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Abstract. In this work, the topological derivatives of L2 and energy norms associated
with the solution to Kirchhoff and Reissner-Mindlin plate bending models are introduced.
Based on existing theoretical results, closed forms of the sensitivities are presented. A
zero-order term is introduced in the equilibrium equations, which allows for adapting
the obtained sensitivities to the context of topology optimization of plates under elas-
tic support and free vibration condition as well. The resulting analytical formulae are
used together with a level-set domain representation method to devise a simple topol-
ogy design algorithm. Several finite element-based representative numerical experiments
are presented showing its applications to the compliance minimization and eigenvalue
maximization of Kirchhoff as well as Reissner-Mindlin plate structures under bending
effects.

1. Introduction

Plates are structural elements where one of its dimensions, namely thickness, is much
smaller than the others, contained in a plane. These elements are widely used in the naval,
nuclear, aeronautical and civil industries, among others, due to their structural capability
to cover large distances or surfaces. Based on the previous geometrical description, the
mechanical behaviour of the structural element can be reduced to an analysis over the
middle plane of the plate. Therefore, some hypothesis over the thickness must be made.
The first theory introduced for plates was the classical thin plate theory of Kirchhoff
(1850), where some assumptions were imposed by omitting the shear deformations and
rotary inertia. In the papers by Reissner (1945) and Mindlin (1951), the shear deforma-
tions are considered and the rotation and lateral deflections are decoupled given arise to
the Reissner-Mindlin theory, which allowed more accurate results in thick plate bending
analysis. Since then, these theories have been widely and successfully used to analyse
several structural problems modeled by plates in many engineering applications.

The theory of plates is a broad field and its optimal design can be analyzed from
different engineering points of view. Regarding optimization of plates by considering as
design variable the thickness (Kropiowska et al., 2019; Czarnecki and Lewiński, 2013),
composite materials (Goo et al., 2016) and a formulation of Free Material Optimization
(FMO) for laminated plates (Weldeyesus and Stolpe, 2016). In the paper by Leal and
Soares (1989) was proposed a theory of design sensitivity analysis of structures based
on mixed finite element models. The theory was developed to the sensitivity of the
displacements and stresses of plates due to thickness variation. The sensitivity analysis
was developed for static, dynamic and stability constraints based on mixed finite element
models. The topology optimization applied for plates structures arise naturally due to the
industrial demand to generate innovative design concepts that lead to weight savings and
vibration control. The achievement of the best topology that attends the design criteria
becomes crucial given rising for new technologies, materials, and high-end applications.
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In recent years, the topology optimization methods have been object of attention and
studied extensively. Beyond the classical problem of compliance minimization under vol-
ume constraint, maximization of the structural fundamental eigenvalue is the main prob-
lem in vibration control engineering, also playing an important role in machine design,
automotive industry, and aerospace. A pioneered work based on topology optimization
applied to eigenvalue problems was introduced by Diaaz and Kikuchi (1992), where a
single frequency was considered in the optimization process. Since then, some impor-
tant problems related to this subject have been treated and received important scientific
attention, for instance, eigenfrequency maximization by considering the mixture of two
elastic materials (Allaire et al., 2001), maximization of performance index by considering
displacement and stress constraint (Liang et al., 2001; Liang, 2004), optimization of sim-
ple and multiple eigenvalues (Du and Olhoff, 2007), optimal design regarding to accurate
geometric description (Li et al., 2010) and advances meshless and level-set methods (Khan
et al., 2020).

The topological derivative, initially introduced by Sokolowski and Zochowski (1999),
has been also successfully employed for topology optimization; and despite of being most
frequently implemented with mesh methods it’s also suitable for meshless methods (Neches
and Cisilino, 2008; Hur et al., 2017; Anflor et al., 2018). In this sense, the topological
derivative (TD) is a versatile method that can contribute significantly to the topology
optimization field independently of the numerical or optimization method employed. The
topological derivative gives the sensitive of a cost function when the domain under consid-
eration is modified by the insertion of a singular perturbation, like of a hole, inclusion or
even cracks. In fact, the TD is the main term of the asymptotic expansion of the selected
cost function submitted to the differential governing equation as constraint (Novotny and
Soko lowski, 2013; Novotny et al., 2019). Depending on the differential governing equa-
tion being considered, the derivation procedure becomes highly complex. Closed form of
the TD can be obtained after an intensive analytical work. In this context, an available
set of TD closed formulas for several classes of problems can contribute significantly in
the topology optimization field once it can be coupled with diverse optimization meth-
ods available in the literature as aforementioned. The topological derivative derivation
for the Kirchhoff plate bending problem considering the fourth-order differential operator
was firstly considered in the paper by Novotny et al. (2005). Extension of that results by
taking into account a general class of shape functionals was presented by Amstutz and
Novotny (2011). In the paper by Turevsky et al. (2009) a numerical method to compute
the first-order variation of some quantities of interest when an arbitrary-shaped features
is introduced within the plate domain has been proposed. The topological derivative
with respect to introduction of reinforcement in a plate was presented and discussed in
details by Bojczuk and Mróz (2009). The topological derivative for an elliptical hole in
bending plate model was obtained by Bojczuk and Mróz (2012). A detailed analysis of
volume control methods for topological optimization of plate by using topological deriv-
ative concept was presented by Campeão et al. (2014). Later the topological derivative
for the total potential energy associated with the Reissner-Mindlin plate bending prob-
lem was derived by Sales et al. (2015). The mechanical model leads a coupled system
of second-order partial differential equations. How to deal with such a coupled system
represents the main contribution of the authors. Therefore, the Kirchhoff plate model has
already been extensively studied from both theoretical and numerical point of views. On
the other hand, there are just few theoretical works dealing with Reissner-Mindlin plate
model. In particular, only the energy shape functional has been considered and nothing
can be found from the numerical point of view.

