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Abstract. This work deals with pointwise antennas design in hyperthermia treatment.
Hyperthermia is a non-invasive therapy usually combined with chemotherapy and/or
radiotherapy, which consists in heating the diseased tissue in an attempt to kill the
cancerous cells. In particular, we want to find the optimal values of current densities
passing through each antenna to selectively heat a specified target. The forward prob-
lem is governed by the steady-state heat equation in living tissues which is coupled with
the Helmholtz problem modeling the electromagnetism phenomenon. An objective func-
tional measuring the difference between the target temperature and the solution to the
model problem is minimized with respect to the current densities by using the topological
derivative method. The resulting sensitivities are used to devise first and second order
antenna design algorithms as well as a third one that combines both the previous algo-
rithms. Numerical experiments are presented showing different features of the proposed
methodology, including its capability in selectively heating the target up to the desired
temperature. Finally, a selected result is used in a full transient analysis, where the hot
spots are keeping over the diseased tissues during the whole heating process.

1. Introduction

Disordered cell growth, usually called cancer, is a common disease that affects the
entire world population and can develop in any part of the human body. According to a
World Health Organization’s report [29], there were 18.1 million new diagnoses and 9.6
million cancer deaths worldwide in 2018. This same report points out that breast cancer
ranks second in newly diagnosed cases and is also the fifth more fatal kind of cancer.
The observed increase in the number of cancer cases is related to many factors, including
population growth and its aging, economic development, and dietary patterns [4]. In
some situations, there is a possibility of preventing the onset of cancer. For example, lung
cancer is the leader in newly diagnosed cases, which in most of the time is a consequence
of cigarette addiction [29]. There is also an expectation that new research will be able to
assist in the prevention and cure of cancer with the aid of therapeutic vaccines [23, 24].
However, there are still no conclusive results on the effectiveness of these vaccines as
shown in [26] work. Thus, what remains for now is to develop more efficient and less
invasive treatments. The most common treatments for cancer are surgery, chemotherapy,
radiotherapy, bone marrow transplantation, and also hyperthermia that can be used alone
or combined with other treatments [31]. Chemotherapy and radiotherapy, when combined
with hyperthermia therapy, become more effective allowing to be administered in lower
doses. Hyperthermia consists in heating the tumor to a certain temperature, usually
between 40◦C and 46◦C [8, 20]. The heating of cells – both healthy and diseased – may
cause their death, so that it is important to selectively heat the tumor for preventing the
death of healthy cells [12]. This is in fact the main challenge in hyperthermia therapy,
which has motivated many recent studies [10].
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The paper [1] deals with topology design of electromagnetic distributed antennas. A
gradient type method has been proposed, which successfully heat a single target per once.
In contrast with [1], in this paper we propose a novel approach for pointwise antennas
design in hyperthermia treatment that selectively heat several targets simultaneously up
to the desired temperature. The model problem is governed by the steady-state heat
equation in living tissues which is coupled with the Helmholtz problem modelling the
electromagnetism phenomenon. The basic idea consists in finding the optimal values of
current densities passing through each antenna. In particular, an objective functional
measuring the difference between the target temperature and the solution to the model
problem is minimized with respect to the current densities. The sensitivity analysis is
explicitly written in the form of a fourth order expansion with respect to the current
densities, which can be seen as the main theoretical contribution of the paper. The
resulting sensitivities are used to devise first and second order antenna design algorithms
as well as a third one that combines both the previous algorithms. Numerical experiments
are presented showing different features of the proposed approach. Finally, a selected
result is used in a full transient analysis, where the hot spots are keeping over the diseased
tissues during the whole heating process.

This paper is organized as follows. The model problem we are dealing with is presented
in Section 2. In Section 3 the Adjoint Sensitivity Method is used to obtain the associated
derivatives. Based on the resulting sensitivities, three antenna design algorithms are
proposed in Section 4. Some numerical experiments are presented in Section 5, showing
different features of the first, second and combined algorithms. Finally, the paper ends
with some concluding remarks in Section 6.

2. Problem Formulation

Let us consider an open and bounded domain Ω ⊂ R2 with Lipschitz boundary ∂Ω.
Let B ⊂ Ω and D ⊂ B represent the tissue and the target to be burned, respectively. The
pointwise antennas are represented by Dirac masses and belong to the set of admissible
solutions Cδ(Ω), which will be defined later on. See sketch in Figure 1.

