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Abstract

This study concerns the application of the Topological-Shape Sensitivity Method as a systematic
procedure to determine the Topological Derivative for linear elastic plate bending problems within
the framework of Kirchhoff’s kinematic approach. This method, based on classical Shape Sensitivity
Analysis, leads to a constructive procedure to obtain the Topological Derivative. Utilizing the well
known terminology of structural optimization, we adopt the total potential strain energy as the
cost function and the equilibrium equation as the constraint. Variational formulation as well as
the direct differentiation method are used to perform the shape derivative of the cost function.
Finally, in order to obtain a uniform distribution of bending moments in several plate problems,
the Topological Derivative was approximated, by the Finite Element Method, and used to find the
best place to insert holes. A simple hard-kill like topology algorithm, which furnishes satisfactory
qualitative results in agreement with those reported in the literature, is also shown.

1 Introduction

The Topological Derivative gives the sensitivity of a cost function when a small hole is introduced in
the domain. More specifically, the idea is to make a perturbation on the domain Ω by subtracting a
ball of radius ε, denoted by Bε, centered in a point x̂ ∈ Ω. This originates a new domain Ωε = Ω−Bε.
Therefore, if a cost function ψ defined in Ω is considered, then the Topological Derivative, here denoted
by DT , can be defined as

ψ(Ωε) = ψ(Ω) + f(ε)DT +R(f(ε)). (1)

In the expression above, f(ε) can be adopted as negative function which depends on the problem
under analysis and such that f(ε)→ 0 when ε→ 0. R(f(ε)) contains all higher order terms than f(ε),
that is, it satisfies

lim
ε→0

R(f(ε))

f(ε)
= 0.

In general, ψ depends explicitly and implicitly on ε. The implicit dependence arises from the
solution of the boundary value problem defined in Ωε. If this problem is elliptic, conditions in the
whole boundary of Ωε must be imposed. Therefore, when Bε is introduced, boundary conditions must
also be defined on ∂Bε.

The sensitivity of the total energy when a small hole is introduced in the domain can be seen, for
example, in Germain & Muller [11]. Using this result, Schumacher [31] developed the bubble method
for topological optimization. Then, Sokolowski & Żochowski [33, 34] and Garreau et al. [12, 13]
extended this idea and the Topological Derivative concept was introduced.

Recently, the Topological Derivative has been recognized as a powerful tool to solve topology
optimization problems (see [5], where 425 references concerning topology optimization of continuum
structures are included). See also [4, 6, 20] and references therein. More recently, the potential
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applications of the topological derivative to numerical methods for shape and topological optimum
design were presented by Sokolowski & Żochowski [35]. Moreover, this publication also shows that
the tools introduced in topological sensitivity analysis are closely related to the basic research in
asymptotic analysis of solutions to boundary value problem under singular perturbations.

Extension of the topological derivative in order to include arbitrary shaped holes or inclusion with a
perturbation of the physical properties of the material constituting the domain and its applications to
Elasticity, Laplace, Poisson, Helmoltz, Stokes, Navier-Stokes equations are developed by Sokolowsky
and his co-workers (see [32] and references therein) and by Masmoudi and his co-workers (see [15] and
references therein). See also [1, 8, 14, 27, 28, 30, 35] for applications of the topological derivative to
the above equations, inverse problems and material properties characterization.

To obtain DT , an asymptotic analysis of the problem must be carrying out (see the publications
refered at the end of this work). Following this approach and using the Dirichlet-to-Neumann map,
Garreau et al.[12] introduce the Domain Truncation Method that can be used for singular problems
such as those with Dirichlet boundary conditions imposed on ∂Bε.

As mentioned by Masmoudi and his co-workers [15], asymptotic expansions are obtained using
mathematical tools which are, in some sense, complicated. Then, their goal on that paper was to
provide to engineers an easy way to obtain the derivation of topological asymptotic expansion using
differential calculus under weak assumptions.

Following similar motivation, in [24] was proposed an other method to compute the Topological
Derivative via Shape Sensitivity Analysis. This method, called Topological-Shape Sensitivity Method,
allows to consider any kind of cost functions and any type of boundary conditions on the hole. This
approach was applied for heat conduction problems [25], for the Poisson’s problem considering a general
set of boundary conditions on the holes [9], plane stress elasticity problems [10] and to compute the
so-called Configurational Derivative [26].

