
TOPOLOGICAL DERIVATIVE-BASED TOPOLOGY OPTIMIZATION
OF STRUCTURES SUBJECT TO SELF-WEIGHT LOADING

A.A. NOVOTNY, C.G. LOPES AND R.B. SANTOS

Abstract. Topology optimization of structures subject to self-weight loading has re-
ceived considerable attention in the last decades. However, by using standard formu-
lations based on compliance minimization under volume constraint, several difficulties
arise once the self-weight of the structure becomes dominant, including non-monotonic
behavior of the compliance, possible unconstrained character of the optimum, and par-
asitic effects for low densities when using density-based methods. In order to overcome
such difficulties, a regularized formulation that allows for imposing any feasible volume
constraint is proposed. The standard formulation based on compliance minimization
under volume constraint is recovered when the regularizing parameter vanishes. The
resulting topology optimization problem is solved with the help of the topological de-
rivative method leading to a 0-1 topology design algorithm, which seems to be crucial
when the self-weight loading is dominant. Finally, several numerical experiments are
presented, showing the effectiveness of the proposed approach in solving a structural
topology optimization problem under self-weight loading.

1. Introduction

Structural topology optimization under self-weight loading is a challenging problem, as
pointed out in Bruyneel and Duysinx (2005) paper. In particular, by using standard for-
mulations based on compliance minimization under volume constraint, several difficulties
arise once the structure’s self-weight becomes dominant. The non-monotonic behavior of
the compliance, possible unconstrained character of the optimum, and parasitic effects
for low densities when using density-based methods. Over the years, several researchers
addressed the compliance minimization problem with self-weight loads and sought to
overcome the difficulties pointed out by Bruyneel and Duysinx (2005). See also earlier
work by Turteltaub and Washabaugh (1999) and recent papers (Xu et al., 2013; Holm-
berg et al., 2015; Félix et al., 2020). Many approaches have been proposed, such as the
use of mathematical programming, heuristics methods, and optimization criteria method
(Ansola et al., 2006; Huang and Xie, 2011; Xu et al., 2013). To introduce these ideas, we
present a simple example into one spatial dimension.

Example 1. Let us consider the following boundary value problem modeling an elastic
bar submitted to self-weight b and traction q:{

−(ρu′)′ = (1− κ)ρb, in (0, 1),
u(0) = 0, ρu′(1) = κq,

(1.1)

with 0 ≤ κ ≤ 1. Assuming constant thickness ρ ∈ R+, we want to solve the minimization
problem:

Minimize
ρ∈R+

C(ρ), (1.2)
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where the compliance C(ρ) is given by

C(ρ) = κqu(1) + (1− κ)

∫ 1

0

ρbu dx

=
1

3
(1− κ)2ρb2 +

1

ρ
κ2q2 + κ(1− κ)bq. (1.3)

Three cases of interest are considered, namely: κ = 0, 0 < κ < 1 and κ = 1. By fixing
b = 10 and q = 1, Figure 1 shows the behavior of the compliance function associated with
each case.
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Figure 1. Compliance behavior associated with different values of κ.

As a conclusion, three optimal solutions ρ? for problem (1.2) can be found, which are:

(1) When κ = 0, ρ? goes to zero;
(2) When κ = 1, ρ? goes to infinity;
(3) For 0 < κ < 1 a non-trivial solution ρ? can be found.

Therefore, in order to deal with the case in which the self-weight loading is dominant, let
us introduce the following regularized formulation

Minimize
ρ∈R+

Fα(ρ) := C(ρ) + αV (ρ)−1, (1.4)

with 0 ≤ α < ∞ representing the regularizing parameter. In the above problem V (ρ) =∫ 1

0
ρdx = ρ, since ρ is assumed to be constant. Now, let us set b = 1 and κ = 0 (or q = 0).

After varying α = 0, 1, 2, 4, 8, 16 (×10−3), the behavior of the regularized function Fα(ρ)
can be seen in Figure 2. In this case, a family of non-trivial solutions depending on the
penalty parameters α > 0 can be found. Note that after reformulating the optimization
problem according to (1.4), the resulting formulation for α > 0 and κ = 0 enjoys the
same mathematical properties as the compliance function (1.2) for 0 < κ ≤ 1. Finally,
the original formulation (1.2) is recovered from (1.4) by setting α = 0.
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Figure 2. Regularized function behavior depending on the values of α.

