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Abstract. In this work, we present a priori error estimates for local reliability-based sen-
sitivity analysis. The Score Function Method and the Weak Approach using Monte Carlo
Simulation are studied. The results are important for practical choice of parameters in local
sensitivity analysis. Besides, the results can be employed for development of a posteriori error
estimates and adaptive schemes in the future. The theoretical results are obtained for the one
dimensional case, but are also useful in the multidimensional context, as confirmed through a
set of numerical experiments.

1. Introduction

Probabilistic sensitivity analysis measures the influence of model inputs into probabilistic
outputs. Sensitivity analysis can be broadly classified according to three criteria: scope (global
vs local), quantity of interest (e.g. expected performance, variance, probability of failure,
quantiles) and methods (e.g. sampling-based schemes, stochastic expansion, surrogate models,
dimension reduction). Local sensitivity analysis evaluates the influence of deterministic model
parameters into quantities of interest. This is generally done by evaluation of partial derivatives.
Global sensitivity analysis (GSA), on the other hand, measures the influence of random model
parameters into quantities of interest. Sensitivity indexes, such as Sobol’s indexes, are generally
employed for this purpose.

Reliability-based sensitivity analysis is of paramount importance for several fields, such as
uncertainty based design, decision under uncertainties, uncertainty based optimization, model
building and calibration, among others. For this reason, sensitivity analysis has been inten-
sively studied in the last decades. Some recent advances involve application of GSA to vehicle
crash simulation [33], development of Kullback-Leibler divergence based GSA and its appli-
cation to offshore wind turbines [43], development of Kriging based GSA approaches [7, 14],
development of Line Sampling schemes for local reliability-based sensitivity analysis [46, 47], de-
velopment of GSA based on Fréchet derivative [8], development of quantile based GSA [20, 17],
development of GSA for multivariate outputs [24] and dynamic models [52], application of di-
mensional reduction to GSA [51, 23], converge studies regarding Morris’ extension methods
for GSA [5], GSA using orthogonal augmented radial basis function [48], GSA in the pres-
ence of multi-uncertainty [11], application of GSA to urban drainage simulation using principal
component analysis and sparse Polynomial Chaos Expansion (PCE) [30], development of the-
oretical framework for time-dependent variance based GSA [1], stochastic collocation for GSA
for medium-dimensional structural engineering problems [15], development of saddle-point ap-
proximation for dynamic systems reliability and local reliability-based sensitivity analysis [54],
GSA in high dimensions with partial least squares PCE [12], benchmark problems for GSA [6],
conceptual improvements concerning variance based GSA [25] and literature reviews [2], among
others.

In this work, we address local reliability-based sensitivity analysis, i.e. the influence of
deterministic model parameters into the probability of failure. In local sensitivity analysis of
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probability of failure, we evaluate the derivatives of the probability of failure with respect to
design parameters [35, 21, 13, 45, 31, 44]. This is an important subject for risk and reliability-
based design, since the sensitivities can be employed to guide the design procedure. Besides,
the derivatives are required if gradient based optimization algorithms are applied for this task,
as occurs in Risk and Reliability-Based Design Optimization.

The main difficulty concerning probability of failure sensitivity analysis is that evaluation of
the probability of failure is generally a computationally demanding problem by itself. Conse-
quently, accurate evaluation of sensitivities frequently lead to very high computational costs.
For this reason, development of new methods and improvement of existing ones is a topic of
intensive research. In the last decades, most advances were achieved by employing efficient
methods for evaluation of the probability of failure, such as Line Sampling [46, 47, 27], Subset
Simulation [4, 42], Kriging based Importance Sampling [10], Stochastic Expansion [45], Adap-
tive Importance Sampling [31], Subdomain Sampling [50], Moving Particles Methods [32], to
cite a few. A rich literature review concerning local reliability-based sensitivity analysis can be
found in the recent works [50, 32].

Local sensitivity analysis of probability of failure can be divided into two mains cases, de-
pending whether the design parameter affects the distribution of the random variables or the
limit state function. The methods frequently employed for each case are summarized in Ta-
ble 1. The Score Function Method [35, 40, 38, 19] is the standard approach when the design
parameter affects the distribution of the random variables, since the estimate is unbiased, as
discussed in Section 3. Three approaches are commonly adopted when the design parameter
affects the limit state function. The Direct Approach follows from a direct application of Finite
Difference Formulas. The Common Random Variable (CRV) approach is also based on Finite
Difference Schemes, but the sample is not redrawn during evaluation of the Finite Difference
Formula [19], a measure that is known to reduce the variance of the estimate [44]. The Weak
Approach, on the other hand, is based on an approximation for the weak derivative of the
probability of failure [21, 45].

Table 1. Approaches for local probability of failure sensitivity

Design parameter affects
Random Variables Limit State Function

Score Function Method Direct
Common Random Variable (CRV)

Weak

A priori error estimates for probability of failure sensitivity analysis using Monte Carlo
Simulation (MCS) were presented in [44]. The Weak, the Direct and the CRV approaches were
studied. It was demonstrated that the root mean square (rms) error of the estimate depends
not only on the probability of failure but also on its derivatives, a result that was intuitively
anticipated in [31]. However, in [44] only the case where the design parameter does not affect the
random variables was addressed. Besides, the bias estimate obtained for the Weak Approach
considered a single random variable and was not representative for more general situations.
The main goal of the present work is to fill these two gaps.