Ω

Cδ(Ω)D
B

Figure 1. Problem setting.

Our goal is to find the optimal values of current densities passing through each an-
tenna to selectively heat the target D. Therefore, the following objective functional is
introduced:

J (θ) = β1

∫
D

(θ − θ∗)2 + β2

∫
B\D

(θ − θb)2, (2.1)
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where θ∗ : R2 7→ R and θb : R2 7→ R are the target and the blood temperatures,
respectively. The weights β1 = β

|D| and β2 = 1−β
|B\D| , with β ∈ (0, 1). Finally, θ : Ω 7→ R is

the body temperature, solution to the following steady-state heat problem for live tissues
[25, 30]:

θ ∈ V :

∫
Ω

[K∇θ · ∇η + cbw(θ − θb)η] =
1

2

∫
Ω

σ|u|2η, ∀η ∈ V0, (2.2)

where K : R2 7→ R is the thermal conductivity of the tissue [Wm−1◦C−1], cb : R2 7→ R is
the specific heat of the blood, w : R2 7→ R is the blood perfusion rate [kgm−3 s−1] and
σ : R2 7→ R is the electrical conductivity of the medium [Sm−1]. The set V and the space
V0 are defined as

V := {φ ∈ H1(Ω) : φ|∂Ω = θΓ} and V0 := H1
0 (Ω), (2.3)

where θΓ is a prescribed temperature on the boundary ∂Ω. In addition, u : Ω 7→ C is
solution to the Helmholtz problem [13], namely

u ∈ W1,p(Ω) :

∫
Ω

(
∇u · ∇η̄ − k2uη̄

)
+ i

∫
∂Ω

kuη̄ =

∫
Ω

fη̄, ∀η̄ ∈ W1,q(Ω) (2.4)

where (̄·) is the complex conjugate of (·) and W1,p(Ω) is a complex valued Sobolev space
[3], such that

1

p
+

1

q
= 1, with 1 ≤ p < 2. (2.5)

The symbol i is used to denote the complex unit, such that i =
√
−1. The wave number

k : R2 7→ R is given by

k = ω
√
εµ, (2.6)

where ω is the angular frequency [Hz], ε = εrε0 is the electrical permittivity [Fm−1],
µ = µrµ0 is the magnetic permeability [Hm−1]. The quantities εr and µr are the relative
electrical permittivity and magnetic permeability, respectively, whereas ε0 = 8.854×10−12

Fm−1 is the electrical permittivity and µ0 = 4π×10−7 Hm−1 is the magnetic permeability,
both associated with the free space. Finally, f ∈ Cδ(Ω) is the source term representing
the pointwise antennas, with

Cδ(Ω) =

{
f ∈M(Ω) : f(x) =

N∑
i=1

αiδ(x− xi)

}
, (2.7)

in whichM(Ω) denotes the dual space of continuous functions in Ω with compact support
on ∂Ω and δ(x−xi) are used to denote Dirac masses with poles at xi ∈ Ω\B, i = 1, · · · , N ,
with N denoting the number of antennas. The quantity αi ∈ R is given by

αi = ωµ0Je(xi), (2.8)

where Je(xi) is the current density [Am−2] passing through the i-th antenna. Since the
unknown αi is proportional to the current density Je(xi), for the sake of presentation,
from now on αi is also called current density.

From the above elements, the constrained optimization problem we are dealing with
can be stated as following: {

minimize
f∈Cδ(Ω)

J (θ),

subject to (2.2) and (2.4).
(2.9)
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In order to simplify further analysis, we introduce two adjoint problems which are
coupled in a reverse sense. The adjoint heat equation is written as:

ϕ ∈ V0 :

∫
Ω

K∇ϕ·∇η+

∫
Ω

cωϕη = 2β1

∫
D

(θ∗−θ)η+2β2

∫
B\D

(θb−θ)η, ∀η ∈ V0, (2.10)

whereas the adjoint Helmholtz problem is stated as:

v ∈ W1,q(Ω) :

∫
Ω

(
∇v · ∇η̄ − k2vη̄

)
− i

∫
∂Ω

kvη̄ = −
∫

Ω

σϕuη̄, ∀η ∈ W1,p(Ω). (2.11)