Our aim in the present paper is to apply the Topological-Shape Sensitivity Method for performing
the calculation of the topological derivative for Kirchhoff’s plate bending problem. For the sake of
completeness, in Section 2 we recall the Topological-Shape Sensitivity Method. In Section 3 we com-
pute the Topological Derivative for Kirchhoff’s plate bending problem, considering the total potential
energy as the cost function and the state equation as the constraint. Finally and in order to obtain
a new design in which the bending moments should be more uniformly distributed, in Section 4 the
topological derivative is used to find the best place to insert holes for several plates with different
boundary conditions and loads.

2 Topological-Shape Sensitivity Method

Let us consider an open bounded domain Ω ⊂ R
2 with a smooth boundary Γ. If the domain Ω is

perturbed by introducing a small hole at an arbitrary point x̂ ∈ Ω, we have a new domain Ωε = Ω−Bε,
whose boundary is denoted by Γε = Γ ∪ ∂Bε, where Bε = Bε ∪ ∂Bε is a ball of radius ε centered at
the point x̂ ∈ Ω. Thus, we have the original domain without hole Ω and the new one Ωε with a small
hole Bε. Considering Eq. (1), the Topological Derivative can be re-written as [13]

DT (x̂) = lim
ε→0

ψ (Ωε)− ψ (Ω)

f (ε)
. (2)

In [25] the authors proposed a method, called Topological-Shape Sensitivity Method, which allows
us to use the whole mathematical framework (and results) developed for Shape Sensitivity Analysis
(see [3, 16, 17, 22, 29, 36, 37, 39] and references therein) to compute the Topological Derivative. The
main result obtained in [25] is given by the following theorem:
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Theorem 1 Let f (ε) be a function chosen in order to 0 < |DT (x̂)| < ∞, then the Topological
Derivative given by Eq. (2) can be written as

DT (x̂) = lim
ε→0

1

f ′ (ε) |vn|
d

dτ
ψ (Ωτ )

∣

∣

∣

∣

τ=0

, (3)

where τ ∈ R is used to parameterize the domain. That is, for τ small enough, we have

Ωτ :=
{

xτ ∈ R
2 : ∃ x ∈ Ωε, xτ = x + τv, xτ |τ=0 = x and Ωτ |τ=0 = Ωε

}

,

being v the shape change velocity defined by

{

v = vnn with vn < 0 constant on ∂Bε,
v = 0 on Γ,

(4)

where vn is the normal component of the velocity. In addition,

d

dτ
ψ (Ωτ )

∣

∣

∣

∣

τ=0

= lim
τ→0

ψ (Ωτ )− ψ(Ωε)

τ
. (5)

is the shape sensitivity of the cost function in relation to the domain perturbation characterized by v.

Proof. The reader interested in the proof of this result may refer to [9, 25]
This theorem points out that the Topological Derivative may be obtained through the Shape

Sensitivity Analysis of the cost function (Topological-Shape Sensitivity Method). Therefore, results
from Shape Sensitivity Analysis can be used to calculate the Topological Derivative in a constructive
way considering Eq. (3).

3 Topological Derivative in thin plate bending problem

In the present section, we compute the Topological Derivative for thin elastic plate bending problem
within the framework of Kirchhoff’s simplified assumptions. Using the well known terminology of
structural optimization, we adopt the total potential energy as the cost function and the equilibrium
equation as the constraint.

3.1 Mechanical model

Let us review briefly in this section the theory of elastic plates under Kirchhoff’s assumptions. This ap-
proach, known in solid mechanics as first order plate theory, reduces the analysis to a two-dimensional
problem over the middle surface of the plate. Thus, consider a flat plate, with thickness ρ ∈ R

+

(admitted constant for the sake of simplicity), characterized by the two-dimensional domain Ωε ⊂ R
2

(Ωε = Ω − Bε), which may be adopted as the reference domain, submitted to bending effects. In
order to model this phenomenon Kirchhoff developed, in 1850, a theory based on the following ad-hoc
kinematic assumptions:

The normal fibers to the middle plane of the plate remain normal during deformation and
do not suffer variations in their length.