In this work, we derive a priori error estimates for the Score Function Method and the
Weak Approach, given by Eqs. (3.12) and (3.28), respectively. The bias estimate for the Weak
Approach presented here has been observed to be more representative than that obtained in
the work [44]. These results fill the two main gaps from the work [44]. The CRV with Central
Formula is also discussed because of its theoretical similarity to the Weak Approach. The CRV
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with Forward Formula and the Direct Approach were not further studied in this work (see [44]
for more details on these approaches).

Note that general purpose error estimates for the Score Function Method are known for
some time. In fact, the works [38, 39] presented error estimates that hold for expectations in
general, derivatives of arbitrary order and consider employment of Importance Sampling. In
this work, we rather focus on the particular case of error estimates concerning derivatives of
the probability of failure. Thus, the result from Eq. (3.7) is actually a particular case of the
estimates presented in [38, 39]. The results from Eq. (3.12), on the other hand, are novel.

The error estimates presented here were obtained for MCS [38, 19, 36]. The choice for MCS
is based on two main reasons. First, most sampling-based schemes share common aspects with
MCS. We thus expect that the error estimates presented in this work may be adapted for
more advanced sampling based-schemes in the future. Second, MCS is likely the most popular
sampling scheme for problems that do not involve high computational costs. Consequently, the
results presented here are valuable for a wide range of applications.

The rest of this paper is organized as follows. In Section 2, we present a brief review of prob-
ability of failure sensitivity analysis. The error estimates obtained in this work are presented
in Section 3, where we also demonstrate how the derived results can be employed for optimal
choice of parameters. Numerical examples that validate the obtained results are presented in
Section 4. The main conclusions of this work are summarized in Section 5. Additional results
are presented in the Appendices.

2. Probability of failure sensitivity

Let us consider that g(X, ρ) is a limit state function depending on a design parameter ρ ∈ R
and a random vector X ∈ Rd, d ≥ 1, with probability density function fX [18, 26, 41, 37]. The
probability of failure can then be defined as [28, 9, 29]

Pf (ρ) = P[g(X, ρ) < 0]

=

∫
Ω

I(g(x, ρ))fX(x)dx

= E[I(g(X, ρ))], (2.1)

where x represents a realization of the random vector X, P indicates the probability of occur-
rence of a given event, E represents the expected value, fX has support Ω ⊂ Rd and I is the
indicator function, namely

I(t) =

{
1, t < 0,
0, t ≥ 0.

(2.2)

Here we consider the sensitivity

P ′f (ρ) =
dPf (ρ)

dρ
, (2.3)

where the notation (·)′ is employed throughout the text to represent the derivative of (·) with
respect to the design parameter ρ. Sensitivity of Pf with respect to a design parameter that
affects fX can be addressed by the Score Function Method [35, 45, 40, 38]. If ρ does not affect
the distribution fX, then the Weak, the Direct and the CRV approaches described in [44] can
be employed.
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2.1. Score Function Method. The Score Function Method can be employed when the design
parameter only affects the distribution fX, i.e. when the limit state function g does not depend
explicitly on ρ. In this case, direct differentiation of Eq. (2.1) with respect to ρ gives (see
[35, 45, 40, 38, 19] for further details)

P
′
f (ρ) = E[I(g(X, ρ))s(X)]

=

∫
Ω

I(g(x, ρ))s(x)fX(x)dx, (2.4)

where s is the score function given by

s(x) =
1

fx(x)

dfx(x)

dρ
. (2.5)

If the above sensitivity is evaluated with MCS we have the estimate

P̂ ′f (ρ) =
1

N

N∑
i=1

I(g(xi, ρ))s(xi), (2.6)

where N is the sample size and xi are sample points.

The symbol P
′
f is employed here to represent an approximation for P ′f . The symbol P̂ ′f , on

the other hand, is employed to represent a MCS estimate for P
′
f (ρ). In other words, P

′
f (ρ) is

the conceptual approximation for the sensitivity P ′f , whereas P̂ ′f is the MCS estimate for P
′
f (ρ).

This notation is employed throughout the text. Latter we demonstrate that the Score Function
Method is conceptually exact, apart from sampling errors.

2.2. Weak Approach. The Weak Approach can be employed when the design parameter ρ
does not affect the distribution fx. In this case, we have (see [44] for further details)

P ′f (ρ) = − lim
h→0

E[φh(g(X, ρ))g′(X, ρ)]

= − lim
h→0

∫
Ω

φh(g(x, ρ))g′(x, ρ)fx(x)dx, (2.7)

where φh converges to the Dirac delta function in the sense of distributions, for h→ 0. In this
work we consider, without loss of generality, the following approximation

φh(t) =

 0, t < −h/2,
1/h, −h/2 ≤ t ≤ h/2,
0, t > h/2.