In the present work the topological derivatives of L2 and energy norms associated with
the solution to Kirchhoff and Reissner-Mindlin plate bending problems are presented.
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A zero-order term is introduced in the equilibrium equations, which allows for adapting
the obtained sensitivities to the context of topology optimization of plates under elastic
support and free vibration condition as well. The resulting formulae are used together
with a level-set domain representation method to devise a simple and efficient topology
design algorithm. Some numerical experiments are presented showing its applications to
the compliance minimization and eigenvalue maximization of Kirchhoff as well as Reissner-
Mindlin plate structures.

The layout of the paper is as follows. In Section 2 the topological derivative is introduced
for Kirchhoff (Section 2.1) and Reissner-Mindlin (Section 2.2) plate theories. The proof
of the existence of the associated topological derivatives are presented, together with the
resulting sensitivities of the L2 and energy norms of the solutions to the problems under
consideration. Section 3 presents some numerical examples in order to illustrate the
validity and effectiveness of the present formulation, including application to compliance
minimization (Section 3.1) and first eigenvalue maximization (Section 3.2). Finally, the
paper ends with some concluding remarks in Section 4.

2. Topological Derivative

Let us consider an open and bounded domain Ω ⊂ R2 which is subject to a nonsmooth
perturbation confined in a small region ωε(x̂) of size ε and center at x̂ ∈ Ω, with ωε ⊂ Ω.
We introduce a characteristic function x 7→ χ(x) associated to the unperturbed domain,
namely χ = 1Ω such that

|Ω| =
∫

Ω

χ, (2.1)

where |Ω| is the Lebesgue measure of Ω. Then, we define a characteristic function asso-
ciated to the topologically perturbed domain of the form x 7→ χε(x̂, x). In the case of a
perforation, for instance χε(x̂) = 1Ω−1ωε(x̂) and the singularly perturbed domain is given
by Ωε = Ω\ωε. Then, we assume that a given shape functional ψ(χε(x̂)), associated to the
topologically perturbed domain, admits the following topological asymptotic expansion

ψ(χε(x̂)) = ψ(χ) + f(ε)DTψ(x̂) + o(f(ε)), (2.2)

where ψ(χ) is the shape functional associated to the unperturbed domain, f(ε) is a positive
function such that f(ε) → 0 with ε → 0+ and o(f(ε)) is the remainder. The function
x̂ 7→ DTψ(x̂) is called the topological derivative of ψ at x̂. Therefore, this derivative can
be seen as a first order correction of ψ(χ) to approximate ψ(χε(x̂)).

The topological derivatives of the L2 and energy norms associated with the Kirchhoff
and Reissner-Mindlin plate models, with respect to the nucleation of circular inclusions,
are presented in this section. The mathematical models for both problems as well as the
respective shape functionals we are dealing with are introduced. The original unperturbed
and topologically perturbed problems are stated, together with arguments on the existence
of the associated topological derivatives. In particular, we show that a class of H2(Ω;R)
and H1(Ω;R2) ×H1(Ω;R) shape functional (including the energy shape functional), re-
spectively associated with Kirchhoff and Reissner-Mindlin problems, is continuous with
respect to the small parameter ε, and thus differentiable in the sense of (2.2). Finally,
the resulting topological derivatives are presented in their close forms, which are useful
for engineering applications.

We start by introducing the kinematic assumptions of each plate bending problem we
are dealing with. It is assumed that the plates are submitted to bending effects. In
addition, the plates are represented by a two-dimensional domain Ω ⊂ R2 with thickness
h > 0 supposed to be constant. The domain Ω is divided into two subdomains ω ⊂ Ω
and the complement Ω \ ω. Finally, let us introduce a set of piecewise constant functions
α, β, ρ and f as presented in Table 1.
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Table 1. Values of α, β, ρ and f .

α β ρ f
Ω \ ω α0 β0 ρ0 f0

ω α1 β1 ρ1 f1

The topological perturbation is given by the nucleation of a small circular inclusion of
the form ωε(x̂) := Bε(x̂) = {‖x − x̂‖ < ε} for x̂ ∈ Ω. In particular, the perturbation is
governed by a set of piecewise constant functions αε, βε, ρε and fε according to Table 2
and Table 3.