Consequently, both transversal shear and normal deformations are null. This fact limits the ap-
plication of Kirchhoff’s approach on plates whose deflections are small in relation to the thickness ρ.
Note that in the presence of concentrated loads or defects like cracks, additional care will be necessary
since transversal shear deformation may be significative.
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Utilizing kinematic assumptions introduced by Kirchhoff and adopting the constitutive relation for
a linear elastic isotropic material, we respectively have the following strain-displacement and stress-
strain relations

Eε = −∇∇uε and Mε = CEε = −C∇∇uε , (6)

where the scalar field uε denotes the transverse displacement (deflexion), the symmetric tensor Eε is
the generalized flexural strain which represents the change of curvature of the plate, the symmetric
tensor Mε is the generalized stress tensor that represents the bending moment in the middle plane of
the plate and C = CT is the forth order elasticity tensor, which is given by

C =
Eρ3

12 (1− ν2)
[(1− ν) II + ν (I⊗ I)] , (7)

being I and II respectively the second and forth order identity tensors, E the Young’s modulus, ν the
Poisson’s ratio and ρ the thickness.

Therefore, in terms of the primal variable uε, the equilibrium of the plate can be described by the
following variational problem: find uε ∈ Uε, such that

aε (uε,ηε) = lε (ηε) ∀ηε ∈ Vε , (8)

where

aε (uε,ηε) =

∫

Ωε

C∇∇uε · ∇∇ηε dΩε (9)

lε (ηε) =

∫

Ωε

bηε dΩε +

∫

ΓN

(

q̄ηε + m̄
∂ηε

∂n

)

dΓ +
nv
∑

i=1

Q̄vi
ηε(xvi

) ∀ηε ∈ Vε , (10)

being Uε the set of admissible displacements and Vε the space of admissible displacements variations,
which are respectively defined by

Uε :=
{

uε ∈ H2 (Ωε) : uε|ΓD
= ū and ∂uε

∂n

∣

∣

ΓD

= θ̄
}

,

Vε :=

{

ηε ∈ H2 (Ωε) : ηε|ΓD
= 0 and ∂ηε

∂n

∣

∣

∣

ΓD

= 0

}

,

where ΓD and ΓN respectively are Dirichlet and Neumann boundaries such that Γ = ΓD ∪ ΓN , with
ΓD ∩ΓN = ∅; ū is the displacement and θ̄ the rotation, both prescribed on ΓD. Moreover, b, q̄, m̄ and
Q̄vi

are the system of forces compatible with Kirchhoff’s approach, where b is the transverse force over
the middle plane Ωε, q̄ the transverse shear load and m̄ is the moment, both prescribed on ΓN ; Q̄vi

is the transverse shear load concentrated at the point xvi
∈ ΓN in which there is some discontinuity

(vertex, for instance) and nv represents the total number of points xvi
.

The Euler-Lagrange equation as well as the boundary conditions associated to the variational
problem, (Eq. 8), are given by the following forth order boundary-value problem:











































































Find uε, such that
−div (divMε) = b in Ωε

uε = ū
∂uε

∂n
= θ̄

}

on ΓD

∂M tn
ε

∂t
+ divMε·n =q̄

−Mnn
ε = m̄







on ΓN

−[[M tn
ε ]] = Q̄vi

on xvi
∈ ΓN , i = 1, ..., nv

∂M tn
ε

∂t
+ divMε·n =0

−Mnn
ε = 0







on ∂Bε

. (11)
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It should be noted that we can decompose the stress tensor Mε along the boundary Γε as follows

Mε=M
nn
ε (n⊗ n) +Mnt

ε (n⊗ t) +M tn
ε (t⊗ n) +M tt

ε (t⊗ t) , (12)

where n and t are respectively the outward normal and tangential unit vectors (n · t = 0) defined on
Γε.

Moreover, according to Kirchhoff’s approach, the total potential energy of the plate in the reference
configuration, Ωε, may be written in the following compact form

ψ(Ωε) := Ψε (uε) =
1

2
aε (uε, uε)− lε (uε) , (13)

where the first term represents the total strain energy stored in the plate and the second term represents
the work of the external loads.

Since the equilibrium of the plate must be verified in all perturbed configuration Ωτ , the corre-
sponding transverse displacement uτ satisfies the following variational problem: find uτ ∈ Uτ , such
that

aτ (uτ ,ητ ) = lτ (ητ ) ∀ητ ∈ Vτ and ∀τ ≥ 0 , (14)

where Uτ is the set of admissible displacements and Vτ is the space of admissible displacement vari-
ations, both defined on the perturbed domain Ωτ . In addition, aτ (uτ ,ητ ) and lτ (ητ ) are given,
respectively, by

aτ (uτ ,ητ ) =

∫

Ωτ

C∇τ∇τuτ · ∇τ∇τητ dΩτ , (15)

lτ (ητ ) =

∫

Ωτ

bητ dΩτ +

∫

ΓN

(

q̄ητ + m̄
∂ητ

∂n

)

dΓ +

nv
∑

i=1

Q̄vi
ητ (xvi

) , (16)

where ∇τ := ∂
∂xτ

(·).
It should be noted that for the sake of simplicity, we have assumed that the parameters E, ρ, ν,

ū, θ̄, b, q̄, m̄ and Q̄vi
are constants in relation to the perturbation characterized by τ .

