

0

µ(t− s)∂νϑ(x, s)ds.

Moreover, according to (4.24), we have ∂νW2,1 = ∂νu2 − ∂νu1 = 0 on Σ × (0, T ). Conse-
quently, ∫ t

0

µ(t− s)∂νϑ(x, s)ds = 0, x ∈ Σ.

We deduce that,

0 =
d

dt

(∫ t

0

µ(t−s)∂νϑ(x, s)ds
)

= µ(0)∂νϑ(x, t)+

∫ t

0

µ′(t−s)∂νϑ(x, s)ds on Σ×(0, T ).

Owing to the assumption that µ(0) 6= 0, the following estimate holds true for 0 < t < T

‖∂νϑ(., t)‖L2(Σ) ≤
1

|µ(0)|

∫ t

0

|µ′(t− s)| ‖∂νϑ(·, s)‖L2(Σ) ds

≤
‖µ‖C1([0,T ])

|µ(0)|

∫ t

0

‖∂νϑ(·, s)‖L2(Σ) ds.

Then, by the Gronwall’s inequality, ∂νϑ is identically null on Σ × (0, T ). Hence, thanks
to Lemma 4, we know that ϑ = 0 in Ω × (0, T ), which implies f ∗2 − f ∗1 = 0 in Ω (i.e.
ω∗1 = ω∗2). The proof is complete. �

4.3. Uniqueness of a minimizer. The aim of introducing the regularization term in
(3.6) is relevant for the existence of the optimal solution of the considered optimization
problem, which is discussed in the following theorem.

Theorem 12. For any ρ > 0 there exists a unique solution χω∗ ∈ A(Ω) of the minimiza-
tion problem (3.5), i.e.

Jρ(χω∗) ≤ Jρ(χω) for all χω ∈ A(Ω). (4.29)

Proof. The functional Jρ is bounded below by zero and hence, there exists a minimizing
decreasing sequence {χωn}n ⊂ A(Ω) such that

lim
n→∞

Jρ(χωn) = inf
χω∈A(Ω)

Jρ(χω).

W.l.o.g, we assume that Jρ (χω0) <∞. As

ρPer (ωn) ≤ Jρ (χωn) ≤ Jρ (χω0) for all n ∈ N.
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Consequently, we have

Per (ωn) ≤ Jρ (χω0)

ρ
for all n ∈ N.

Therefore, in view of Lemma 10, there exist a measurable set ω∗ ⊂ Ω and a subsequence
of {χωn}n≥1 , still denoted by {χωn}n≥1, such that

χωn −→ χω∗ in L1(Ω) as n −→∞. (4.30)

We prove that χω∗ is indeed the unique minimizer to (3.5). For each n ∈ N, let uD(ωn)
and uN(ωn) be solutions of the problems (3.2) and (3.3) with ω = ωn, (i.e. χω = χωn),
respectively. Next, we examine the convergence of the Dirichlet solution uD(ωn). The
convergence of uN(ωn) follows analogically.

From Lemma 7, we can deduce that the sequence {uD(ωn)}n≥1 is bounded in

0H
α(0, T ;L2(Ω)) ∩ L2(0, T ;H2(Ω) ∩ H1

0 (Ω)). This ensures the existence of some u∗D in

0H
α(0, T ;L2(Ω)) ∩ L2(0, T ;H2(Ω) ∩H1

0 (Ω)) and a subsequence of {uD(ωn)}n≥1, still de-
noted by {uD(ωn)}n≥1 such that

uD(ωn) ⇀ u∗D in 0H
α(0, T ;L2(Ω)) ∩ L2(0, T ;H2(Ω) ∩H1

0 (Ω)) as n −→∞. (4.31)

In the next step, we aim to show that

u∗D = uD(ω∗).

The variational formulation of (3.2) with ω = ωn implies∫ T

0

∫
Ω

(
∂αt uD(ωn)v +∇uD(ωn) · ∇v + uD(ωn)v

)
dxdt =

∫ T

0

∫
Ω

χωn µ v dxdt, (4.32)

for all v ∈ L2(0, T ;H1
0 (Ω)). Due to (4.31), it follows

∂αt uD(ωn) ⇀ ∂αt u
∗
D, ∇uD(ωn) ⇀ ∇u∗D in L2(Ω× (0, T )) as n −→∞. (4.33)