(2.8)

In practice, the above sensitivity is evaluated for sufficiently small h, thus giving the approx-
imation

P
′
f (ρ) = −E[φh(g(X, ρ))g′(X, ρ)]. (2.9)

The MCS estimate results

P̂ ′f (ρ) = − 1

N

N∑
i=1

φh(g(xi, ρ))g′(xi, ρ). (2.10)
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2.3. Common Random Variable Approach. The Common Random Variable (CRV) ap-
proach can also be employed when the design parameter ρ does not affect the distribution fx.
In this case, we take the central Finite Difference approximation [3, 34]

P
′
f (ρ) =

Pf (ρ+ τ)− Pf (ρ− τ)

2τ
, (2.11)

where the same sample is used to estimate both Pf (ρ + τ) and Pf (ρ − τ) [19], with τ used
to denote the step size. This measure is known to reduce the variance of the estimate in
comparison to direct employment of Finite Difference formulas, as demonstrated in [44]. The
MCS estimate results

P̂ ′f (ρ) =
1
N

∑N
i=1 I(g(xi, ρ+ τ))− 1

N

∑N
i=1 I(g(xi, ρ− τ))

2τ
. (2.12)

The CRV approach with Forward Formula was studied in [44] and is not further developed
here.

3. Bias, variance and mean square error

Since MCS provides an unbiased estimate for the expected value [38], we have

E[P̂ ′f (ρ)] = P
′
f (ρ), (3.1)

for all the above approaches. The bias of the estimate P̂ ′f (ρ) with respect to P ′f then results

e = E[P̂ ′f (ρ)]− P ′f (ρ)

= P
′
f (ρ)− P ′f (ρ). (3.2)

In other words, the bias is the conceptual error of P
′
f with respect to P ′f , without accounting

for sampling errors. However, since sampling is a random experiment, the estimate P̂ ′f has

variance given by V[P̂ ′f ]. Accuracy of the estimate can then be measured by the root mean
square (rms) error

Erms =
√
E[(P̂ ′f − P ′f )2]. (3.3)

In the work [44], it was demonstrated that the mean square error of the MCS estimate results

E2
rms = e2 + V[P̂ ′f ]. (3.4)

Thus, in order to obtain a priori error estimates for the above sensitivities we need to evaluate
both the bias and the variance of each approach.

3.1. Score Function Method. The estimate from Eq. (2.6) has expected value

E[P̂ ′f ] =
1

N

N∑
i=1

E[I(g(xi, ρ))s(xi)]

=
1

N

N∑
i=1

E[I(g(X, ρ))s(X)]

= P ′f . (3.5)
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We thus have e = 0 for the Score Function Method. In other words, the Score Function Method
is unbiased, since it is obtained by direct differentiation of Pf . The variance of Eq. (2.6), on
the other hand, results

V[P̂ ′f ] = V [
1

N

N∑
i=1

I(g(xi, ρ))s(xi)]

=
1

N
V [I(g(X, ρ))s(X)]

=
1

N

(
E[I(g(X, ρ))2s(X)2]− (E[I(g(x, ρ))s(X)])2

)
=

1

N

(
E[I(g(X, ρ))s(X)2]− (P ′f )2

)
, (3.6)

where we used the fact that I(g(X, ρ))2 = I(g(X, ρ)).
The mean square error of the Score Function Method then results

E2
rms =

1

N

(
E[I(g(X, ρ))s(X)2]− (P ′f )2

)
. (3.7)

Note that the above error estimate is easy to employ in practice, because it requires an estimate
for P ′f (that is evaluated during the procedure) and an estimate for E[I(g(X, ρ))s(X)2]. How-

ever, the quantity E[I(g(X, ρ))s(X)2] can be estimated with the same information employed to
estimate P ′f , and thus it does not require additional computational effort.

A general error estimate for the Score Function Method was previously presented in [38, 39].
This more general result holds for expectations in general (i.e. not necessarily probability
of failures), derivatives of arbitrary order and consider employment of Importance Sampling.
Note that MCS can be viewed as a particular case of Importance Sampling, where the sampling
distribution is taken as the distribution of the random variables. For this reason, Eq. (3.7) is
actually a specific purpose version of the more general result presented in [38, 39].

From Cauchy-Schwarz inequality we have

|E[I(g(X, ρ))s(X)2]| ≤
√

E[I(g(X, ρ))2]E[s(X)4]. (3.8)

Since I and s2 are non-negative, we can write

E[I(g(X, ρ))s(X)2] ≤
√
E[I(g(X, ρ))]E[s(X)4]

≤
√
PfE[s(X)4]. (3.9)

From Cauchy-Schwarz inequality we can also write

|P ′f | = |E[I(g(X, ρ))s(X)]|
= |E[I(g(X, ρ))I(g(X, ρ))s(X)]|
≤

√
E[I(g(X, ρ))]E[I(g(X, ρ))s(X)2]

≤
√
PfE[I(g(X, ρ))s(X)2], (3.10)

that gives

P ′2f
Pf

≤ E[I(g(X, ρ))s(X)2]. (3.11)
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From the above results we can write the lower and upper bounds as follows

1

N

(
1

Pf

− 1

)
(P ′f )2 ≤ E2

rms ≤
1

N

(√
Pf

√
E[s(X)4]− (P ′f )2

)
. (3.12)

It is interesting to observe that the lower bound only requires the values of Pf and P ′f and
should be easier to employ in practice. Besides, even though Eq. (3.7) is a particular case of
the estimates presented in [38, 39], the bounds from Eq. (3.12) are novel results.

The quantity E[s(X)4] can be evaluated for cases of interest. For the Normal distribution
with expected value µ and standard deviation σ we have, for example,

E[s(X)4] =
3

σ4
, (3.13)

when the design parameter ρ is the expected value µ. In this case, we have the bounds

1

N

(
1

Pf

− 1

)
(P ′f )2 ≤ E2

rms ≤
1

N

(√
3Pf

σ2
− (P ′f )2

)
. (3.14)

Derivation of specific upper bounds for other distributions involve analytical evaluation of
E[s(X)4]. This subject will not be further pursued in this work.