Table 2. Values of αε, βε, ρε and fε.

αε βε ρε fε
Ω \Bε α β ρ f
Bε γαα γββ γρρ γff

Table 3. Values of γα, γβ, γρ and γf .

γα γβ γρ γf
Ω \ ω α1/α0 β1/β0 ρ1/ρ0 f1/f0

ω α0/α1 β0/β1 ρ0/ρ1 f0/f1

Before starting the main results of this section, let us introduce the following fourth-
order polarization tensor associated with the plate bending model

P = − 1− γα
1 + γαδ2

(
(1 + δ2)I +

1− γα
2

δ1 − δ2

1 + γαδ1

I⊗ I

)
, (2.3)

where constants δ1 and δ2 will be defined later according to the model problem we are
dealing with, namely Kirchhoff or Reissner-Mindlin. In (2.3), the symbols I and I are
used to denote the second and fourth order identity tensors, respectively

2.1. Kirchhoff problem. The theory of Kirchhoff bending plates is based on the follow-
ing kinematic assumption:

The normal fibers to the middle plane of the plate remain normal during
deformation and do not suffer variations in their length. Consequently, both
transversal shear and normal deformations are null.

Therefore, the original unperturbed problem can be stated as: Find u ∈ V(Ω), such
that ∫

Ω

αM(u) · ∇∇v +

∫
Ω

ρkuv =

∫
Ω

fv, ∀v ∈ V(Ω), (2.4)

where V(Ω) = H2
0 (Ω;R). The coefficients α, ρ and f are given in Table 1. In addition,

M(u) = C∇∇u is the moment tensor, u : Ω 7→ R the transverse displacement and k a
positive function. The constitutive tensor C is given by

C =
Eh3

12(1− ν2)
((1− ν)I + νI⊗ I) , (2.5)

being ν is the Poisson ratio, E is the Young modulus and h the plate thickness. The L2

and energy norms shape functionals, we are dealing with, are respectively defined as

G(u) =

∫
Ω

ρk|u|2 and J (u) =

∫
Ω

αM(u) · ∇∇u. (2.6)
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In order to simplify the form of the topological derivatives, we introduce the adjoint
problems for displacements q and p, as

q ∈ V(Ω) :

∫
Ω

αM(q) · ∇∇v +

∫
Ω

ρkqv = −2

∫
Ω

ρkuv, ∀v ∈ V(Ω), (2.7)

p ∈ V(Ω) :

∫
Ω

αM(p) · ∇∇v +

∫
Ω

ρkpv = −2

∫
Ω

αM(u) · ∇∇v, ∀v ∈ V(Ω). (2.8)

The topologically perturbed counterpart of problem (2.4) is written as: Find uε ∈ V(Ω),
such that ∫

Ω

αεM(uε) · ∇∇v +

∫
Ω

ρεkuεv =

∫
Ω

fεv, ∀v ∈ V(Ω), (2.9)

where the coefficients αε, ρε and fε are defined through Table 2 and Table 3. The associ-
ated shape functionals are then defined as

Gε(uε) =

∫
Ω

ρεk|uε|2 and Jε(uε) =

∫
Ω

αεM(uε) · ∇∇uε. (2.10)

2.1.1. Existence of the topological derivative. The shape functionals in the original and
perturbed domains are respectively introduced through equations (2.4) and (2.9). Now, it
is possible to state the following result ensuring the existence of the associated topological
derivatives:

Lemma 1. Let u and uε be solutions to the original (2.4) and perturbed (2.9) problems,
respectively. Then the estimate ‖uε − u‖H2(Ω;R) = O(ε) holds true.

Proof. Let us subtract (2.4) from (2.9). By setting v = uε−u as test function, after some
simple manipulations there is∫

Ω

αεM(uε − u) · ∇∇(uε − u) +

∫
Ω

ρεk‖uε − u‖2 =∫
Bε

(1− γα)αM(u) · ∇∇(uε − u) +

∫
Bε

(1− γρ)ρku(uε − u)

−
∫
Bε

(1− γf )f(uε − u). (2.11)

where we have taken into account the contrasts reported in Table 2 and Table 3. The
Cauchy-Schwarz inequality yield∫

Ω

αεM(uε − u) · ∇∇(uε − u) +

∫
Ω

ρεk‖uε − u‖2 6 C1ε‖uε − u‖H2(Ω;R), (2.12)

where we have used the elliptic regularity of function u. From the coercivity of the bilinear
form on the left-hand side of the above inequality, we have

c‖uε − u‖2
H2(Ω;R) 6

∫
Ω

αεM(uε − u) · ∇∇(uε − u) +

∫
Ω

ρεk‖uε − u‖2, (2.13)

which leads to the result

‖uε − u‖H2(Ω;R) 6 Cε, (2.14)

with the constant C = C1/c independent of the small parameter ε. �
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2.1.2. Topological sensitivities. By setting the constants δ1 and δ2 in the definition of the
polarization tensor (2.3) as follows

δ1 =
1 + ν

1− ν
and δ2 =

1− ν
3 + ν

, (2.15)

we can state the two main results of this Section, whose proofs are completely analogous
to the presented by Amstutz and Novotny (2011):

Theorem 2. Let G(u) be the shape functional defined by (2.6)-left, then its associated
topological derivative is given by

DTG = αPM(u) · ∇∇q − (1− γρ)ρku(u+ q) + (1− γf )fq a.e. in Ω (2.16)

where q is the adjoint state solution of (2.7).