Tending n to infinity, from (4.32) one can obtain∫ T

0

∫
Ω

(
∂αt u

∗
Dv +∇u∗D · ∇v + u∗Dv

)
dxdt =

∫ T

0

∫
Ω

χω∗ µ v dxdt, (4.34)

for all v ∈ L2(0, T ;H1
0 (Ω)). Next, we shall prove u∗D(., 0) = 0, which with (4.34) and the

definition of weak solutions of (3.2) implies u∗D = uD(ω∗).
Using Lemma 7, we have uD(ωn) ∈ 0H

α(0, T ;L2(Ω)) ∩ C([0, T ];L2(Ω)) which satisfies
the assumption of Lemma 9. Therefore, by taking ϕ ∈ C1([0, T ]) with I1−α

T− ϕ(T ) = 0 and
using Lemma 9, we obtain∫ T

0

(
∂αt uD(ωn)

)
ϕ dt = −uD(ωn)(., 0)I1−α

T− ϕ(0)−
∫ T

0

uD(ωn)
(
I1−α
T− ϕ

)′
dt. (4.35)

Let θ ∈ L2(Ω) arbitrary. By multiplying the above equation with θ, then, integrating it
in space and using the fact that uD(ωn)(., 0) = 0 in Ω, we have∫

Ω

∫ T

0

(
∂αt uD(ωn)

)
ϕθ dtdx = −

∫
Ω

∫ T

0

uD(ωn)
(
I1−α
T− ϕ

)′
θ dtdx. (4.36)

If n tends to infinity, from (4.31), one can obtain∫
Ω

∫ T

0

(
∂αt u

∗
D

)
ϕθ dtdx = −

∫
Ω

∫ T

0

u∗D

(
I1−α
T− ϕ

)′
θ dtdx. (4.37)
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On other hand, we have∫
Ω

∫ T

0

(
∂αt u

∗
D

)
ϕθ dtdx = −

∫
Ω

u∗D(., 0)
(
I1−α
T− ϕ(0)

)
θ dx−

∫
Ω

∫ T

0

u∗D

(
I1−α
T− ϕ

)′
θ dtdx,

(4.38)
for any ϕ ∈ C1([0, T ]) with I1−α

T− ϕ(T ) = 0 and θ ∈ L2(Ω).
Combining (4.35) and (4.38), we obtain∫

Ω

u∗D(., 0)
(
I1−α
T− ϕ(0)

)
θ dx = 0, ∀θ ∈ L2(Ω). (4.39)

Hence,

u∗D(., 0) = 0. (4.40)

Then one can conclude that

u∗D = uD(ω∗). (4.41)

By the same way, we can prove the existence of some u∗N ∈ 0H
α(0, T ;L2(Ω))∩L2(0, T ;H1(Ω))

and a subsequence of {uN(ωn)}n≥1, still denoted by {uN(ωn)}n≥1 such that

uN(ωn) ⇀ u∗N in 0H
α(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) as n −→∞. (4.42)

Moreover, we have

u∗N = uN(ω∗).

The last part of this proof is due to the lower semi-continuity of the cost function Jρ.
Indeed, it is well known that the L2(Ω)-norm is lower semi-continuous. The lower semi-
continuity of the second term in Jρ (the perimeter function) follows from Lemma 10-(4.22).
Then, combining the lower semi-continuity of Jρ with the convergence results (4.30), (4.31)
and (4.42), one can deduce

Jρ(χω∗) ≤ lim
n→∞

inf Jρ(χωn) ≤ Jρ(χω), ∀χω ∈ A(Ω),

indicating that χω∗ is indeed a minimizer to the optimization problem (3.5). Moreover,
the uniqueness of χω∗ is readily seen from strict convexity of Jρ(χω). Thus the proof of
the Theorem is complete. �

Since the considered inverse problem has been rewritten as a topology optimization
problem (3.5), we seek to solve it by using the topological derivative method, which is
described in Section 5. In the rest of the paper, to simplify notation, we denote uD(ω)
and uN(ω) by uD and uN for the initial guess ω, respectively.

5. Sensitivity analysis

The topological derivative measures the sensitivity of a given shape function with re-
spect to a small singular topological perturbation, such as the insertion of cavities, in-
clusions, source-terms or even cracks. The topological derivative was introduced in the
field of shape optimization by Schumacher et al. [51, 14] and was for the first time math-
ematically justified in [18, 52]. Since then, this concept has been successfully applied
to solve many relevant problems such as inverse problems, topology optimization, image
processing, multi-scale constitutive modeling, fracture and damage mechanics, and many
other applications [45].