Despite the intensive research over the past two decades, this subject of matter still
requires investigation. Thus, in this paper, the topology optimization of structures subject
to self-weight loads is revisited. From the discussion presented in Example 1, a regularized
formulation of the compliance-based minimization problem that allows for imposing any
feasible volume constraint is introduced. The original formulation is recovered once the
regularizing parameter vanishes. The resulting topology optimization problem is solved
with the help of the topological derivative method, leading to a 0-1 topology design
algorithm. In contrast to traditional topology optimization methods, the topological
derivative formulation does not require any material model concept based on intermediary
densities, so that the obtained solutions are naturally of the black-white type with no need
of post-processing of any kind. This feature seems to be crucial to properly deal with the
cases in which the self-weight loading is dominant.

The paper is organized as follows. A regularized formulation inspired by the problem
(1.4) is proposed in Section 2, which allows for imposing any feasible volume constraint.
The associated topology optimization problem is solved with the help of the topological
derivative method in Section 3. The resulting topology design algorithm is presented in
Section 4, together with several numerical experiments showing the effectiveness of the
proposed approach in different scenarios. Finally, the paper ends with some concluding
remarks in Section 5.

2. Problem formulation

Let us consider an open and bounded domain D ⊂ R2, with Lipschitz boundary denoted
as Γ := ∂D. The boundary Γ is the union of two given non-overlapping subsets, namely,
ΓD and ΓN . On ΓD the displacements are prescribed, whereas the boundary tractions are
prescribed on ΓN .

Based on the discussion presented in the simple Example 1, let us consider the following
topology optimization problem:{

Minimize
Ω⊂D

Fα(u) := C(u) + α|Ω|−1,

Subject to |Ω| ≤M,
(2.1)

where Ω represents the design domain, with |Ω| used to denote the Lebesgue measure
of Ω, i.e. the current volume of the structure. In addition, the quantity M > 0 is the
volume constraint, 0 ≤ α < ∞ is the regularizing parameter and C(u) is the structural
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compliance, namely

C(u) :=

∫
ΓN

q · u dΓ +

∫
D
b · u dD, (2.2)

with u solution to:  −divσ(u) = b in D,
u = 0 on ΓD,

σ(u)n = q on ΓN .
(2.3)

The stress tensor σ(u) and self-weight b are given, respectively, by:

σ(u) = γCε(u), b = γb0, (2.4)

with the linearized Green tensor defined as follows

ε(u) =
1

2
(∇u+ (∇u)>). (2.5)

The elasticity tensor is written as

C = 2µI + λ(I⊗ I), (2.6)

in which µ and λ are the Lamé’s coefficients, both considered constants everywhere. In
addition, I and I are the fourth and the second order identity tensors, respectively. The
statement of the problem is complemented with the definition of a piecewise constant
function γ, such that:

γ(x) :=

{
1, if x ∈ Ω,
γ0, if x ∈ D \ Ω,

(2.7)

where Ω is the closure of Ω and 0 < γ0 � 1 is used to mimic voids.

3. Topology optimization method

In this paper, the topological derivative method is used for solving the optimization
problem (2.1). The topological derivative is defined as the first term (correction) of the
asymptotic expansion of a given shape functional with respect to a small parameter that
measures the size of singular domain perturbations, such as holes, inclusions, defects,
source-terms, and cracks (Novotny and Soko lowski, 2013). This concept can naturally be
used as a steepest-descent direction in an optimization process like in any method based
on the gradient of the cost functional. Therefore, the topological derivative concept has
applications in many different fields such as shape and topology optimization, inverse
problems, imaging processing, multi-scale material design, and mechanical modeling in-
cluding damage, fracture evolution phenomena, and control of cracks propagation. See,
for instance, the book by Novotny et al. (2019).

For the sake of completeness, the topological derivative associated with the shape func-
tional Fα(u) from (2.1) is stated in its closed form. Since we are using a very compliant
material to mimic voids, the topological derivatives are presented in their limit cases ver-
sions when a small portion of material is either removed or added to the design domain
Ω. Finally, the results are written in terms of the Lamé’s coefficients, so that they can be
used either in plane stress or plane strain assumptions.