Theorem 3. Let J (u) be the shape functional presented in (2.6)-right, then its topological
derivative is given by

DTJ = αPM(u) · ∇∇(u+ p)− (1− γρ)ρkup+ (1− γf )fp a.e. in Ω (2.17)

where p is the adjoint solution of problem (2.8).

2.2. Reissner-Mindlin problem. The theory of Reissner-Mindlin bending plates is
based on the following kinematic assumption:

The normal fibers to the middle plane of the plate remain straight during
the deformation process and do not suffer variations in their length, but
they do not necessarily remain normal to the middle plane. Consequently,
the transversal shear deformations are not negligible and the normal defor-
mations are null.

Therefore, the unperturbed problem is stated as: Find (θ, u) ∈ H(Ω), such that∫
Ω

αM(θ) · (∇η)s +

∫
Ω

βQ(θ, u) · (η −∇v) +

∫
Ω

ρkuv =

∫
Ω

fv, ∀ (η, v) ∈ H(Ω), (2.18)

where H(Ω) = H1
0 (Ω;R2) ×H1

0 (Ω;R). The coefficients α, β, ρ and f are given in Table
1. In addition, θ : Ω 7→ R2 is the rotation, u : Ω 7→ R is the transversal displacement,
M(θ) = C(∇θ)s is the generalized bending moment tensor and Q(θ, u) = D(θ − ∇u) is
the generalized shear tensor. The constitutive tensor C is defined by (2.5) whereas the
second order tensor D is given by

D =
σEh

2(1 + ν)
I, (2.19)

with shear correction factor σ = 5/6. The L2 and energy norms shape functionals, we are
dealing with, are defined as

G(θ, u) =

∫
Ω

ρk|u|2 and J (θ, u) =

∫
Ω

(αM(θ) · (∇θ)s + βQ(θ, u) · (θ −∇u)). (2.20)

In order to simplify the form of the topological derivatives, we introduce the adjoint
problems for displacements (q, p) and the rotations (ϕ, φ), as

(ϕ, q) ∈ H(Ω) :

∫
Ω

αM(ϕ) · (∇η)s +

∫
Ω

βQ(ϕ, q) · (η −∇v) +

∫
Ω

ρkqv =

− 2

∫
Ω

ρkuv, ∀(η, v) ∈ H(Ω), (2.21)
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(φ, p) ∈ H(Ω) :

∫
Ω

αM(φ) · (∇η)s +

∫
Ω

βQ(φ, p) · (η −∇v) +

∫
Ω

ρkpv =

− 2

∫
Ω

(αM(θ) · (∇η)s + βQ(θ, u) · (η −∇v)), ∀(η, v) ∈ H(Ω). (2.22)

The topologically perturbed counterpart of problem (2.18) is written as: Find (θε, uε) ∈
H(Ω), such that∫

Ω

αεM(θε) · (∇η)s +

∫
Ω

βεQ(θε, uε) · (η −∇v) +

∫
Ω

ρεkuεv =

∫
Ω

fεv, ∀ (η, v) ∈ H(Ω),

(2.23)
where the coefficients αε, βε, ρε and fε are reported in Table 2 and Table 3. The associated
shape functionals are then defined as

Gε(θε, uε) =

∫
Ω

ρεk|uε|2 and (2.24)

Jε(θε, uε) =

∫
Ω

(αεM(θε) · (∇θε)s + βεQ(θε, uε) · (θε −∇uε)). (2.25)

2.2.1. Existence of the topological derivative. The shape functionals in the original and
perturbed domains are defined by equations (2.18) and (2.23), respectively. Therefore,
the existence of the topological derivatives associated with the problems we are dealing
with are ensured by the following important result:

Lemma 4. Let (θ, u) and (θε, uε) be solutions to problems (2.18) and (2.23), respectively.
Then, the estimates ‖θε − θ‖H1(Ω;R2) = O(ε) and ‖uε − u‖H1(Ω;R) = O(ε) hold true.