In this paper, we derive a second-order topological asymptotic expansion for the con-
sidered shape function J from (3.6) with respect to the presence of a finite number of
ball-shaped anomalies. To this end, we need to introduce some notations and useful as-
sumptions. Let n ≥ 1 be a given integer. For each 1 ≤ i ≤ n, we denote by Bεi(zi) the



12

ball of radius εi and center at zi ∈ Ω. We assume that the balls Bεi(zi) are disjoints and
strictly included inside the domain Ω; i.e.

Bεi(zi) ⊂ Ω such that Bεi(zi) ∩ Bεj(zj) = ∅, ∀i, j ∈ {1, ..., n} and i 6= j.

It is well known that the energy-like misfit function from (3.6) without the regularization
term Per(ω) (i.e. ρ = 0) have repeatedly been noticed to be self-regularizing (see, for
instance, [5, 11]), which means they don’t need an additional regularization to stabilize
the reconstruction process. Therefore, the aim of introducing the regularization term is
to prove (only) the well-posedness of the optimization problem (3.5). Hence, for the sake
of simplicity, we assume that Per(ω) < ∞ and we take ρ = |ε|5 where ε = (ε1, · · · , εn)
and |ε| = ε1 + · · · + εn. Thus, ρPer(ω) = o(|ε|4). In addition, we know that the source
term of the time-fractional diffusion problems (3.2) and (3.3) is given by

F (x, t) = χω(x)µ(t).

Since µ(t) is given, then the perturbed counterpart of the source term F can be defined
as

Fε(x, t) = F (x, t) +
n∑
i=1

ρiχBεi (zi), (5.1)

where ρi ∈ R+ is related to the mean value of µ(t) over the ball Bεi(zi), i = 1, · · · , n.
Therefore, the Kohn-Vogelius functional associated with the perturbed source term Fε is
written as

J (uεD, u
ε
N) :=

∫ T

0

(∫
Ω

|∇(uεD − uεN)|2dx
)

dt+ o(|ε|4), (5.2)

where uεD and uεN are solutions of ∂αt u
ε
D −∆uεD + uεD = Fε in Ω× (0, T ),

uεD = 0 on ∂Ω× (0, T ),
uεD(., 0) = 0 in Ω,

(5.3)


∂αt u

ε
N −∆uεN + uεN = Fε in Ω× (0, T ),

uεN = 0 on (∂Ω\Σ)× (0, T ),
∂νu

ε
N = ϕ on Σ× (0, T ),

uεN(., 0) = 0 in Ω.

(5.4)

The following sections are concerned with the variation of J with respect to the presence
of the anomalies Bεi(zi) in the domain Ω. In order to provide an asymptotic expansion of
the Kohn-Vogelius functional J , we need first an asymptotic expansion of some modified
Bessel functions.

5.1. Series expansions for Bessel functions. We denote the modified Bessel functions
of the first kind and order m by Im, with m ∈ Z. As x → 0+, we have the following
asymptotic expansions:

I0(x) = 1 +
1

4
x2 +O(x4), (5.5)

and

I1(x) =
1

2
x+

1

16
x3 +O(x5). (5.6)

The modified Bessel functions of the second kind and order m are denoted by Km, with
m ∈ Z. As x→ 0+, we have the following asymptotic expansions:

K0(x) = (ln 2− e)− lnx− 1

4
x2 lnx+

1

4
(1 + ln 2− e)x2 +O(x4), (5.7)
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and

K1(x) =
1

x
+

1

2
x lnx+

1

2
(e− ln 2− 1

2
)x+

1

16
x3 lnx+

1

16
(e− ln 2− 5

4
)x3 +O(x5), (5.8)

where e is the Euler constant. The above series expansions are obtained from Jeffrey et
al. [28].

5.2. Asymptotic analysis of the solutions. Let us introduce the following ansätze for
the solutions to the perturbed problems (5.3) and (5.4):

uεD(x, t) = uD(x, t) +
n∑
i=1

ρiπε
2
i v
εi
D(x), (5.9)

uεN(x, t) = uN(x, t) +
n∑
i=1

ρiπε
2
i v
εi
N(x), (5.10)

where uD and uN are the solutions of the Dirichlet (3.2) and Neumann (3.3) problems. In
addition, vεiD and vεiN are the solutions of the following auxiliary boundary value problems
for i = 1, · · · , n: {

−∆vεiD + vεiD = 1
πε2i
χBεi (zi) in Ω,

vεiD = 0 on ∂Ω,
(5.11)

and 
−∆vεiN + vεiN = 1

πε2i
χBεi (zi) in Ω,

vεiN = 0 on ∂Ω\Σ,
∂νv

εi
N = 0 on Σ.