Similar to Eq. 13, the total potential energy of the plate in the perturbed configuration Ωτ is given
by

ψ(Ωτ ) := Ψτ (uτ ) =
1

2
aτ (uτ , uτ )− lτ (uτ ) . (17)

3.2 Shape Sensitivity Analysis

Now, we will focus our attention on the shape sensitivity analysis of a plate when the size of a small
circular hole changes, specifically when the radius of the hole is perturbed. The calculation of the
shape derivative will be performed considering the total potential energy as the cost function written
in the perturbed configuration Ωτ , that is Eq. (17), which we can express as

Ψτ (uτ ) :=− 1

2

∫

Ωτ

Mτ · ∇τ∇τuτ dΩτ

−
∫

Ωτ

buτ dΩτ −
∫

ΓN

(

q̄uτ + m̄
∂uτ

∂n

)

dΓ−
nv
∑

i=1

Q̄vi
uτ (xvi

) . (18)

Once the cost function (Eq. 18) is characterized we may apply the direct differentiation method to
obtain the shape derivative, in other words the derivative with respect to τ, that is

d

dτ
Ψτ (uτ ) =

1

2

d

dτ
aτ (uτ , uτ )− d

dτ
lτ (uτ ) . (19)
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Since the elasticity tensor C is symmetric, from the Reynolds’ transport theorem, the total deriva-
tive of the bilinear form aτ (uτ ,uτ ), at τ = 0, becomes

daτ

dτ

∣

∣

∣

∣

τ=0

= −
∫

Ωε

[

2Mε ·
d

dτ
(∇τ∇τuτ )

∣

∣

∣

∣

τ=0

+ Mε · ∇∇uε divv

]

dΩε , (20)

where the total derivative of the second order gradient of a scalar field is given by

d

dτ
(∇τ∇τuτ )

∣

∣

∣

∣

τ=0

= ∇ d

dτ
(∇τuτ )

∣

∣

∣

∣

τ=0

− (∇∇uε)∇v

= −∇
(

∇vT∇uε

)

− (∇∇uε)∇v+∇∇u̇ε , (21)

being ˙(·) used to denote

˙(·) :=
d

dτ
(·)

∣

∣

∣

∣

τ=0

.

Next, we use the following tensorial relations

div
(

MT
ε ∇vT∇uε

)

= Mε · ∇
(

∇vT∇uε

)

+ divMε · ∇vT∇uε ,

divMε · ∇vT∇uε = ∇v divMε · ∇uε = (∇uε ⊗ divMε) · ∇v ,

to obtain
Mε · ∇

(

∇vT∇uε

)

= div
(

Mε∇vT∇uε

)

− (∇uε ⊗ divMε) · ∇v , (22)

and we also recall the definition of the transpose tensor, to write

Mε · (∇∇uε)∇v = (∇∇uε)
T Mε · ∇v . (23)

Then, combining Eqs. (21, 22 and 23), follows

Mε ·
d

dτ
(∇τ∇τuτ )

∣

∣

∣

∣

τ=0

=− (∇∇uε)Mε · ∇v + (∇uε ⊗ divMε) · ∇v

− div
(

Mε∇vT∇uε

)

+ 2Mε · ∇∇u̇ε . (24)

If we insert the result given by Eq. (24) into Eq. (20) and apply the divergence theorem, remembering
that v = 0 on Γ = ΓD ∪ ΓN , the derivative of the bilinear form becomes

daτ

dτ

∣

∣

∣

∣

τ=0

= −2

∫

Ωε

[

1

2
(Mε · ∇∇uε) I− (∇∇uε)Mε +∇uε ⊗ divMε

]

· ∇v dΩε

+2

∫

∂Bε

(

Mε∇vT∇uε

)

· n d∂Bε + 2aε (uε, u̇ε) . (25)