3. Adjoint Sensitivity Analysis

In this section the necessary optimality conditions for the optimization problem (2.9)
are derived in the spirit of the topological derivative method [21, 22, 27]. The basic idea
consists in introducing a perturbation on the right-hand side of problem (2.4) of the form

fδ(x) = f(x) +
∑
i

αiδi(x), (3.1)

where δi(x) := δ(x− xi), so that fδ ∈ Cδ(Ω), with the summation defined from i = N + 1
up to M > N . The perturbed counterpart of the objective functional (2.1) is given by:

J (θδ) = β1

∫
D

(θδ − θ∗)2 + β2

∫
B\D

(θδ − θb)2, (3.2)

where the function θδ is solution to the perturbed heat conduction equation

θδ ∈ V :

∫
Ω

K∇θδ · ∇η +

∫
Ω

cbw(θδ − θb)η =
1

2

∫
Ω

σ|uδ|2η, ∀η ∈ V0 (3.3)

and uδ is solution to the perturbed Helmholtz problem

uδ ∈ W1,p(Ω) :

∫
Ω

(
∇uδ · ∇η̄ − k2uδη̄

)
+ i

∫
∂Ω

kuδη̄ =

∫
Ω

fδη̄, ∀η ∈ W1,q(Ω). (3.4)

Let us propose the following ansätze for the solutions to the perturbed Helmholtz and
heat conduction problems, respectively

uδ = u+
∑
i

αiui, (3.5)

θδ = θ +
∑
i

αiθi +
∑
ij

αiαjθij, (3.6)

where ui are solutions to the set of canonical variational problems of the form

ui ∈ W1,p(Ω) :

∫
Ω

(
∇ui · ∇η̄ − k2uiη̄

)
+ i

∫
∂Ω

kuiη̄ =

∫
Ω

δiη̄, ∀η ∈ W1,q(Ω) (3.7)

whereas θi and θij are respectively solutions to the following variational problems

θi ∈ V0 :

∫
Ω

K∇θi · ∇η +

∫
Ω

cbwθiη =

∫
Ω

σRe{uūi}η, ∀η ∈ V0, (3.8)

θij ∈ V0 :

∫
Ω

K∇θij · ∇η +

∫
Ω

cbwθijη =
1

2

∫
Ω

σRe{uiūj}η, ∀η ∈ V0. (3.9)
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After replacing the ansatz (3.6) into (3.2), we obtain

J (θδ)− J (θ) = β1

∫
D

[
2(θ − θ∗)

∑
i

αiθi + 2(θ − θ∗)
∑
ij

αiαjθij

+
∑
ij

αiαjθiθj + 2
∑
ijk

αiαjαkθijθk +
∑
ijkl

αiαjαkαlθijθkl

]
+ β2

∫
B\D

[
2(θ − θb)

∑
i

αiθi + 2(θ − θb)
∑
ij

αiαjθij

+
∑
ij

αiαjθiθj + 2
∑
ijk

αiαjαkθijθk +
∑
ijkl

αiαjαkαlθijθkl

]
. (3.10)

which represents the exact sensitivity of the objective functional with respect to the
introduction of a number M − N additional pointwise antennas. In particular, we can
recognize first, second, third and fourth orders derivatives associated with to the terms
multiplied by αi, αiαj, αiαjαk and αiαjαkαl, respectively.

The sensitivity (3.10) can be used to devise reconstruction algorithms which find the
optimal locations x?i for the antennas as well as their optimal currents α?i , similarly to
proposed by [16]. However, we assume that the locations xi are given and the optimal cur-
rents α?i have to be found, which allows to drop the summations in (3.10) from 1, · · · , N .
Even in this scenario, the use of the sensitivity formula (3.10) still requires further simpli-
fication. Actually, the computation of all terms in (3.10) becomes unfeasible due to the
combinatorial nature of problems for θij from (3.9). Therefore, our strategy is to truncate
(3.10) up to the second order term. In particular, the following quantity is introduced:

Ψ(α1, α2, ..., αN) = β1

∫
D

[
2(θ − θ∗)

∑
i

αiθi + 2(θ − θ∗)
∑
ij

αiαjθij +
∑
ij

αiαjθiθj

]
+ β2

∫
B\D

[
2(θ − θb)