From these results, it is important to observe that the Score Function Method with MCS has
rms error proportional to 1/

√
N (see Eq. (3.7)). Thus, we have sub-linear convergence rate of

order 1/2. This is the same convergence rate we have for evaluation of Pf with MCS [44, 29]
and the same convergence rate for MCS in general [19, 36].

3.2. Weak Approach. In this section, we obtain error estimates for the Weak approach in the
one-dimensional case (d = 1). The main idea is to first demonstrate that the Weak approach
is equivalent to the CRV with Central Formula for h→ 0. This allows employment of the bias
of the Central Formula for the Weak approach, once such an equivalence rule is obtained. The
resulting error estimates were found to be accurate for the general case of multidimensional
random variables (d > 1).

From A, we know that the rectangular pulse φh can be written as

φh(t) = −1

h
(I(t+ h/2)− I(t− h/2)). (3.15)

In one-dimension, the sensitivity of Eq. (2.9) can then be written as

P
′
f (ρ) =

∫ +∞

−∞

1

h
(I(g(x, ρ) + h/2)− I(g(x, ρ)− h/2))g′(x, ρ)fX(x)dx. (3.16)

We now wish to replace g(x, ρ) ± h/2 by g(x, ρ ± τ) in the above expression. In order to
obtain the appropriate value for τ , consider then the first order truncated expansion

g(x, ρ+ τ) = g(x, ρ) + τg′(x, ρ). (3.17)

From the condition

g(x, ρ) + h/2 = g(x, ρ+ τ), (3.18)

we get

τ(x) =
h

2g′(x, ρ)
. (3.19)
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Consequently, Eq. (3.16) can be rewritten as

P
′
f (ρ) = −

∫ +∞

−∞

1

h
(I(g(x, ρ+ τ(x)))− I(g(x, ρ− τ(x))))g′(x, ρ)fX(x)dx, (3.20)

with τ(x) as given above. Substitution of h from Eq. (3.19) in the above expression gives

P
′
f (ρ) = −

∫ +∞

−∞

1

2τ(x)
(I(g(x, ρ+ τ(x)))− I(g(x, ρ− τ(x))))fX(x)dx. (3.21)

Let us assume that x∗, satisfying g(x∗, ρ) = 0, is unique. Then, for h → 0, the support of
I(g(x, ρ+ τ(x)))− I(g(x, ρ− τ(x))) converges to x∗. By denoting

τ = τ(x∗), (3.22)

we have, for h→ 0, that

P
′
f (ρ) =

1

2τ

[∫ +∞

−∞
I(g(x, ρ+ τ))fX(x)dx−

∫ +∞

−∞
I(g(x, ρ− τ))fX(x)dx

]
=
Pf (ρ+ τ)− Pf (ρ− τ)

2τ
, (3.23)

which is clearly a Central Formula for the sensitivity with step size τ . This proves that, in the
one-dimensional case, the Weak approach is equivalent to a Central Formula scheme for h→ 0
when x∗ is unique. This occurs for h that satisfies Eq. (3.19) at x∗, i.e. for

h = 2τg′(x∗, ρ), (3.24)

where τ is the step size of the central formula.
The bias of the Central Formula with step size τ is known to be given by [3, 34]

e = −τ
2

6
P ′′′f (ξ), ξ ∈ [ρ− τ, ρ+ τ ]. (3.25)

By substitution of Eq. (3.24) into the above expression, we conclude that the bias of the Weak
Approach can be estimated as

e = −h
2

24

P ′′′f (ξ)

(g′(x∗, ξ))2
, ξ ∈ [ρ− τ, ρ+ τ ]. (3.26)

The variance of the Weak approach is known to be given by [44]

V[P̂ ′f ] =
g′(x∗, ρ)P ′f (ρ)

Nh
. (3.27)

After taking ξ = ρ, the mean square error estimate becomes

E2
rms =

h4

576

(P ′′′f (ρ))2

(g′(x∗, ρ))4
+

1

Nh
g′(x∗, ρ)P ′f (ρ). (3.28)

Note that this result is different from the one previously obtained in [44]. First, the procedure
employed here (i.e. equivalence to a central formula) is very different from the one employed in
[44]. Besides, the result now involves only derivatives of Pf and g, while the result presented in
[44] also involves second order derivatives of the quantity ψ(x∗, ρ) = g′(x∗, ρ)fx(x∗) in place of
P ′′′f (ρ). Since P ′′′f is a global quantity in comparison to the point-wise quantity evaluated at x∗

given by g′(x∗, ρ)fx(x∗), the result obtained here incorporates information of the problem in a
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broader sense. This seems to be the reason why the estimate becomes more representative in
a wider range of situations.

Even though this result was obtained in the one-dimensional case considering x∗ unique, in
the examples we demonstrate that it is representative for more general situations. For this
reason, the above bias estimate can be viewed as an improvement over the estimate previously
presented in [44].

In B we demonstrate that, in the multidimensional case, the bias can be written as

e =
h2

24

∫
Γ

∆Ψ(x)

‖∇g(x, ρ)‖3
dΓ + o(h2), (3.29)

where x ∈ Rd and Ψ(x) = g′(x, ρ)fX(x), with ∆Ψ(x) used to denote its Laplacian with respect
to x. Finally, Γ is the hypersurface defined by g(x, ρ) = 0. This result confirms that the bias
is indeed of second order with respect to h. However, the above estimate is not efficient for
computational purposes in this form, since it would require numerical integration over Γ.