Proof. Let us is subtract (2.18) from (2.23) to obtain∫
Ω

αεM(θ̃ε) · (∇η)s +

∫
Ω

βεQ(θ̃ε, ũε) · (η −∇v) +

∫
Ω

ρεkũεv =∫
Bε

(1− γα)αM(θ) · (∇η)s +

∫
Bε

(1− γβ)βQ(θ, u) · (η −∇v)

+

∫
Bε

(1− γρ)ρkuv −
∫
Bε

(1− γf )fv, (2.26)

where we have introduced the notations θ̃ε = θε−θ and ũε = uε−u. By setting η = θ̃ε and
v = ũε as test functions in the above equation, the Cauchy-Schwarz inequality together
with the triangular inequality, yield∫

Ω

αεM(θ̃ε) · (∇θ̃ε)s +

∫
Ω

βεQ(θ̃ε, ũε) · (θ̃ε −∇ũε) +

∫
Ω

ρεk|ũε|2 ≤

C1ε
(
‖θ̃ε‖H1(Ω;R2) + ‖ũε‖H1(Ω;R)

)
, (2.27)

where we have considered the elliptic regularity of functions θ and u. Finally, from the
coercivity of the bilinear form on the left-hand side of the above inequality, namely

c
(
‖θ̃ε‖2

H1(Ω;R2) + ‖ũε‖2
H1(Ω;R)

)
≤
∫

Ω

αεM(θ̃ε) · (∇θ̃ε)s

+

∫
Ω

βεQ(θ̃ε, ũε) · (θ̃ε −∇ũε) +

∫
Ω

ρεk|ũε|2, (2.28)
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we have that
c

2

(
‖θ̃ε‖H1(Ω;R2) + ‖ũε‖H1(Ω;R)

)2

≤ c
(
‖θ̃ε‖2

H1(Ω;R2) + ‖ũε‖2
H1(Ω;R)

)
≤ C1ε

(
‖θ̃ε‖H1(Ω;R2) + ‖ũε‖H1(Ω;R)

)
. (2.29)

Finally, it follows immediately

‖θ̃ε‖H1(Ω;R2) + ‖ũε‖H1(Ω;R) ≤ Cε, (2.30)

with the constant C = 2C1/c independent of the small parameter ε. �

2.2.2. Topological sensitivities. Let us introduce the following second-order tensor

P = −2
1− γβ
1 + γβ

I. (2.31)

Now, by setting the constants δ1 and δ2 in the definition of the polarization tensor (2.3)
as follows

δ1 =
1 + ν

1− ν
and δ2 =

3− ν
1 + ν

, (2.32)

we can state the two main results of this section, whose proofs are completely analogous
to the paper by Sales et al. (2015):

Theorem 5. Let G(θ, u) be the shape functional defined by (2.20)-left, then its associated
topological derivative is given by

DTG = αPM(θ) · (∇ϕ)s + βPQ(θ, u) · (ϕ−∇q)
− (1− γρ)ρku(u+ q) + (1− γf )fq a.e. in Ω (2.33)

where (ϕ, q) is the adjoint state solution of (2.21).

Theorem 6. Let J (θ, u) be the shape functional presented in (2.20)-right, then its asso-
ciated topological derivative is given by

DTJ = αPM(θ) · (∇(θ + φ))s + βPQ(θ, u) · ((θ + φ)−∇(u+ p))

− (1− γρ)ρkup+ (1− γf )fp a.e. in Ω (2.34)

where (φ, p) is the adjoint solution of problem (2.22).

3. Representative Numerical Examples

The topological derivatives of the L2 and energy norms of the solutions of Kirchhoff and
Reissner-Mindlin problems, with respect to nucleation of inclusions endowed with different
material properties of the background, have been presented in the previous section. Now,
some selected examples are considered, showing applications in the context of compliance
minimization and eigenvalue maximization.

The hold-all domain is represented by Ω ⊂ R2. We assume that the strong phase is
represented by D := Ω \ω, so that ω ⊂ Ω represents the weak phase used to mimic holes.
By using the linear penalty method for volume control, the optimization problem we are
dealing with can be stated as follows:

Minimize
D⊂Ω

Jµ(D) =
J(D)

J(Ω)
+ µ
|D|
|Ω|

, (3.1)

subject to (2.4) or (2.18), where J(D) and |D| are the shape functional and volume eval-
uated at the variable domain D, whereas J(Ω) and |Ω| are their associated counterparts
evaluated at the (fixed) hold-all domain Ω. In the optimization problem introduced in
equation (3.1), µ > 0 is a fixed multiplier that imposes a restriction on the volume of elas-
tic material. The minimization problem (3.1) is solved by using a topology optimization



9

algorithm based on the topological derivative together with a level-set domain represen-
tation method (Amstutz and Andrä, 2006). For the sake of completeness, let us explain
briefly the main ideas. A locally sufficient optimality condition, under the considered class
of domain perturbation given by circular inclusions, can be stated as (Amstutz, 2011b):

DTJµ(x) > 0 ∀x ∈ Ω. (3.2)

Let us introduce a level-set domain representation function Ψ ∈ L2(Ω) of the form:

D = {Ψ(x) < 0, for x ∈ Ω}, (3.3)

ω = {Ψ(x) > 0, for x ∈ Ω}, (3.4)

where Ψ vanishes on the interface ∂ω. We define the quantity

g(x) :=

{
−DTJµ(x), if Ψ(x) < 0,
+DTJµ(x), if Ψ(x) > 0.