Theorem 2. The topological derivatives of the shape functional Fα(u) from (2.1), with
respect to the nucleation of a small circular inclusion endowed with different material
property from the background, is given by

DTFα(x) = DTC(x)− α|Ω|−2DT |Ω|(x), ∀x ∈ D. (3.1)
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See, for instance, the book by (Novotny and Soko lowski, 2020, Ch. 5). We are interested
into two particular cases, which are:
Case 1. Let us consider x ∈ Ω. In this case γ = 1 and a small portion of material is
removed. Then the topological derivative DTC of the compliance functional reads

DTC = P0σ(u) · ε(u)− 2b0 · u, (3.2)

where the displacement u is solution to (2.3) and the polarization tensor P0 is written as

P0 =
λ+ 2µ

λ+ µ

(
2I− µ− λ

2µ
I⊗ I

)
. (3.3)

Finally, the topological derivative DT |Ω| is given by

DT |Ω| = −1. (3.4)

Case 2. Now, let us consider x ∈ D \Ω. In this case γ = γ0 � 1 and a small portion of
material is added. Then the topological derivative DTC can be written as

DTC = P∞σ(u) · ε(u) + 2b0 · u, (3.5)

with u solution to (2.3) and the polarization tensor P∞ given by

P∞ = −λ+ 2µ

λ+ 3µ

(
2I +

µ− λ
2(λ+ µ)

I⊗ I

)
. (3.6)

Finally, the topological derivative DT |Ω| reads

DT |Ω| = 1. (3.7)

4. Numerical results

In this section, some numerical experiments are presented to show the effectiveness of
the proposed methodology. The minimization problem (2.1) is solved by using a topol-
ogy optimization algorithm based on the topological derivative together with a level-set
domain representation method (Amstutz and Andrä, 2006). The topology optimization
problem (2.1) is conveniently rewritten as follows Minimize

Ω⊂D
Jα(Ω) :=

J(Ω)

J(D)
+ α
|D|
|Ω|

,

Subject to |Ω| ≤M,
(4.1)

where J(Ω) = C(u) and J(D) = C(u0), with u and u0 solutions to (2.3) for Ω ⊂ D and
Ω ≡ D, respectively. The quantities J(Ω)/J(D) and |Ω|/|D| are referred to as relative
compliance and volume fraction, respectively. A simple linear penalization method is
used for imposing the volume constraint given by |Ω| ≤ M . For more sophisticated
topological-derivative-based methods with volume constraint we refer the reader to the
paper by Campeão et al. (2014), for instance. Therefore, for the sake of simplicity, we
describe the algorithm used to minimize Jα(Ω) with respect to Ω ⊂ D. The topological
derivative of Jα(Ω) is denoted as DTJ

α(x). A locally sufficient optimality condition,
under the considered class of domain perturbation given by circular inclusions, can be
stated as (Amstutz, 2011):

DTJ
α(x) > 0 ∀x ∈ D. (4.2)

Let us introduce a level-set domain representation function ψ ∈ L2(D) of the form:

Ω = {ψ(x) < 0, for x ∈ D}, (4.3)

D \ Ω = {ψ(x) > 0, for x ∈ D}, (4.4)
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where ψ vanishes on the interface ∂Ω. We define the quantity

g(x) :=

{
−DTJ

α(x), if ψ(x) < 0,
+DTJ

α(x), if ψ(x) > 0,
(4.5)

allowing for rewriting the condition (4.2) in the following equivalent form{
g(x) < 0, if ψ(x) < 0,
g(x) > 0, if ψ(x) > 0.

(4.6)

Note that (4.6) is satisfied whenever quantity g coincides with level-set function ψ up to
a strictly positive number. Thus, the basic idea consists in finding a fixed point satisfying
the following condition

τ > 0 : g = τψ. (4.7)

Therefore,

θ := arccos

[
〈g, ψ〉L2(D)

‖g‖L2(D)‖ψ‖L2(D)

]
= 0, (4.8)

which shall be used as optimality condition in the topology design algorithm, where θ is
the angle between the functions g and ψ in L2(D). Note that there is a lack of sufficient
optimality conditions for such shape optimization problems (Amstutz and Van Goethem,
2012), so that only a local minimum can be ensured.

Let us now explain the algorithm. We first choose an initial level-set function ψ0 ∈
L2(D). In particular, a detailed explanation on the numerical discretization of the level-
set function can be found in the original paper by Amstutz and Andrä (2006). In a
generic iteration i, we compute function gi associated with the level-set function ψi ∈
L2(D). Thus, the new level-set function ψi+1 is updated according to the following linear
combination between the functions gi and ψi, explicitly given by

ψi+1 =
1

sin θi

[
sin((1− w)θi)ψi + sin(wθi)

gi
‖gi‖L2(D)

]
, (4.9)

where θi is the angle between gi and ψi according to (4.8), and w is a step size determined
by a line-search performed in order to decrease the value of the objective function Jαi
associated with ψi. The step size w is chosen at first as 1 and it is decreasing accordingly
to w ← w/2 until the condition Jαi < Jαi−1 is fulfilled. The process ends when the condition
θi ≤ εθ is satisfied at some iteration, where εθ is a given small numerical tolerance. If at
some iteration the line-search step size w is found to be smaller than a given numerical
tolerance εw > 0 and the local optimality condition is not satisfied, namely θi > εθ, then
a mesh refinement of the hold-all domain D is carried out and the iterative process is
continued. The above procedure written in the form of a pseudo-code format is described
by Lopes et al. (2015).