3.3. Common Random Variable (CRV) Approach. In the work [44], the following esti-
mate for the mean square error of the CRV approach with Central Formula was obtained

E2
rms = τ 4 (Pf (ρ)′′′)2

36
+

1

Nτ

P ′f (ρ)

2
. (3.30)

This error estimate was found to be accurate and for this reason we do not purse other estimates
for the CRV approach in this work.

3.4. Optimal values for h and τ . For a given sample size N , the optimal value of h for the
Weak Approach can be estimated from the optimality condition

dE2
rms

dh
= 0. (3.31)

This gives

h5 =
1

N

144(g′(x∗, ρ))5P ′f (ρ)

(P ′′′f (ρ))2
. (3.32)

For this optimal value of h, the rms error results

Erms = 0.6801720118

P ′f (ρ)
√
P ′′′f (ρ)

N

2/5

, (3.33)

as can be verified by the reader1. This rms error is called here the “optimal error”, in the sense
that it is the theoretical error from optimal choice of parameter h.

Following the same procedure for the CRV with Central Formula we get

τ 5 =
1

N

9P ′f (ρ)

2(P ′′′f (ρ))2
(3.34)

and

1Note that the quantity 0.6801720118 actually corresponds to rounding of 124/5
√

5/24.
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Erms = 0.6801720118

P ′f (ρ)
√
P ′′′f (ρ)

N

2/5

. (3.35)

The careful reader will observe that the optimal rms error of the Weak and CRV approaches
are the same. This means that both approaches will be equivalent from the convergence point
of view for N → ∞, as long as the optimal values for h and τ are adopted. Of course this
is only a theoretical asymptoptic result, that may not hold for arbitrary values employed in
practice. However, the results indicate that both approaches should have similar accuracy in
practice.

Also note that for optimal h and τ , the rms error is now proportional to 1/N2/5. This
indicates that both the Weak and the CRV approaches with MCS have sub-linear convergence
rates of order 2/5. This convergence rate is slower than the convergence rate 1/2 of MCS
for estimating Pf . Besides, it is also slower than the convergence rate of the Score Function
Method with MCS. This proves that it is harder to evaluate the sensitivity with respect to
design parameters that affect the limit state function than with respect to design parameters
that only affect the distribution.

4. Numerical Examples

We now present some numerical examples in order to validate the a priori error estimates
presented previously. In Section 4.1, we employ the Score Function Method to solve two
examples where the design parameter only affects the distribution. In Section 4.2, we address
two examples where the design parameter only affects the limit state function, that are solved
with the Weak Approach and the CRV Approach with Central Formula. The rms error of the
sensitivity was estimated as

Êrms =

√√√√ 1

NMCS

NMCS∑
i=1

(P̂ ′fi − P ′f )2, (4.1)

where P̂fi are sensitivity estimates, P ′f is the reference sensitivity and NMCS is the number of
times MCS was run in order to evaluate the rms error. In this work, we take NMCS = 100 in
all examples, since it was observed that the results do not vary significantly if NMCS is further
increased.

4.1. Score Function Method. We first present two examples regarding sensitivity analysis
when the design parameter only affects the distribution of the random variables, solved with
the Score Function Method using MCS estimates. The results were obtained with samples of
sizes N = 103, 104, 105 and 106.

4.1.1. Roof truss. The first example is the roof truss previously studied in [31, 42], among
others. The limit state function is given by

g = 0.03− ql2

2

(
3.81

AcEc

+
1.13

AsEs

)
, (4.2)

where q is the distributed load, l is the roof span, Ac, Ec and As, Es are the cross section area
and elastic modulus of the concrete and steel beams, respectively. The random variables are as
described in Table 2, where CV stands for coefficient of variation 2.

2In Examples 4.1.1 and 4.2.1, some physical quantities which must be positive are modeled as Normal random
variables. This is not recommended in practice, since negative values of these physical quantities may lead to
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Table 2. Random variables of Example 4.1.1

Parameter Distribution Expected Value CV
q (N/m) Normal 20,000 7%
l (m) Normal 12 1%
As (m2) Normal 9.82×10−4 6%
Ac (m2) Normal 0.04 12%
Es (N/m2) Normal 1×1011 6%
Ec (N/m2) Normal 2×1010 6%

Here we only present results of the sensitivity with respect to the expected value of As (i.e.
ρ = E[As]), since sensitivities with respect to other random variables gave similar results. The
reference values for the probability of failure and its sensitivity were taken as Pf = 0.009373
and P ′f = −186.262, that are the exact values presented in [42].

The rms errors are presented in Figure 1. The rms error estimated from Eq. (4.1) associated
with the numerical experiment is presented as the red dotted line. The a priori estimate from
Eq. (3.7) is presented as the solid blue line. The bounds from Eq. (3.14) are presented as black
dashed lines. From these results we observe that the estimate from Eq. (3.7) agrees very well
with the rms error evaluated from numerical solutions. The bounds from Eq. (3.14) also hold,
as expected.