Likewise, the total derivative of the functional lτ (uτ ), at τ = 0, may be written as

dlτ
dτ

∣

∣

∣

∣

τ=0

=

∫

Ωε

(buε) I · ∇v dΩε + lε (u̇ε) . (26)

Thus, substituting Eqs. (25, 26) in Eq. (19) and considering that uε satisfies Eq. (8), and since
u̇ε ∈ Vε, the shape derivative of the cost function at τ = 0 becomes

dΨτ

dτ

∣

∣

∣

∣

τ=0

=

∫

Ωε

Σε · ∇v dΩε +

∫

∂Bε

Mεn · ∇vT∇uε d∂Bε , (27)
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where the energy shape change tensor Σε, given by

Σε = −1

2
(Mε · ∇∇uε + 2buε) I + (∇∇uε)Mε −∇uε ⊗ divMε , (28)

can be seen as an extension of the Eshelby’s energy-momentum tensor (see for instance [7, 37]) for
elastic plates within the framework of Kirchhoff’s approach. The energy momentum tensor was first
introduced by Eshelby into elastostatics of three-dimensional bodies in the context of infinitesimal
deformations. This tensor also plays a central role in the same author’s development of continuum
approach when studying defects in solid media.

Moreover, it is well known that shape derivative only depends on the value of v at the boundary.
In order to assess the shape derivative as a boundary integral we recall the following tensorial relation

div(ΣT
ε v) = Σε · ∇v+divΣε · v . (29)

Next, combining Eq. (27) and Eq. (29) and making further use of the divergence theorem, yields

dΨτ

dτ

∣

∣

∣

∣

τ=0

=

∫

Γε

Σεn · v dΓε +

∫

∂Bε

Mεn · ∇vT∇uε d∂Bε −
∫

Ωε

divΣε · v dΩε . (30)

Since uε satisfies Eq. (8), u̇ε ∈ Vε and remembering that v is an arbitrary velocity field, then it is
straightforward to verify that

∫

Ωε

divΣε · v dΩε = 0 ∀ v ⇔ divΣε = 0 . (31)

Thus, recalling the definition of the velocity field given by Eq. (4) and inserting Eq. (31) into Eq.
(30), the shape derivative of the cost function reduces to an integral along the boundary ∂Bε, that is

dΨτ

dτ

∣

∣

∣

∣

τ=0

= vn

∫

∂Bε

(

Σεn · n + Mεn · ∇nT∇uε

)

d∂Bε , (32)

where

Σεn · n = −1

2
Mε · ∇∇uε − buε + Mεn · (∇∇uε)

T n− (divMε · n) (∇uε · n) .

If we consider the following tensorial relations

∇ (∇uε · n) = (∇∇uε)
T n+∇nT∇uε ,

Mεn · (∇∇uε)
T n = Mεn · ∇ (∇uε · n)−Mεn · ∇nT∇uε ,

we may write

dΨτ

dτ

∣

∣

∣

∣

τ=0

= −vn

∫

∂Bε

[

1

2
Mε · ∇∇uε + buε + (divMε · n) (∇uε · n)−Mεn · ∇ (∇uε · n)

]

d∂Bε . (33)

In addition, when uε is defined on ∂Bε, we can verify that

∇ (∇uε · n) =
∂

∂n

(

∂uε

∂n

)

n +
∂

∂t

(

∂uε

∂n

)

t

and, from Eq. (12), we obtain
Mεn =Mnn

ε n +M tn
ε t ,

thus

Mεn · ∇ (∇uε · n) = Mnn
ε

∂2uε

∂n2
+M tn

ε

∂

∂t

(

∂uε

∂n

)

. (34)
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Substituting the result given by Eq. (34) in Eq. (33) and integrating by parts, we have

dΨτ

dτ

∣

∣

∣

∣

τ=0

= −vn

∫

∂Bε

[

1

2
Mε · ∇∇uε + buε −Mnn

ε

∂2uε

∂n2

+(divMε · n)
∂uε

∂n
−M tn

ε

∂

∂t

(

∂uε

∂n

)]

d∂Bε

= −vn

∫

∂Bε

[

1

2
Mε · ∇∇uε + buε −Mnn

ε

∂2uε

∂n2

+

(

∂M tn
ε

∂t
+ divMε·n

)

∂uε

∂n

]

d∂Bε . (35)

Considering homogeneous Neumann boundary condition on ∂Bε (see Eq. 11), the shape derivative of
the cost function given by Eq. (35) becomes

dΨτ

dτ

∣

∣

∣

∣

τ=0

= vn

∫

∂Bε

(

1

2
Mε ·Eε − buε

)

d∂Bε . (36)