In all numerical examples, the stopping criterion and the optimality threshold are given
respectively by εw = 10−3 and εθ = 1◦. The current volume fraction is denoted by V (%)
and we consider a tolerance of ±1% in the volume constraint. The angle θ has converged
to a value smaller than 1◦, namely, the local optimality condition has been satisfied in
all cases. Furthermore, the mechanical problem is discretized into linear triangular finite
elements and three steps of uniform mesh refinement were performed during the iterative
process in order to fulfill the optimality condition, except when explicitly indicated. Also,
the following material properties are assumed (Xu et al., 2013): Young’s modulus E =



7

210, 000 MPa and Poisson ratio ν = 0.3. Finally, the traction q and the body force b are
defined as

q = κq0 and b = γb0, with b0 = −ρ0ge2, (4.10)

where ei, i = 1, 2 denotes the canonical basis of R2, γ is given by (2.7), ρ0 = 7.85 ×
103 kg/m3, g = 10m/s2 and 0 ≤ κ ≤ 1 is a weight parameter.

The role of the regularizing parameter α is discussed through the benchmark from
Section 4.1, in which only self-weight loading is considered. Sections 4.2, 4.3 and 4.4
show different features of the topological derivative method itself in solving the original
(non-regularized) problem. Finally, Section 4.5 presents a last experiment which takes
into account both the regularizing parameter α and the loading factor κ.

4.1. Experiment 1. In this example, the hold-all domain D is given by a rectangle of
dimensions 20 × 10 m2 as shown in Figure 3. We consider symmetry condition with
respect to the vertical axis and the problem is discretized with an initial mesh containing
1, 600 elements and 841 nodes. At the end of the iterative process, the mesh contains
102, 400 elements and 51, 521 nodes.

Figure 3. Experiment 1: Initial domain and boundary conditions.

In order to observe the role of the regularizing parameter in the case where only self-
weight loading is considered (κ = 0), we take it in the interval 0 ≤ α ≤ 2.3 to produce
the graph from Figure 4, showing the behavior of the relative compliance and the volume
fraction of the structure with respect the regularizing parameter α. For α = 0 the volume
fraction converges to zero, as expected. On the other hand, the volume fraction goes to
100% for α = 2.3. In between, namely 0 < α < 2.3, a family of non-trivial solutions is
obtained.
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Figure 4. Experiment 1: Relative compliance and volume fraction for
different values of α.

As shown in Figure 4, by setting α = 2.3 we have a volume fraction V = 100%. Let us
impose a volume constraint M = 0.5 |D| to obtain a new solution with volume fraction
V ≈ 50%. Now we can compare the constrained solution with the unconstrained one
obtained with α = 0.245, corresponding to the same volume fraction. Both of them
converge to the same solution up to a small numerical tolerance, with volume fractions
V ≈ 50%. Figure 5 presents the obtained results. Table 1 shows the values of relative
compliance, volume fraction and number of iterations at the end of the iterative process
for both cases. As expected, the constrained case needs more iterations to converge than
the unconstrained one.

(a) (b)

Figure 5. Experiment 1: Obtained results for the unconstrained case (a)
with α = 0.245 and for the constrained case (b) with α = 2.3 and M =
0.5 |D|.
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Table 1. Experiment 1: Quantitative results obtained at the end of the
iterative process for the unconstrained case with α = 0.245 and for the
constrained case with α = 2.3 and M = 0.5 |D|.

Unconstrained Case Constrained Case
Relative Compliance 0.25233 0.25284
Volume Fraction (%) 50.306 50.389
Number of Iterations 19 102

4.2. Experiment 2. In this example, both external and body forces are taken into ac-
count. The body force is given by (4.10), whereas the external force is defined as

q0 =

∫
D
b0 dD. (4.11)

The hold-all domain D is a rectangle of dimensions 40 × 10 m2. We consider symmetry
condition with respect to the vertical axis and the problem is discretized with an initial
mesh containing 3, 200 elements and 1, 661 nodes, whereas the final mesh contains 204, 800
elements and 102, 881 nodes.