103 104 105 106
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100

101
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Ê
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Score Function Method

Estimate
Numerical

Bounds

Figure 1. Erms for Example 4.1.1

Note that the bounds are not centered. In fact, the lower bound is closer to the numerical
results and the estimate. The lower bound is also easier to employ than the upper bound, since
it does not require an estimate to E[s(X)4] (see Eq. (3.12)).

spurious results. However, in this work we kept the Normal distributions originally employed in these examples
in order to allow comparison to previous works. We also emphasize that the distribution was not truncated
during sampling.



12

4.1.2. Elastoplastic frame. The second example is the elastoplastic frame studied in [31, 27, 53],
among others. The limit state function is given by

g = min{g1, g2, g3, g4} (4.3)

with

g1 = 2M1 + 2M3 − 4.5S,

g2 = 2M1 +M2 +M3 − 4.5S,

g3 = M1 +M2 + 2M3− 4.5S,

g4 = M1 + 2M2 +M3 − 4.5S,

(4.4)

where Mi are plastic moments and S is the load magnitude. The random variables are as
described in Table 3.

Table 3. Random variables of Example 4.1.2

Parameter Distribution Expected Value CV
Mi (tm) Lognormal 200 15%
S (tm) Lognormal 50 40%

Here we only present results of the sensitivity with respect to the expected value of M1 (i.e.
ρ = E[M1]), since sensitivities with respect to other random variables gave similar results. The
reference values for the probability of failure and its sensitivity were taken as Pf = 5.29× 10−4

and P ′f = −8.85 × 10−6. These results were obtained using the Score Function Method and

MCS with a sample of size 108 and agree with the results obtained in [31, 27]. The rms errors
are presented in Figure 2. The bounds from Eq. (3.12) are presented as black dashed lines.
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Figure 2. Erms for Example 4.1.2
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The results again agree with the estimate from Eq. (3.7) and the bounds from Eq. (3.12).
Besides, the lower bounds is closer to the numerical results and the estimate again. These results
seem to indicate that, in general, the lower bound may be tighter than the upper bound.

4.2. Weak Approach and Central Formula. We now present two examples regarding sensi-
tivity analysis when the design parameter only affects the limit state function. These examples
are solved with the Weak approach and the CRV approach with Central Formula using MCS
estimates. For each sample size, the sensitivity was obtained 20 times and the mean square
error with respect to a reference result was evaluated, using Eq. (4.1). The point x∗ was taken
as the most probable point of failure (MPP) obtained with the Hasofer-Lind-Rackwitz-Fiessler
(HLRF) first order algorithm [28, 9, 29].

4.2.1. Cantilever beam. In this example, we consider the cantilever beam previously studied in
[31, 49], among others. The limit state functions are given by

g1 = y −
(

600

wt2
Y +

600

w2t
X

)
(4.5)

g2 = D0 −
4L3

Ewt

√(
Y

t2

)2

+

(
X

w2

)2

(4.6)

where y and E are the material yield stress and elastic modulus, t and w are the beam height
and width, X and Y are applied loads in the direction of t and w, L is the beam length and
D0 is allowable tip displacement. The random variables are as described in Table 4.

Table 4. Random variables of Example 4.2.1

Parameter Distribution Expected Value CV
X (lb) Normal 500 20%
Y (lb) Normal 1,000 10%
y (psi) Normal 40,000 5%
E (psi) Normal 29× 106 5%

The results were obtained for w = 2.4in, t = 3.9in, D0 = 2.5in and L = 100in. Here we
only present results of the sensitivity with respect to t (i.e. ρ = t), since sensitivities with
respect to other random variables gave similar results. The reference values for the proba-
bility of failure and its sensitivities were taken as Pf = 0.00303, P ′f = −0.0353 for g1 and
Pf = 0.00025, P ′f = −0.00295 for g2, that are the values from [49]. For g1 and g2 the MPP

is given by x∗ = {0.069707922285513, 0.112127951655093, 3.704854131638248, 0.0}×104 and
x∗ = {0.000080221466839, 0.000105711272514, 0.0, 2.660714722098192} ×107, respectively.
The third order derivatives required by the error estimates were taken as P ′′′f = −4.17 and
P ′′′f = −0.37 for g1 and g2, respectively. These results were evaluated with the CRV Approach

using a third order central formula with τ = 0.01 × ρ and N = 106. Note that a poor esti-
mate for P ′′′f may affect the accuracy of the error estimates. The values of P ′′′f presented here
were obtained after several computational tests. Practical implications resulting from inexact
estimate of P ′′′f is outside the scope of this work.

We first take the sample size N = 106. For the Central Formula we take τ = 3.9 × 0.2/2i,
i = 0, 1, 2, ..., 15. For the Weak Approach, we take h = 2τg′(x∗, ρ) in order to satisfy Eq.
(3.24). The rms errors obtained and the a priori estimate from Eq. (3.28) with respect to τ are
presented in Figure 3. We observe that, for both g1 and g2, the error estimate agrees very well
with the results. This is the main achievement of this work, since the error estimate obtained
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in the work [44] was not accurate for this example. Also note that the Weak Approach and the
Central Formula are equivalent for h and τ that satisfy Eq. (3.24) in this example.
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Figure 3. Erms for varying τ in Example 4.2.1 (g1 (a) and g2 (b))

We now take samples of sizes N = 103, 104, 105 and 106. The optimal parameters h and τ
were evaluated with Eqs. (3.32) and (3.34). The optimal rms errors and the estimate from Eq.
(3.33) with respect to N are presented in Figure 4. We observe that the results agree with the
a priori estimate.
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Figure 4. Erms for varying N in Example 4.2.1 (g1 (a) and g2 (b))