(5.12)

Since vεiD and vεiN depend on εi in the ball Bεi(zi), let us separate them into two parts:

vεiD(x) = pεi(x) + λεi3 q
i
D(x), (5.13)

vεiN(x) = pεi(x) + λεi3 q
i
N(x), (5.14)

where pεi is solution of the following boundary value problem defined in a big ball BR(zi) ⊃
Ω of radius R and centre at zi:{

−∆pεi + pεi = 1
πε2i
χBεi (zi) in BR(zi),

pεi = λεi3 K0(R) on ∂BR(zi).
(5.15)

The above boundary value problem admits the explicit solution of the form

pεi(x) =

{
λεi1 − λ

εi
2 I0(|x− zi|), x ∈ Bεi(zi),

λεi3 K0(|x− zi|), x ∈ BR(zi) \ Bεi(zi),
(5.16)

where

λεi1 =
1

πε2
i

, (5.17)

λεi2 =
1

πε2
i

K1(εi)

K0(εi)I1(εi) +K1(εi)I0(εi)
, (5.18)

and

λεi3 =
1

πε2
i

I1(εi)

K0(εi)I1(εi) +K1(εi)I0(εi)
. (5.19)

We can use the asymptotic expansions (5.5)-(5.8) to rewrite (5.18) and (5.19) as follows:

λεi2 =
1

πε2
i

+ λ0 +
1

2π
ln εi +O(ε2

i ), (5.20)

and

λεi3 =
1

2π
+

1

16π
ε2
i +O(ε4

i ), (5.21)
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with

λ0 =
1

4π
(2e− 2 ln 2− 1). (5.22)

Finally, λεi3 q
i
D and λεi3 q

i
N must compensate for the discrepancies left by pεi on ∂Ω. In

particular, they are the solutions to the following boundary value problems:{
−∆qiD + qiD = 0 in Ω,

qiD = −K0(|x− zi|) on ∂Ω,
(5.23)


−∆qiN + qiN = 0 in Ω,

qiN = −K0(|x− zi|) on ∂Ω\Σ,
∂νq

i
N = −∂νK0(|x− zi|) on Σ.

(5.24)

Consequently, from (5.9)-(5.10), (5.13)-(5.14), and (5.21), the difference between uεD and
uεN is simply given by

uεD − uεN = uD − uN +
n∑
i=1

ρiε
2
i

(1

2
+

1

16
ε2
i

)
hi + o(|ε|4), (5.25)

with hi = qiD − qiN .

5.3. Asymptotic analysis of the Kohn-Vogelius functional. By replacing expansion
(5.25) in the definition of the perturbed counterpart of the shape functional (5.2) and then
collecting terms with the same power of εi and εj, we obtain the following topological
asymptotic expansion

J (uεD, u
ε
N)− J (uD, uN) =

n∑
i=1

ρiε
2
i

∫
Ω

∇hi ·
(∫ T

0

∇(uD − uN)dt

)
dx

+
1

8

n∑
i=1

ρiε
4
i

∫
Ω

∇hi ·
(∫ T

0

∇(uD − uN)dt

)
dx

+
T

4

n∑
i,j=1

ρiρjε
2
i ε

2
j

∫
Ω

∇hi · ∇hj dx+ o(|ε|4), (5.26)

where J (uD, uN) is the original unperturbed shape function given by (3.6).

6. Reconstruction algorithm

In this section, we want to find a better approximation to the target ω∗ than the
initial guess ω based on the topological asymptotic expansion of the Kohn-Vogelius shape
functional given by (5.26). Therefore, let us introduce the following quantity

Ψ(β, ζ) = β · d(ζ) +
1

2
H(ζ)β · β, (6.1)

where vectors ζ = (z1, · · · , zn) and β = (β1, · · · βn), with βi = ρiε
2
i , so that n is the

number of anomalies to be reconstructed, ζ are their locations and β their sizes. Finally,
vector d and matrix H have entries

d(ζ) =


d1

d2
...
dn

 and H(ζ) =


H11 H12 · · · H1n

H21 H22 · · · H2n
...