Figure 6. Experiment 2: Initial domain and boundary conditions.

First, we set α = 0 and choose the loading factor κ ∈ {0.1, 0.2, 0.3, 0.4}. Figure 7
presents the obtained results for the unconstrained case. We observe that the volume
fraction increases with the loading factor, as expected. Table 2 shows the values of
relative compliance, volume fraction, and number of iterations at the end of the iterative
process for all cases.

(a) κ = 0.1, V = 23.76% (b) κ = 0.2, V = 36.08%

(c) κ = 0.3, V = 45.74% (d) κ = 0.4, V = 53.13%

Figure 7. Experiment 2: Obtained results for the unconstrained case with
α = 0.
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Table 2. Experiment 2: Quantitative results obtained at the end of the
iterative process for the unconstrained case with α = 0.

Loading Factor κ 0.1 0.2 0.3 0.4
Relative Compliance 0.24414 0.43145 0.5729 0.67367
Volume Fraction (%) 23.76 36.08 45.74 53.13
Number of Iterations 45 36 26 21

Now, a volume constraint M = 0.4 |D| is imposed. We set κ ∈ {0.4, 0.6, 0.8, 1.0} and
choose α = 0. Figure 8 presents the obtained results for the constrained case.

(a) κ = 0.4, V = 39.92% (b) κ = 0.6, V = 39.93%

(c) κ = 0.8, V = 40.26% (d) κ = 1, V = 40.05%

Figure 8. Experiment 2: Obtained results for the constrained case with
α = 0 and M = 0.4 |D|.

The values of relative compliance, volume fraction, and number of iterations at the end
of the iterative process for all cases are shown in Table 3. Note that all the structures
satisfies the required volume fraction up to a small numerical tolerance.

Table 3. Experiment 2: Quantitative results obtained at the end of the
iterative process for the constrained case with α = 0 and M = 0.4 |D|.

Loading Factor κ 0.4 0.6 0.8 1.0
Relative Compliance 0.65251 0.83827 0.98358 1.0618
Volume Fraction (%) 39.92 39.93 40.26 40.05
Number of Iterations 39 32 37 32

Finally, for the sake of comparison, in Figure 9, we present the obtained result free
of self-weight loading, namely, for b = 0. In particular, we set α = 0, κ = 1 and
M = 0.4 |D|. This result was obtained after 31 iterations with final volume fraction
V = 40.87%. In Section 4.4, we also present an example in which the self-weight loading
is initially neglected, and later on the body force is taken into account again, allowing
for comparing both results. In this case, the resulting topologies are completely different
from each other.
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Figure 9. Experiment 2: Obtained result free of self-weight loading (b =
0), with α = 0, κ = 1 and M = 0.4 |D|.

4.3. Experiment 3. Let us consider again Experiment 2 but with

q0 = −
∫
D
b0 dD, (4.12)

as shown in Figure 10. In particular, a self-equilibrated problem is considered by setting
κ = 1.0.

Figure 10. Experiment 3: Initial domain and boundary conditions.

In this experiment, a volume constraint M = 0.5 |D| is imposed. We consider again
α = 0. The result, shown in Figure 11, was obtained after 34 iterations with volume
fraction V = 49.99%.

Figure 11. Experiment 3: Obtained result for the constrained case with
α = 0, κ = 1.0 and M = 0.5 |D|.

4.4. Experiment 4. In this example, the hold-all domain D is given by a square of
dimensions 10× 10 m2, which is submitted to both external and body forces. See sketch
from Figure 12. In contrast to the former examples, the traction q is acting in the
horizontal direction, orthogonal to the body force b. The problem is discretized with an
initial mesh containing 1, 600 elements and 841 nodes, whereas the final mesh has 102, 400
elements and 51, 521 nodes. Finally, we set α = 0, κ = 0.4 and M = 0.4 |D|. Note that
from this choice of parameters, the external traction and the total weight of the structure
shall have the same magnitude at the end of the iterative process.
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Figure 12. Experiment 4: Initial domain and boundary conditions.