∑
i

αiθi + 2(θ − θb)
∑
ij

αiαjθij +
∑
ij

αiαjθiθj

]
,

(3.11)

where the summation is now defined from i = 1 up to N , with N used to denote a given
number of antennas. Equation (3.11) can be conveniently written in a compact form as

Ψ(α) = d · α + Hα · α, (3.12)

where α = (α1, α2, ..., αN)>, d = (d1, d2, ..., dN)> is the first order derivative with entries

di = 2β1

∫
D

(θ − θ∗)θi + 2β2

∫
B\D

(θ − θb)θi, (3.13)

and H is the second order derivative whose entries are given by

Hij = β1

∫
D

[
2(θ − θ∗)θij + θiθj

]
+ β2

∫
B\D

[
2(θ − θb)θij + θiθj

]
, (3.14)

with θ solution to the heat problem (2.2), θi solutions to the variational problems (3.8)
and θij solutions to the variational problems (3.9).

4. Antenna Design Algorithms

In this section, we present first and second order methods as well as a third one that
combines both the previous methods for solving the optimization problem (2.9) with help
of (3.12).
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4.1. First Order Method. From (3.12), we can define the following quantity

Ψ1(α) := d · α. (4.1)

In order to evaluate (4.1) the canonical problems (3.7) and (3.8) have to be solved for each
point xi, i = 1, · · · , N . Instead, we evoke the adjoint sensitivity method which allows for
simplifying such computations. Actually, by setting η = ϕ in (3.8) and η = θi in (2.10),
we obtain ∫

Ω

K∇θi · ∇ϕ+

∫
Ω

cwθiϕ =

∫
Ω

σϕRe{uūi}, (4.2)∫
Ω

K∇ϕ · ∇θi +

∫
Ω

cwϕθi = 2β1

∫
D

(θ∗ − θ)θi + 2β2

∫
B\D

(θb − θ)θi. (4.3)

From the symmetry of both bilinear forms, the following equality holds true:∫
Ω

σϕRe{uūi} = 2β1

∫
D

(θ∗ − θ)θi + 2β2

∫
B\D

(θb − θ)θi. (4.4)

Therefore, equation (3.13) can be rewritten as

di = −
∫

Ω

σϕRe{uūi}, (4.5)

where ϕ is solution to the variational problem (2.10). Now, let us take η = v in (3.7) and
η = ui in (2.11), to obtain∫

Ω

(
∇ui · ∇v̄ − k2uiv̄

)
+ i

∫
∂Ω

kuiv̄ =

∫
Ω

δiv̄, (4.6)∫
Ω

(
∇v · ∇ūi − k2vūi

)
− i

∫
∂Ω

kvūi = −
∫

Ω

σϕuūi. (4.7)

From a simple manipulation, equation (4.7) can be rewritten as∫
Ω

(
∇ui · ∇v̄ − k2uiv̄

)
+ i

∫
∂Ω

kuiv̄ = −
∫

Ω

σϕuūi. (4.8)

After comparing (4.6) with (4.8), we obtain the following important equality∫
Ω

δiv̄ = −
∫

Ω

σϕuūi. (4.9)

By taking the real part on both sides of (4.9), equation (4.5) can be rewritten as

di = Re{v̄(xi)}, (4.10)

where v is solution to the adjoint problem (2.11).
Now we have all elements to devise a gradient descent algorithm. The basic idea consists

in use the first order gradient d as a descent direction, so that we set α = −γd, with γ > 0.
In particular, the weight γ is defined as

γ :=
J (θ)

‖d‖2
. (4.11)

Then, quantity α can be updated as follows

α← α− γd. (4.12)

The resulting first order method written in pseudo-code format is summarized through
Algorithm 1, where the parameters εJ and εγ are user-defined stop criteria.
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Algorithm 1: First Order

Input: α
Parameter: εγ, εJ
Output: α?

begin
Compute: u, θ and J (θ)
γ ← 1
δJ ← J (θ)
Jold ← J (θ)
while δJ > εJ and γ > εγ do