3.3 Topological Derivative Calculation

From Theorem 1 and the previous shape sensitivity result given by Eq. (36), the Topological Derivative
becomes

DT (x̂) = −lim
ε→0

1

f ′ (ε)

∫

∂Bε

(

1

2
Mε ·Eε − buε

)

d∂Bε , (37)

where sign (vn) = −1, was adopted for an expansion on the hole.
Next, to express the Topological Derivative as a function of the stress, we recall the inverse of the

constitutive relation (Eε = C−1Mε), the symmetry of the bending moment tensor Mε = MT
ε and the

natural boundary condition Mnn
ε = 0 on ∂Bε (see Eq. 11), then Eq. (37) becomes

DT (x̂) = −lim
ε→0

1

f ′ (ε)

∫

∂Bε

{

6

Eρ3

[

2(1 + ν)
(

Mnt
ε

)2
+

(

M tt
ε

)2
]

− buε

}

d∂Bε , (38)

In order to obtain the final expression of the Topological Derivative, we need to study the behavior
of the integral given by Eq. (38) in relation to ε, which may be obtained through an asymptotic
analysis of the solution uε [19, 24].

Therefore, let us consider a boundary-value problem such as the one described by Eq. (11), but
now defined in an open ring A = BR − Bε ⊂ Ωε ⊂ R

2 centered at x̂ ∈ Ω, where R >> ε is such
that R → 0, when ε → 0. Then, introducing a coordinate system aligned with the principal stress
directions and adopting a polar coordinate system (r, θ) centered at x̂, we have that the following
asymptotic expansion for the stress components holds for any δ > 0 (see, for instance, [24])

Mnn
ε =

S(R)

2

(

1− ε2

r2

)

+
D(R)

2

(

1− 4ν

3 + ν

ε2

r2
− 3

1− ν
3 + ν

ε4

r4

)

cos 2θ +O(ε1−δ) , (39)

M tt
ε =

S(R)

2

(

1 +
ε2

r2

)

− D(R)

2

(

1 +
4

3 + ν

ε2

r2
− 3

1− ν
3 + ν

ε4

r4

)

cos 2θ +O(ε1−δ) , (40)

Mnt
ε =

D(R)

2

(

1− 2
1− ν
3 + ν

ε2

r2
+ 3

1− ν
3 + ν

ε4

r4

)

sin 2θ +O(ε1−δ) , (41)

where
S(R) = m1(R) +m2(R) and D(R) = m1(R)−m2(R) ,
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being m1(R) and m2(R) the principal bending moments, which in the collapsed ring ( ε → 0 and
R→ 0) take the following values

lim
R→0

m1(R) = m1 and lim
R→0

m2(R) = m2 . (42)

Here, m1 and m2 are eigenvalues (the principal bending moments) of the generalized stress (bending
moment) tensor M (associated to the original domain without hole Ω) evaluated at the point x̂ ∈ Ω,
that is M|

x̂
.

From Eqs. (40, 41) we can respectively compute the components M tt
ε and Mnt

ε on ∂Bε, which may
be expressed by

M tt
ε

∣

∣

∂Bε

= S(R)− 2
1 + ν

3 + ν
D(R) cos 2θ +O(ε1−δ) , (43)

Mnt
ε

∣

∣

∂Bε

=
2

3 + ν
D(R) sin 2θ +O(ε1−δ) , (44)

Next, substituting Eqs. (43, 44) into Eq. (38), we observe that f ′ (ε) = −meas (∂Bε) ⇒ f (ε) =
−meas (Bε) and we can finally compute the limit ε→ 0 in Eq. (38) which becomes

DT (x̂) =
6

Eρ3

[

(m1 +m2)
2 + 2

1 + ν

3 + ν
(m1 −m2)

2

]

. (45)

On the other hand m1 and m2 are given by

m1,2 =
1

2

(

trM±
√

2MD ·MD
)

, (46)

where MD is the deviatory stress-tensor, that is

MD = M− 1

2
tr (M) I . (47)

Further substituting Eqs. (46, 47) into Eq. (45), we have that

DT (x̂) =
6

(3 + ν)Eρ3

[

4(1 + ν)M ·M+(1− ν)(trM)2
]

. (48)

Finally, we may rewrite the Topological Derivative as a function of the tensors M and E by means
of the constitutive equation and a simple manipulation, which leads to

DT (x̂) =
2

(3 + ν)
M ·E +

3ν + 1

2(3 + ν)(1− ν) trM trE , (49)

It should be noted that M and E are associated to the original domain Ω (without hole) and that we
have assumed b = 0.