4.2.2. Barrier problem. In this example, we consider the probability of a Gaussian stationary
stochastic process X(t) surpassing a constant barrier ρ, that is also the design parameter. The
stochastic processes has autocorrelation given by the exponential square law

ρ(t1, t2) = exp

(
−(t2 − t1)2

λ2

)
, (4.7)

where λ is the correlation length. The properties of the stochastic process X(t) are summarized
in Table 5.
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Table 5. Random processes from Example 4.2.2

Process Type Expected Value Standard Deviation Autocorrelation
X(t) Gaussian, Stationary µ = 10 σ = 2.5 Eq. (4.7) with λ = 4

The probability of failure is defined as

Pf = P [∃a ∈ [0, T ]|X(a) > ρ] , (4.8)

where [0, T ] is the time interval of analysis. This means that failure is assumed to occur if the
barrier is surpassed by the process at some time instant.

This problem can be solved numerically by expansion of the stochastic process. Here we
employ EOLE (Expansion Optimal Linear Estimation) [22]. We first assume that the time
interval [0, T ] is divided into k − 1 uniform time steps, defining the time instants t1, t2, ..., tk.
The stochastic process is then expanded as

X(t) = µ(t) +
r∑

i=1

ζi√
θi

ΦT
i Σ, (4.9)

where µ(t) is the expected value of the process, r < k is the number of terms maintained in
the expansion, ζi are independent standard Normal random variables, Σ is the autocovariance
matrix among time instants, Φi are the eigenvectors of Σ and θi its eigenvalues. The limit state
function is then defined as

g = max
i=1,2,...,k

{ρ−X(ti)}, (4.10)

which assumes that failure occurs if the processes surpasses the barrier ρ at some time instant.
In this example, we consider the time interval [0, 50], employ 200 uniform time steps and

take the first r = 100 terms in the EOLE expansion. The value of the barrier is defined as the
design parameter ρ = 20. Note that the resulting computational problem has r = 100 standard
Normal random variables and the limit state function from Eq. (4.10) equivalent to that of a
series system. Reference values were evaluated with the CRV Approach with Central Formula,
using a sample of size N = 107 and τ = 0.2. The results are Pf = 0.000973, P ′f = −0.0015815,
P ′′f = 0.00214, P ′′′f = −0.0032.

We first take N = 105 and τ = 20× 0.2/2i, with i = 0, 1, 2, ..., 15. For the Weak Approach,
we take h = 2τg′(x∗, ρ) in order to satisfy Eq. (3.24). The rms errors obtained and the a priori
estimate from Eq. (3.28) with respect to τ are presented in Figure 5. We observe that the
results agree with the a priori estimate.

We now take samples of sizes N = 103, 104, 105 and 106. The parameters h and τ were
evaluated with Eqs. (3.32) and (3.34). The rms errors and the estimate from Eq. (3.33) with
respect to N are presented in Figure 6. Again, the results agree with the a priori estimate.

5. Conclusions

In this work, a priori error estimates for the Score Function Method and the Weak Approach
with Monte Carlo Simulation were derived, which are given respectively by Eqs. (3.12) and
(3.28). The error estimate for the Weak Approach was obtained from an equivalence condition
to the Finite Difference Central Formula. Even though the result was obtained in the one-
dimensional case, the numerical examples indicate that it may be useful for the multidimensional
context as well. An estimate for the multidimensional case was also obtained in B, which
confirms that the bias is indeed of second order with respect to the parameter h.



17

10-4 10-3 10-2 10-1 100 101
10-4

10-3

10-2

Ê
rm

s

Weak Approach and Central Formula

Weak Estimate
Weak
Central

Figure 5. Erms for varying τ in Example 4.2.2
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Figure 6. Erms for varying N in Example 4.2.2

It was demonstrated that, for optimal choice of parameters, the rms error of the Weak
Approach and the Common Random Variable Approach with Finite Difference Central Formula
is proportional to 1/N2/5. This convergence rate is slower than that of standard Monte Carlo
Simulation and the Score Function Method, which is proportional to 1/N1/2. This proves that,
from the computational point of view, the sensitivity with respect to parameters that affect the
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limit state function is harder to evaluate than the sensitivity with respect to parameters that
only affect the distribution, as expected.

Concerning the Weak and the CRV approaches, it is important to point out that the error
does not decrease monotonically as (h, τ) is reduced. In fact, for a given sample size N there
exist optimal values for (h, τ), as can be seen from Figures 3 and 5. This is the same behavior
observed in [44]. For (h, τ) bigger than this optimal value we have a “bias stage”, where the error
is dominated by the bias. For (h, τ) smaller than the optimal value, the error is dominated by
the variance of the estimate and we have a “variance stage”. Optimal values of the parameters
are the ones that balance the bias and the variance to produce minimal error. These values lie
in the transition between the bias and the variance stages.

Evaluation of the a priori error estimates presented here require the value of the probability
of failure and its derivatives. In general, this information is unknown beforehand and cannot
be evaluated exactly. Consequently, approximate values obtained with simulation may be
employed for this purpose. The resulting estimates will not be exact, but may be accurate
enough to evaluate the order of magnitude of the errors involved. However, we emphasize that
the main goal of this work is to provide theoretical results that will contribute to a better
understating of the problem and future computational advancements. For this reason, further
computational aspects were not addressed here.