(3.5)

The topological derivative of the volume constraint is trivially given by DT |D| = −1 in
Ω \ ω and DT |D| = +1 in ω. On the other hand, the topological derivative of the shape
functional J(D) has to be evaluated in Ω\ω and ω according to the values for the contrasts
summarized through Table 3. The above equation allows for rewriting the condition (3.2)
in the following equivalent form{

g(x) < 0, if Ψ(x) < 0,
g(x) > 0, if Ψ(x) > 0.

(3.6)

Note that (3.6) is satisfied whenever quantity g coincides with level-set function Ψ up to
a strictly positive number. Thus, the basic idea consists in finding a fixed point satisfying
the following condition

τ > 0 : g = τΨ. (3.7)

Therefore,

δ := arccos

[
〈g,Ψ〉L2(Ω)

‖g‖L2(Ω)‖Ψ‖L2(Ω)

]
= 0, (3.8)

which shall be used as optimality condition in the topology design algorithm, where δ is
the angle between the functions g and Ψ in L2(Ω).

Let us now explain the algorithm. We first choose an initial level-set function Ψ0 ∈
L2(Ω). In a generic iteration i, we compute function gi associated with the level-set
function Ψi ∈ L2(Ω). Thus, the new level-set function Ψi+1 is updated according to the
following linear combination between the functions gi and Ψi, explicitly given by

Ψi+1 =
1

sin(δi)

[
sin((1− κ)δi)Ψi + sin(κδi)

gi

‖gi‖L2(Ω)

]
, (3.9)

where δi is the angle between gi and Ψi according to (3.8), and κ is a step size determined
by a line-search performed in order to decrease the value of the objective function J iµ
associated with Ψi. The step size κ is chosen at first as 1 and it is decreasing accordingly
to κ← κ/2 until the condition J iµ < J i−1

µ is fulfilled. The process ends when the condition

δi ≤ εδ is satisfied at some iteration, where εδ is a given small numerical tolerance. If at
some iteration the line-search step size κ is found to be smaller then a given numerical
tolerance εκ > 0 and the optimality condition is not satisfied, namely δi > εδ, then a mesh
refinement of the hold-all domain Ω is carried out and the iterative process is continued.

In all numerical examples, the stopping criterion and the optimality threshold are given
respectively by εδ = 3◦ and εκ = 10−3. In addition, the domain is discretized by using
linear triangular finite elements resulting in an initial uniform mesh with 14, 400 elements
and 7, 321 nodes. In order to increase the accuracy as well as the topology smoothness
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3 steps of uniform mesh refinement during the iterative process are allowed, leading to a
mesh with 921, 600 elements and 461, 761 nodes.

3.1. Compliance minimization. The compliance of the plate under bending effects is
obtained as the sum of the shape functionals given by (2.6) for Kirchhoff problem and
by (2.20) for Reissner-Mindlin problem. The zero order term in both problems (see eqs.
(2.4) and (2.18)) can be interpreted as an elastic support, so that we define the quantity
s = ρk, where s represents the stiffness of the support. The transverse load f is assumed
to be fixed, so that its associated contrast γf = 1.

In the case of Kirchhoff plate bending problem, the shape functional to be minimized
is defined as J(D) := J (u) + G(u), with J (u) and G(u) given by (2.6), where u is the
solution to: Find u, such that{

div div(αM(u)) + su = f in Ω,
u = ∂nu = 0 on ∂Ω.

(3.10)

Therefore, from Theorem 2 and Theorem 3, we have that the associated topological
derivative of the compliance shape functional J(D) is given by

DTJ = −αPM(u) · ∇∇u+ (1− γρ)s|u|2. (3.11)

Analogously, in the case of Reissner-Mindlin plate bending problem, the shape func-
tional to be minimized is defined as J(D) := J (θ, u) + G(θ, u), with J (θ, u) and G(θ, u)
given by (2.20), where (θ, u) are the solutions to: Find (θ, u), such that −div(αM(θ)) + βQ(θ, u) = 0 in Ω ,

div(βQ(θ, u)) + su = f in Ω ,
θ = 0, u = 0 on ∂Ω .

(3.12)

Thus, from Theorem 5 and Theorem 6, we have that the associated topological derivative
of the compliance shape functional J(D) is given by

DTJ = −αPM(θ) · (∇θ)s − βPQ(θ, u) · (θ −∇u) + (1− γρ)s|u|2. (3.13)

In the numerical experiment we consider for both problems (Kirchhoff and Reissner-
Mindlin) a hold-all domain Ω given by a clamped square of dimensions (0, 1) × (0, 1)m2

submitted to concentrated forces, perpendicular to the plane of the plate, of values f =
−1MN located at the centre of each plate quadrant. A circular elastic support of radius
0.2m and center at (0.50, 0.50) is also considered (see sketch in Fig. 1). The concentrated
loads are represented by black dots whereas the support is represented by a hatched
circular area in grey color. The Young modulus is E = 210GPa, Poisson ratio ν =
0.3, the stiffness of the elastic support is s = 10−2E and the plate thickness is h =
0.05m. The contrasts are given by γα = γρ = 10−4 and the penalty parameter is set
as µ = 1.7. The experiments are labeled as Cases K1 and K2 for Kirchhoff with and
without support, respectively, and Cases R1 and R2 for Reissner-Mindlin with and without
support, respectively. The final topologies are presented in Fig. 2 and Fig. 3 for Kirchhoff
(Cases K1 and K2) and Reissner-Mindlin (Cases R1 and R2) plates, respectively. Finally,
the history of the compliance, volume fraction and shape function obtained during the
iterative process are presented in Fig. 4 to Fig. 6.