4 Numerical experiments

We have calculated the Topological Derivative through the Topological-Shape Sensitivity Method
(Eq. 3) for Kirchhoff’s bending plate problem considering the total potential strain energy as the cost
function and the state equation in its weak (variational) form as the constraint. Moreover, from Eq.
(48) DT (x̂) ≥ 0∀x̂ ∈ Ω. Therefore, the topological derivative can be viewed as an indicator of the
degree of non uniformity in the distribution of the generalized stress (bending moments).

This last interpretation of the topological derivative can be used as an alternative method to
perform the topology design of plate components: the idea is to introduce holes where DT (x̂) assumes
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the smallest values. Proceeding in this way, we will obtain a new design in which the bending moments
should be more uniformly distributed in the new domain. In another words, this approach could be
similar to full stressed criterion.

Evidently, to perform an optimal topology design with some physical meaning it will be necessary
to take into account more restrictions rather than only the state equations as shown in the present
work (for example restrictions in the magnitude of displacements and/or bending moments). However,
in this section we only want to show the potentiality of the use of the topological derivative for an
appropriate selection of hole localization. Then, the numerical experiments to be described will not
incorporate the above constraints.

Based on the algorithm proposed by Cea and co-workers, [4], in [25] was proposed a hard-kill like
topology algorithm based on the Topological Derivative, that is, let us consider the following sequence
{Ωj : meas(Ωj) ≥ meas(Ω̂)}, where j is the j-th iteration, then:

1. Provide the initial domain Ω and the constraint meas(Ω̂).

2. While meas(Ωj) ≥ meas(Ω̂) do:

(a) calculate DT (x̂)j ;

(b) create the holes in the points x̂ corresponding to ξj
inf
≤ DT (x̂)j ≤ ξj

sup, where ξj
inf

and ξj
sup

are specified depending on the volume of material to be removed at each iteration;

(c) define the new domain Ωj+1;

(d) make j ← j + 1.

3. At this stage, we hope to have in hand the desired final topology.

The Topological Derivative depends on the solution of the state equation, u, and its gradient. In
this work, u is calculated via the Finite Element Method [18, 38]. More specifically, in the numerical
experiments we have adopted the DKT-9 finite element (Discrete Kirchhoff Triangle, which is in full
detail presented in [2]). Furthermore, DT (x̂) is evaluated at the nodal points of the finite element
mesh, being that we remove the elements that share the node which satisfies ξinf ≤ DT (x̂K) ≤ ξsup,
where x̂K is the K-th nodal point of the finite element mesh. This procedure, shown in Fig. 1, avoids
numerical instability which normally appear in hard-kill like topology algorithm.

x^
K

Figure 1: Sketch of the adopted procedure to create the holes in a finite element mesh.
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In all the following examples, we remove 1% of material at each step and the Young’s modulus
E = 210× 103 MPa, Poisson’s ratio ν = 1/3 and thickness ρ = 5 mm are assumed. Furthermore, the
regions that appear in grey are not perturbed and the thick line and the line-dot that appear on the
figures are respectively used to denote clamped (u = ∂u/∂n = ∂u/∂t = 0) and symmetry (∂u/∂n = 0)
boundary conditions.

4.1 Example 1

Let us consider a square plate with two edges free and two edges clamped submitted to a concentrated
load Q̄ = 100N at the corner (Fig. 2(a)). The mesh used to discretize the initial domain Ω =
[0, 1000] × [0, 1000]mm2 can be seen in Fig. 2(b).

W

Q

(a) model (b) mesh

Figure 2: Example 1 - model and initial mesh with 3658 finite elements

For the beginning of the process (j = 0), the topological derivative and the principal bending
moments are presented in Figs. 3(a) and 3(b), respectively. From these figures we observe that the
topological derivative enhances the non uniformity in the bending moments distribution.

Considering a stop criterion given by meas(Ω̂) = 0.22meas(Ω), Fig. 4 presents the domain obtained
at j = 75. In particular, the topological derivative and the principal bending moment (m1 and m2)
distribution are shown in Figs. 4(a) and 4(b) respectively.