For the sake of comparison, we first consider the case free of self-weight loading and
later on we present the result by taking into account the body force. In particular, we
start by neglecting the weight of the structure, namely, the body force is set as b = 0. The
final topology is presented in Figure 13(a), which has been obtained after 14 iterations,
with final volume fraction V = 39.94%. Then, the self-weight of the structure is taken
into account as in the former experiments. The final topology can be seen in Figure 13(b),
which has been obtained after 18 iterations, with final volume fraction V = 40.78%. Note
that in this case the resulting topologies reported in Figure 13 are completely different
from each other.

(a) b = 0, V = 39.94% (b) b 6= 0, V = 40.78%

Figure 13. Experiment 4: Obtained results for α = 0, κ = 0.4 and M = 0.4 |D|.

4.5. Experiment 5. Let us consider the design of a tower by taking into account both
external and body forces. The hold-all domain D is given by a rectangle of dimensions
120 × 300 m2, as shown in Figure 14(a) and the external force is given as (4.11). We
consider symmetry condition with respect to the vertical axis, and the problem is dis-
cretized with an initial mesh containing 8, 000 elements and 4, 121 nodes. Four steps of
uniform mesh refinement have been performed during the optimization process, leading
to a final mesh with 2, 048, 000 elements and 1, 025, 921 nodes. In this experiment, we
choose α = 0.01 and load factor κ = 0.1. Finally, a volume constraint of M = 0.21 |D| is
imposed. The result, shown in Figure 14(b), was obtained after 50 iterations with final
volume fraction V = 21.62%. The history of the shape functional and the volume fraction
during the iterative process is presented in Figure 15.
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(a) (b)

Figure 14. Experiment 5: Initial domain and boundary conditions (a),
and obtained result for the constrained case (b) with α = 0.01, κ = 0.1 and
M = 0.21 |D|.
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Figure 15. Experiment 5: History of the shape functional and volume
fraction during the iterative process.
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5. Conclusions

In this paper, the topology optimization of structures subject to self-weight loading
has been revisited. We have observed that the standard formulation based on compliance
minimization under volume constraint becomes inappropriate when self-weight loading is
dominant, as pointed out by Bruyneel and Duysinx (2005). Therefore, we have intro-
duced a regularizing term to the compliance-based minimization problem that allows for
imposing any feasible volume constraint, leading to satisfactory results by avoiding trivial
solutions and convergence issues. The original formulation is recovered once the regular-
izing parameter vanishes. The resulting topology optimization problem has been solved
with the help of the topological derivative method leading to a 0-1 topology design algo-
rithm, which seems to be crucial when the self-weight load becomes dominant. Finally,
several numerical experiments were presented, showing the effectiveness of the proposed
approach in solving a structural topology optimization problem under self-weight loading.
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R. Ansola, J. Canales, and J. A. Tárrago. An efficient sensitivity computation strategy
for the evolutionary structural optimization (eso) of continuum structures subjected to
self-weight loads. Finite Elements in Analysis and Design, 42:1220–1230, 2006.

M. Bruyneel and P. Duysinx. Note on topology optimization of continuum structures
including self-weight. Structural and Multidisciplinary Optimization, 29:245–256, 2005.

D. E. Campeão, S. M. Giusti, and A. A. Novotny. Topology design of plates consedering
different volume control methods. Engineering Computations, 31(5):826–842, 2014.

L. Félix, A. A. Gomes, and A. Suleman. Topology optimization of the internal structure
of an aircraft wing subjected to self-weight load. Engineering Optimization, 52(7):
1119–1135, 2020.



15

E. Holmberg, C.J. Thore, and A. Klarbring. Worst-case topology optimization of self-
weight loaded structures using semi-definite programming. Structural and Multidisci-
plinary Optimization, 52:915–928, 2015.

X. Huang and Y.M. Xie. Evolutionary topology optimization of continuum structures
including design-dependent self-weight loads. Finite Elements in Analysis and Design,
47:942–948, 2011.

C. G. Lopes, R. B. Santos, and A. A. Novotny. Topological derivative-based topology
optimization of structures subject to multiple load-cases. Latin American Journal of
Solids and Structures, 12:834–860, 2015.

A. A. Novotny and J. Soko lowski. Topological derivatives in shape optimization. Inter-
action of Mechanics and Mathematics. Springer-Verlag, Berlin, Heidelberg, 2013. doi:
10.1007/978-3-642-35245-4.

A. A. Novotny and J. Soko lowski. An introduction to the topological derivative method.
Springer Briefs in Mathematics. Springer Nature Switzerland, 2020.
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Av. Salgado Filho 3000, 59078-970 Natal - RN, Brasil

Email address: renathabat@gmail.com