In spite of the offset, a similar behavior between curves obtained for Kirchhoff plates
can be observed for compliance, volume and shape function histories (see Cases K1 and
K2 in Fig. 4 to Fig. 6). The same remark can be done regarding the Reissner-Mindlin
curves (see Cases R1 and R2 in Fig. 4 to Fig. 6) suggesting a good convergence. In this
sense, it can be seen that the differences in the final topologies resulted from both theories
were driven by the influence of the elastic support. In the case of Reissner-Mindlin plates
(Cases R1 and R2), it is also interesting to note that the energy in Fig. 4 increases
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once the mesh is refined. This phenomenon can be explained by the transverse shear
deformations, which allow for capturing the concentrated load effects, so that it is not
observed in the case of Kirchhoff plates (Cases K1 and K2), as expected.

(a) with support (b) without support

Figure 1. Initial domain with support (a) and without support (b). The
concentrated loads are represented by black dots whereas the elastic support
is represented by a hatched circular area in grey color.

.

(a) Case K1 (b) Case K2

Figure 2. Final topologies for the Kirchhoff problem with support (a) and
without support (b).

.

(a) Case R1 (b) Case R2

Figure 3. Final topologies for the Reissner-Mindlin problem with support
(a) and without support (b).
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Figure 6. Shape function history.

3.2. First eigenvalue maximization. The topological derivative for simple eigenvalues
of the Laplacian can be found in the paper by Ammari and Khelifi (2003). The extension
to multiple eigenvalues and other types of problems has been derived by Nazarov and
Soko lowski (2008). In particular, since the topological derivative obeys the basic rules of
the Differential Calculus (including the quotient rule for differentiation), the topological
sensitivity of the first eigenvalue associated with the Kirchhoff as well as Reissner-Mindlin
plate bending problems can be formally derived from Theorems 2-3 and Theorems 5-6,
respectively. The rigorous justification for these kind of results can be found in the book
by (Novotny and Soko lowski, 2013, Ch 9). See also the paper by Amstutz (2011a) where
the topological derivative for the first eigenvalue in a two-dimensional elasticity setting



13

was derived by using similar procedure. As observed by Haftka and Gürdal (1992), stan-
dard sensitivities of eigenvalues hold only in the case of distinct eigenvalues. According
to Seyranian et al. (1994) symmetric and complex structures that depend on many de-
sign parameters often present multiple eigenvalues. A numerical method of solution was
developed by the authors to determine an ascent direction in the design space for the
smallest eigenvalue. More recently, a simple strategy proposed by Zhang et al. (2015)
can be used in order to deal with multiplicity of eigenmodes, which consists in select the
closest eigenmode to the current one. In the paper by Torii and Rocha de Faria (2017) a
more sophisticated approach based on a smooth p-norm approximation for the smallest
eigenvalue is presented. On the other hand, it is well-known that there exists a con-
nection between the compliance minimization and first eigenfrequency maximization. In
both cases, the optimal solutions, when they do exist, are given by the stiffer structure in
view of the available amount of material. However, due to the intrinsic complex nature of
such shape optimization problems, the optimal solutions for compliance minimization and
first eigenvalue maximization may differ between them. In particular, in this section we
propose a formulation specifically designed for dealing with first eigenvalue maximization
problem.

The eigenvalue problem for the Kirchhoff model of a clamped thin plate under free
vibration can be stated as: Find u and λ, such that{

div div(αM(u)) = λρu in Ω,
u = ∂nu = 0 on ∂Ω.

(3.14)

The associated first eigenvalue can be defined as

λ1 =

∫
Ω
αM(u) · ∇∇u∫

Ω
ρ|u|2

, (3.15)

being u solution of (3.14). The topological derivative of J(D) := λ−1
1 is given by

DTJ = −αPM(u) · ∇∇u+ (1− γρ)ρλ1|u|2

λ2
1

∫
Ω
ρ|u|2

. (3.16)

Similarly, the eigenvalue problem of a Reissner-Mindlin model of a clamped thick plate
under free vibration can be stated as: Find (θ, u) and λ, such that −div(αM(θ)) + βQ(θ, u) = 0 in Ω ,

div(βQ(θ, u)) = ρλu in Ω ,
θ = 0, u = 0 on ∂Ω .