(a) Topological derivative at j = 0 (b) m1 and m2 at j = 0

Figure 3: Example 1 - obtained result at j = 0.
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(a) Topological Derivative at j = 75 (b) m1 and m2 at j = 75

Figure 4: Example 1 - obtained result at j = 75.

4.2 Example 2

Here, we have a clamped square plate submitted to a concentrated load Q̄ = 100N at the center
(Fig. 5(a)). Due to the symmetry of the problem, the initial domain Ω = [0, 500] × [0, 500]mm2

represents a quarter of the plate, which is discretized as shown in Fig. 5(b). Moreover, taking
meas(Ω̂) = 0.60meas (Ω) as stop criterion, the final topology obtained at j = 36 can be seen in Fig.
6. Here, it is interesting to observe that Liang & Steven found a similar result (see [21] Section 6.3,
Fig. 13(c)) using a different approach.

W

Q

(a) model (b) mesh

Figure 5: Example 2 - model and initial mesh with 3678 finite elements.
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Figure 6: Example 2 - topology at j = 36.

4.3 Example 3

Let us consider a flat plates supported by circular columns, submitted to concentrated loads Q̄ = 100N
(see Fig. 7(a) where R = 50mm is the column’s radius). The initial domain Ω = [0, 500]×[0, 500]mm2

is discretized taking into account the periodic symmetry of the problem, as can be seen in Fig. 7(b).

W

Q

R

(a) model (b) mesh

Figure 7: Example 3 - model and initial mesh with 3530 finite elements.

For the adopted stop criterion meas(Ω̂) = 0.78meas (Ω), the final topology at j = 19 is shown in
Fig. 8 and the periodicity of the final solution can be seen in Fig. 9.
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Figure 8: Example 3 - topology at j = 19.

Figure 9: Example 3 - detail of the obtained solution.
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4.4 Example 4

In this last example, we have a square plate supported by a column at its center, but now submitted
to concentrated loads Q̄ = 100N at the corners (Fig. 10(a) where R = 50mm is the column’s radius).
Considering the symmetry of the problem, the initial domain Ω = [0, 500]× [0, 500]mm2 is discretized
as shown in Fig. (10(b).

W

Q

R

(a) model (b) mesh

Figure 10: Example 4 - model and initial mesh with 3530 finite elements

The Topological Derivative calculated at the beginning of the process (j = 0) is shown in Fig.
11(a). As observed, the non uniformity of the bending moment distribution is clearly depicted by this
figure in which the isoline of value 1.1× 10−3 is also presented. Moreover and as expected, at the first
step (j = 1) the initial hole is localized inside this isoline (see Fig. 11(b)).

Considering meas(Ω̂) = 0.42meas (Ω), Fig. (12) presents the domain obtained at the last step
(j = 52).

(a) Topological Derivative at j = 0 (b) topology at j = 1 (first step)

Figure 11: Example 4 - obtained results at j = 0 and j = 1 (the isoline value is 1.1 × 10−3).
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Figure 12: Example 4 - topology at j = 52.

5 Conclusions

In this work, the Shape Sensitivity Analysis was employed to evaluate the Topological Derivative of
bending elastic plates with different kind of loads, geometry and boundary conditions. The relationship
between both concepts was formally established by Theorem 1, leading to the Topological-Shape
Sensitivity Method. Therefore, as shown in Section 3.3, results obtained in Shape Sensitivity Analysis
(Section 3.2) can be used to perform the Topological Derivative in a constructive way.

In order to illustrate the potentialities of the result given by Theorem 1, the Topological Derivative
was calculated for the linear elastic Kirchhoff plate bending problem. Further, we have computed the
Topological Derivative for this problem considering the total potential energy as the cost function and
the equilibrium equation in its variational form as the constraint, showing that the Topological-Shape
Sensitivity Method is, in fact, a framework to obtain the Topological Derivative.

Finally, in Section 4, the Topological Derivative was used to provide an useful information to
positioning holes. Nevertheless other strategies using the information provided by the Topological
Derivative can be used, we have shown a simple hard-kill like topology algorithm which furnishes
satisfactory qualitative results in agreement with those reported in the literature. This fact high-
lights that the Topological Derivative concept is a tool that can be applied in topology optimization
algorithms as pointed out by Eschenauer & Olhoff [5].
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taanmäki [23].
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[35] J. Sokolowski & A. Żochowski. Topological Derivatives for Contact Problems. Mini-symposium
on Topological Sensitivity Analysis: Theory and Applications, in P. Neittaanmäki [23].
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