...
. . .

...
Hn1 Hn2 · · · Hnn

 , (6.2)
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where

di =

∫
Ω

∇hi ·
(∫ T

0

∇(uD − uN)dt

)
dx, (6.3)

Hii =
1

4ρi

∫
Ω

∇hi ·
(∫ T

0

∇(uD − uN)dt

)
dx+

T

2

∫
Ω

∇hi · ∇hi dx, (6.4)

Hij =
T

2

∫
Ω

∇hi · ∇hj dx for i 6= j. (6.5)

Given the function (6.1), its minimum is trivially found when

〈DβΨ(β, ζ), δβ〉 = 0, ∀δβ ∈ Rn. (6.6)

Since Hij is symmetric positive definite, the minimization of the function Ψ(β, ζ) with
respect to β leads to the global minimum. In particular,

(H(ζ)β + d(ζ)) · δβ = 0, ∀ δβ ∈ Rn ⇒ H(ζ)β = −d(ζ), (6.7)

provided that H = H>. Therefore,

β = β(ζ) = −H(ζ)−1d(ζ), (6.8)

such that the quantity β, solving (6.8), becomes a function of the locations ζ. After
replacing the solution of (6.8) into Ψ(β, ζ), defined by (6.1), the optimal locations ζ?

can be obtained from a combinatorial search over the domain Ω. These locations are the
solutions to the following minimization problem:

ζ? = argmin
ζ∈Z

{
Ψ(β(ζ), ζ) =

1

2
β(ζ) · d(ζ)

}
, (6.9)

where Z is the set of admissible locations of anomalies. Problem (6.9) is solved by a
combinatorial search over the set of admissible locations Z. Since this step is bottleneck
of the proposed approach, we refer to [40] for more sophisticated strategies based on meta-
heuristic and multigrid schemes for solving the minimization problem (6.9). Then, the
optimal sources are characterized by the pair ζ? and β? = β(ζ?) of locations and sizes,
respectively.

To summarize, we have introduced a second order topology optimization algorithm
which is able to find the optimal sizes β? of the hidden anomalies and their locations ζ?

for a given number n of trial balls. The inputs to the algorithm are:

• the vector d and the matrix H;
• the m = card(Z) points at which the system (6.8) is solved;
• the number n of anomalies to be reconstructed.

The algorithm returns the optimal sizes β? and locations ζ?. The above procedure is
written in pseudo-code format as shown in Algorithm 1. In the algorithm, Π maps the
vector of nodal indices I = (i1, i2, . . . , in) to the corresponding vector of nodal coordinates
ζ. For further applications of this algorithm, we refer to [9, 15, 16], which can be combined
with well-established and more computationally sophisticated iterative methods [6, 7, 23,
27, 53].

7. Numerical results

Let us consider a circular domain Ω = {x ∈ R2 : |x| < 1}, with unit radius and
centre at the origin. The boundary value problems are discretized by using standard
Finite Element Method in space and Finite Difference Method in time following the same
procedure as described in [48]. In particular, the domain Ω is discretized into 524288
three-node finite elements. The set of admissible locations Z is obtained by selecting 49
interior nodes from the finite elements mesh. See sketch in Figure 1, where the points
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Algorithm 1: Second Order Reconstruction Algorithm

input : d, H, m, n;
output: the optimal solution Ψ?, β?, ζ?;

1 Initialization: Ψ? ←∞; β? ← 0; ζ? ← 0;
2 for i1 ← 1 to m do
3 for i2 ← i1 + 1 to m do

...
4 for in ← in−1 + 1 to m do

5 d←


d(i1)

d(i2)
...

d(in)

; H ←


H(i1,i1) H(i1,i2) · · · H(i1,in)

H(i2,i1) H(i2,i2) · · · H(i2,in)
...

...
. . .

...
H(in,i1) H(in,i2) · · · H(in,in)

;

6 I ← (i1, i2, . . . , in); ζ ← Π(I); β ← −H−1d ; Ψ← 1

2
d · β;

7 if Ψ < Ψ? then
8 ζ? ← ζ; β? ← β; Ψ? ← Ψ;
9 end if

10 end for
11 end for
12 end for
13 return Ψ?, β?, ζ?;

belonging to Z are represented by black dots. We note that, once the location of the true
anomaly does not belong to the set of admissible locations Z, the reconstruction algorithm
returns the optimal location closest to the true one. See for instance the original work
[8]. Therefore, for the sake of simplicity, we assume that the true locations of anomalies,
to be reconstructed, always belongs to the set Z. Finally, the final time is set as T = 1
and the resulting interval (0, 1) is discretized into 100 uniform time steps.