(3.17)

The associated first eigenvalue is defined as

λ1 =

∫
Ω

(αM(θ) · (∇θ)s + βQ(θ, u) · (θ −∇u))∫
Ω
ρ|u|2

, (3.18)

being (θ, u) solution of (3.17). The topological derivative of J(D) = λ−1
1 is given by

DTJ = −αPM(θ) · (∇θ)s + βPQ(θ, u) · (θ −∇u) + (1− γρ)ρλ1|u|2

λ2
1

∫
Ω
ρ|u|2

. (3.19)

In the numerical experiment again we consider both models (Kirchhoff and Reissner-
Mindlin) in a hold-all domain Ω given by a clamped square plate of dimensions (0, 1) ×
(0, 1)m2. The contrast parameters γα = γβ = γρ = 10−3, Young modulus is E = 210GPa,
Poisson ratio ν = 0.3, the plate thickness h = 0.05m. We consider two cases, which are:
one concentrated mass at the center of the plate and four concentrated masses located at
the centre of each plate quadrant. The problems driven by the Kirchhoff model are labeled
as Cases K1 and K2 with one and four concentrated masses, respectively. The problems
governed by the Reissner-Mindlin theory are labeled as Cases R1 and R2 also with one and
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four concentrated masses, respectively. The penalty parameter is set as µ = 1.2 for the
Cases K1 and R1 and µ = 1.4 for the Cases K2 and R2. The non-structural concentrated
mass are represented by black dots, as depicted in Fig. 7.

(a) one mass (b) four masses

Figure 7. Initial domains with one (a) and four (b) concentrated masses
represented by black dots.

.

The optimal topologies for the Kirchhoff hypothesis are shown in Fig. 8. The obtained
topologies considering the same initial design and boundary conditions are shown in Fig.
9 for the Reissner-Mindlin hypothesis.

Fig. 10 introduces the normalized first eigenvalue history λ1/λ
0
1 (where λ0

1 is its initial
value) as the iterative process has evolved. The normalized first eigenvalues history λ1/λ2

are introduced in Fig. 11, where the primary axis (left) introduces the results for K1 and
R1, while the secondary (right) axis stands for cases K2 and R2, respectively. Cases K2
and R2 presented a higher ratio λ1/λ2 when compared to the cases K1 and R1. Based
on this results it can be seen that the eigenvalues are most influenced by the position
and amount of concentrated mass on the domain than due to the structural hypothesis
considered. During the optimization, no coinciding eigenvalue were observed.

The evolution histories for the shape functional and the volume fraction are presented
in Figure 12 and Figure 13, respectively. Cases K1 and K2 as well as Cases R1 and R2
presented a quite similar final volume. For the shape function history, the cases K1 and
R1, as well as K2 and R2 present similar behavior and final values. It is interesting to
highlight that those cases ruled by Reissner-Mindlin hypothesis resulted more conserva-
tive concerning to the remaining material when compared to Kirchhoff cases, due to the
influence of the transverse shear deformation.

(a) Case K1 (b) Case K2

Figure 8. Final topologies for the Kirchhoff problem with one concen-
trated mass (a) and four concentrated masses (b).

.
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(a) Case R1 (b) Case R2

Figure 9. Final topologies for the Reissner-Mindlin problem with one con-
centrated mass (a) and four concentrated masses (b).
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4. Conclusions

In this paper, the topological derivatives of L2 and energy norms associated with the
solutions to Kirchhoff and Reissner-Mindlin plate bending models, with respect to the
nucleation of circular inclusions, have been introduced. In particular, the sensitivities
were derived in its closed forms with the help of existing theoretical results. The result-
ing analytical formulae have been used together with a level-set domain representation
method to devise a simple and efficient topology design algorithm. Several finite element-
based representative numerical experiments were presented showing its applications in
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.

the context of compliance minimization and eigenvalue maximization of Kirchhoff as well
as Reissner-Mindlin plate structures under bending effects.

In the case of compliance minimization, the obtained topologies for the Kirchhoff and
Reissner-Mindlin plate bending models are remarkably different, as expected, mainly in
the presence of the elastic support. This difference can be explained by the influence
of the shear deformation acting on the elastic support. In addition, from a quantitative
point of view, the effect of the transverse shear deformations contributes to the compliance
value for the Reissner-Mindlin model during the optimization procedure, by capturing the
concentrated load effects. As expected, this effect is not observed in the case of Kirchhoff
plates.

For the eigenvalue maximization, it could be concluded that the optimal topologies
are most influenced by the position and amount of concentrated mass on the domain
than due to the structural hypothesis considered. During the optimization process, no
coinciding first and second eigenvalues was observed (independently of the plate model
considered). The obtained results ruled by Reissner-Mindlin hypothesis resulted more
conservative concerning the remaining material when compared to Kirchhoff cases, due
to the influence of the transverse shear deformation.

However, it is important to point out that the above comparison between the plates
models is far from being exhaustive. Actually, some selected numerical experiments have
been presented just to show the robustness and efficiency of the proposed method in
solving topology optimization problems in the context of plate bending models.
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