The results of this work are important from the conceptual point of view and can be valu-
able for developing a posteriori error estimates and adaptive sampling schemes for sensitivity
analysis in the future. Finally, the error estimates presented in this work may be adapted for
more advanced sampling-based schemes than standard Monte Carlo Simulation.
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Appendix A. Weak derivative of the indicator function I

From Figure 7, we observe that we can write

φh(t) =
1

h
(I(t− h/2)− I(t+ h/2))

= −1

h
(I(t+ h/2)− I(t− h/2)).

(A.1)

In other words, the rectangular pulse φh can be written as the central finite difference of I(t)
with step size h/2. For h → 0, this leads to the well known conclusion that φh(t) actually
represents the weak derivative of I(t).

Appendix B. Results for the multidimensional case

The indicator function can be written as

I(t) = 1−H(t), (B.1)

where H is the Heaviside function. The weak derivative of I is then

d

dt
I(t) = −δ(t), (B.2)
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Figure 7. Weak Derivative

where δ is the Dirac delta function. The probability of failure sensitivity can then be written
as

P ′f (ρ) = −
∫
Rd

δ(g(x, ρ))g′(x, ρ)fX(x)dx. (B.3)

The composition δ ◦ g can be written as

δ(g(x, ρ)) =
δ(x− x∗)

‖∇g(x∗, ρ)‖
, (B.4)

provided that g(x∗, ρ) = 0. From the coarea formula we have [16]

P ′f (ρ) = −
∫
Rd

δ(x− x∗)g′(x, ρ)fX(x)

‖∇g(x∗, ρ)‖
dx

= −
∫

Γ

g′(x, ρ))fX(x)

‖∇g(x∗, ρ)‖
dη(x), (B.5)

where Γ is the (d − 1)-dimensional hypersurface defined by g(x∗, ρ) = 0 with respect to the
Minkowski content measure and η is the hypersurface measure associated to Γ. Let us assume
that x∗ is unique, then
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P ′f (ρ) = −g
′(x∗, ρ)fX(x∗)

‖∇g(x∗, ρ)‖
. (B.6)

On the other hand, δ(x − x∗) = δ(x1 − x∗1) × · · · × δ(xd − x∗d), where each δ(t) can be
approximated by φε(t) as follows

φε(t) =

 0, −∞ < t ≤ −ε/2
1/ε, −ε/2 < t < ε/2
0, +∞ > t ≥ ε/2

(B.7)

for ε → 0. The approximated sensitivity is then given by an integral with support within the
d-dimensional hypercube of size ε, namely

P ε
f (ρ) = − ε−d

‖∇g(x∗, , ρ)‖

∫ x∗
d+ε/2

x∗
d−ε/2

· · ·
∫ x∗

1+ε/2

x∗
1−ε/2

Ψ(x1, ..., xd)dx1 · · · dxd, (B.8)

with Ψ(x) = g′(x, ρ)fX(x). Let us expand Ψ(x) in Taylor series around the point x∗ to obtain

Ψ(x) = Ψ(x∗) +∇Ψ(x∗) · (x− x∗) +
1

2
∇2Ψ(x∗)(x− x∗) · (x− x∗) + · · · , (B.9)

which allows for solving the above integral by hand, namely

P ε
f (ρ) = − ε−d

‖∇g(x∗, ρ)‖

(
εdΨ(x∗) +

ε2+d

24
∆Ψ(x∗)

)
+ o(ε2)

= − Ψ(x∗)

‖∇g(x∗, ρ)‖
− ε2 ∆Ψ(x∗)

24‖∇g(x∗, ρ)‖
+ o(ε2), (B.10)

where we have used the fact that ∇2Ψ(x∗) · I = tr(∇2Ψ(x∗)) = ∆Ψ(x∗), with I used to denote
the d-dimensional identity matrix. In the same way, δ(g(x, ρ)) can be approximated by φh(t)
as

φh(t) =

 0, −∞ < t ≤ −h/2
1/h, −h/2 < t < h/2
0, +∞ > t ≥ h/2

(B.11)

for h→ 0. Then, the following relation between ε and h holds true

ε =
h

‖∇g(x∗, ρ)‖
, (B.12)

so that the approximated sensitivity can be written in terms of the small parameter h as

P h
f (ρ) = − Ψ(x∗)

‖∇g(x∗, ρ)‖
− h2 ∆Ψ(x∗)

24‖∇g(x∗, ρ)‖3
+ o(h2) (B.13)

Finally, the error eh(x∗) = P ′f (ρ)− P h
f (ρ) for unique x∗ ∈ Γ is given by

eh(x∗) = h2 ∆Ψ(x∗)

24‖∇g(x∗, ρ)‖3
+ o(h2). (B.14)

The bias from Eq. (B.14) was obtained for unique x∗ ∈ Γ. For this reason, Eq. (B.14) is
actually a point-wise bias. However, in the general case x∗ ∈ Γ is not unique and then the total
bias is composed by the contribution of all points in Γ. This gives the bias
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e =

∫
Γ

eh(x)dΓ, (B.15)

that yields to

e =
h2

24

∫
Γ

∆Ψ(x)

‖∇g(x, ρ)‖3
dΓ + o(h2). (B.16)

This result shows that the bias is indeed of second order with respect to h, as occurs in the
one-dimensional case [44]. This is an important conceptual result from this work.
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