Figure 1. Domain Ω and set of admissible locations Z represented by 49
black dots.

The source F ∗(x, t) to be reconstructed is given by

F ∗(x, t) =
n∑
i=1

µi(t)χω∗
i
(x), (7.1)

where n is the number of hidden anomalies ω∗i , with ω∗i ∩ ω∗j = ∅, for i 6= j. The mean
values of functions µi(t) are set as µ̄i = 1, for i = 1, · · · , n. This choice simplifies the
graphical representation of the results since each unknown is defined as βi = ρiε

2
i . That is
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to say, it is expected to obtain a value of βi coinciding with the size of the i-th anomaly.
Note that the number of anomalies n to be reconstructed is arbitrary. However, for the
sake of simplicity, we assume that n is given. In the case of unknown n, see for instance
[8].

In order to verify the robustness of the method with respect to noisy data, the true
source term F ∗ is corrupted with White Gaussian Noise (WGN) of zero mean and stan-
dard deviation η. Note that, in this context, noisy data can be interpreted as modeling
uncertainties.

In the pictures to be presented in the next sections, the observable boundary Σ is
represented by dashed lines, whereas the hidden boundary ∂Ω \ Σ is depicted as solid
lines. Finally, we set ω = ∅, which means that all the examples are free of initial guess.

7.1. Example 1. In this example, we consider the reconstruction of a cross-shaped
anomaly with one trial ball (n = 1) from partial boundary measurement. The func-
tion µ1(t) = 10χ(0.0,0.1), so that µ̄1 = 1. The target is corrupted with varying levels of
noise, namely η ∈ {0, 10, 20, 40, 80}% as shown in Figure 2, left column. The obtained
results by setting α close to zero (α = 0.0001) as well as α close to one (α = 0.9999)
are presented in Figure 2, middle and right columns, respectively. From an analysis of
these figures, we observe that the centre of the trial ball coincides with the barycentre of
the cross-shaped anomaly and the resulting volumes are very close to each other, up to
η = 40%. In the case of α = 0.0001, the reconstructed volume is slice underestimated. For
η = 80%, the result is degraded. It shows that a trial ball can be used to approximate the
cross-shaped anomaly even in the presence of high level of noise. Note that the behaviour
of the reconstruction algorithm is quite similar for both values of α, so that in the next
examples, we fix α = 0.5.

7.2. Example 2. Now, let us consider the simultaneous reconstruction of two identical
circular-shaped anomalies with two trial balls (n = 2) from pointwise boundary measure-
ment. In particular, the observable boundary Σ is now given by four points uniformly
distributed on ∂Ω. The functions µ1(t) = 10χ(0.0,0.1) and µ2(t) = 5χ(0.2,0.4), so that
µ̄1 = µ̄2 = 1. The target to be reconstructed and the obtained result for α = 0.5 are
presented in Figure 3. In this case, the target is successfully reconstructed even from a
small amount of information given by four points of observation.

7.3. Example 3. In this example, we consider the simultaneous reconstruction of two
circular-shaped anomalies with two trial balls (n = 2) from partial boundary measure-
ment. Now, one anomaly is much bigger than the other one. The functions µ1(t) =
10χ(0.0,0.1) and µ2(t) = 5χ(0.2,0.4), which gives µ̄1 = µ̄2 = 1. The target to be reconstructed
and the obtained result for α = 0.5 are presented in Figure 4. From an analysis of the
figure, we observe that there is a small discrepancy on the size of the smaller ball, whose
reconstructed radius is underestimated. However, the reconstruction can be considered
satisfactory.

7.4. Example 4. Now, let us consider the simultaneous reconstruction of three identical
circular-shaped anomalies with three trial balls (n = 3) from partial boundary measure-
ment. The functions µ1(t) = 10χ(0.0,0.1), µ2(t) = 5χ(0.2,0.4) and µ3(t) = 2.5χ(0.3,0.7), so
that µ̄1 = µ̄2 = µ̄3 = 1. Two configurations for the observable boundary are taken into
account, Σ1 and Σ2, such that Σ1 is bigger than Σ2. The target to be reconstructed for
α = 0.5 is presented in Figure 5, left. The obtained results for Σ1 and Σ2 are presented
in Figure 5, middle and right, respectively. From an analysis of these figures, we observe
that the target is perfectly reconstructed for the bigger observable boundary Σ1. However,
the reconstruction fails for the smaller observable boundary Σ2. Therefore, the amount of
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Figure 2. Example 1: Target to be reconstructed (left column) and ob-
tained reconstructions with n = 1 trial ball for α = 0.0001 (middle column)
and α = 0.9999 (right column). The level of noise is increased from the
first to the four line as η ∈ {0, 20, 40, 80}%. The dashed and solid lines
are used to represent the observable Σ and the hidden ∂Ω \ Σ boundaries,
respectively.

Figure 3. Example 2: Target to be reconstructed (left) and obtained
reconstruction (right) with n = 2 trial balls. See zoom highlighting one of
the four points forming the observable boundary Σ.



19

Figure 4. Example 3: Target to be reconstructed (left) and obtained
reconstruction (right) with n = 2 trial balls. The dashed and solid lines
are used to represent the observable Σ and the hidden ∂Ω \ Σ boundaries,
respectively.

available information on the boundary affect the reconstruction of complex set of hidden
anomalies.

Figure 5. Example 4: Target to be reconstructed (left) and obtained
reconstructions with n = 3 trial balls for the observable boundaries Σ1

(middle) and Σ2 (right). The dashed and solid lines are used to represent
the observable and the hidden boundaries, respectively.

7.5. Example 5. In this example, we consider again the simultaneous reconstruction of
three identical circular-shaped anomalies with three trial balls (n = 3), but from total
boundary measurement. In particular, the observable boundary Σ = ∂Ω. The functions
µ1(t) = 10χ(0.0,0.1), µ2(t) = 5χ(0.2,0.4) and µ3(t) = 2.5χ(0.3,0.7), thus µ̄1 = µ̄2 = µ̄3 = 1.
The target is corrupted with varying levels of noise, namely η ∈ {10, 20, 30}% as shown
in Figure 6, left column. The obtained results for α = 0.5 are presented in Figure 6, right
column. From an analysis of these figures, we observe that the target is well reconstructed
for η = 10% and η = 20%. However, for η = 40% the reconstruction fails.

7.6. Example 6. In this last example, we consider the simultaneous reconstruction of
two anomalies of different shapes with three trial balls (n = 3) from total boundary
measurement (Σ = ∂Ω). In particular, the first anomaly is circular and the second one
is rectangular. The functions µ1(t) = 10χ(0.0,0.1) and µ2(t) = 5χ(0.2,0.4), thus µ̄1 = µ̄2.
The target to be reconstructed for α = 0.5 and the obtained result are presented in
Figure 7, left and right, respectively. From an analysis of this figure, we observe that an
arbitrary-shaped target can be approximated by a number of trial balls.

8. Concluding remarks

In this paper, we investigate an inverse source problem for a time-fractional diffusion
equation in two spatial dimensions. More precisely, we have tackled the geometric re-
construction of space-dependent source which is supported in an unknown domain from
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Figure 6. Example 5: Target to be reconstructed (left column) and ob-
tained reconstructions with n = 3 trial balls (right column). The level of
noise is increased from the first to the third line as η ∈ {10, 20, 30}%. The
dashed line is used to represent the observable boundary Σ = ∂Ω.

Figure 7. Example 6: Target to be reconstructed (left) and obtained
reconstruction with n = 3 trial balls (right). The dashed line is used to
represent the observable boundary Σ = ∂Ω.

partial boundary measurements of the potential field. The physical motivation of this
problem comes from differences between classical Brownian diffusion and the anomalous
case. The general idea of the proposed method consists in rewriting the inverse problem
as a self-regularized topology optimization one. The unknown support of the space-
dependent source is characterized as the solution to an optimization problem minimizing
a given Kohn-Vogelius type functional, with respect to the set of admissible sources, by
using the topological derivative method.

The existence and uniqueness for the optimization problem solution and the uniqueness
for the inverse problem are both proved. The second-order topological gradient has been
used to devise a fast reconstruction algorithm based on a simple optimization step, which
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is free of initial guess. Six numerical examples are provided to show that the proposed
method is effective and very robust with respect to noisy data.

On the other hand, several mathematical issues of high interest have not been discussed
in the paper. The stability problem is one of them. The full stability issue is, however,
up to our knowledge, still an open problem which deserves further investigation.
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