Compute: ϕ, v, d and γ
Jnew ← Jold + 1
αold ← α
while Jnew > Jold and γ > εγ do

α = αold − γd
Compute: u, θ and J (θ)
Jnew ← J (θ)
γ = γ/2

end while
δJ ← Jold − Jnew
Jold ← Jnew

end while
α? ← α

end

4.2. Second Order Method. From (3.12), we can define the following quantity

Ψ2(α) := Ψ(α), (4.13)

depending on the canonical problems (3.7) and (3.8) as well as (3.9), which have to be
solved for each point xi, i = 1, · · · , N . Therefore, let us evoke again the adjoint sensitivity
method in order to simplify such a computations. Note however that the product θiθj in
(3.11) cannot be absorbed by any adjoint state. Thus, let us focus our attention to θij in
(3.11). By setting η = ϕ in (3.9) and η = θij in (2.10) as test functions, we obtain∫

Ω

K∇θij · ∇ϕ+

∫
Ω

cbwθijϕ =
1

2

∫
Ω

σϕRe{uiūj}, (4.14)∫
Ω

K∇ϕ · ∇θij +

∫
Ω

cbwϕθij = 2β1

∫
D

(θ∗ − θ)θij + 2β2

∫
B\D

(θb − θ)θij. (4.15)

From the symmetry of the above bilinear forms, the following equality holds true

1

2

∫
Ω

σϕRe{uiūj} = 2β1

∫
D

(θ∗ − θ)θij + 2β2

∫
B\D

(θb − θ)θij, (4.16)

allowing to rewrite the entries of the matrix H as

Hij = β1

∫
D
θiθj + β2

∫
B\D

θiθj −
1

2

∫
Ω

σϕRe{uiūj}, (4.17)

where ϕ is solution to the adjoint heat equation (2.10).
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In order to avoid unfeasible high current densities, we state the following constrained
minimization problem {

minimize
α∈RN

Ψ2(α)

subject to ‖α‖ ≤ L,
(4.18)

with L > 0. Problem (4.18) can be rewritten as an unconstrained minimization problem
of the form

minimize
α∈RN

Ψλ
2(α) := Ψ2(α) + λ‖α‖2, (4.19)

where λ > 0 is a user-defined penalty parameter, which replaces the inequality constraint
in (4.18). After applying the first order optimality condition in (4.19), we obtain

〈DαΨλ
2(α), β〉 = 0. ∀β ∈ RN . (4.20)

From the symmetry of the matrix H, the optimal values for the current densities are
obtained as solution to the following linear system

2(H + λI)α = −d, (4.21)

where I is the N -dimensional identity matrix. As an external step control, quantity α is
updated as follows

α← α + γd, (4.22)

in which 0 < γ ≤ 1 is obtained with help of a line-search procedure. The resulting second
order method written in pseudo-code format is summarized through Algorithm 2, where
the parameters εJ and εγ are user-defined stop criteria.

Algorithm 2: second order

Input: α
Parameter: εγ, εJ
Output: α?

begin
Compute: u, ui, θ and J (θ)
δJ ← J (θ)
Jold ← J (θ)
while δJ > εJ and γ > εγ do

αold ← α
Compute: ϕ, θi, d,H and α
Jnew ← Jold + 1
γ ← 1
while Jnew > Jold and γ > εγ do

α← αold + γα
Compute: u, θ and J (θ)
Jnew ← J (θ)
γ ← γ/2

δJ ← Jold − Jnew
Jold ← Jnew

α? ← α

4.3. Combined Method. After replacing the canonical solutions θi and ui by their
respective adjoint solutions, the computational cost associated with each iteration of the
first order Algorithm 1 becomes very low in comparison with the second order Algorithm
2, which still requires the evaluation of θi and ui. On the other hand, it is expected that
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Algorithm 2 will converge faster to a better solution than Algorithm 1. Therefore, we
propose a third heuristic which consists in using the solution found by Algorithm 1 as
initial guess for Algorithm 2 with λ = 0, allowing to take advantage from both algorithms.

5. Numerical Experiments

In this section we present some numerical experiments. The objective of those ex-
periments is to show that the proposed methods can selectively heat a specific target.
In the first example of Section 5.1, the working frequency and number of antennas are
specified and a comparison between the three algorithms of Section 4 is presented. In
Sections 5.2 and 5.3, the targets are given by circular and L-shape breast tumors, re-
spectively. A prostate tumor is considered in Section 5.4. Finally, Section 5.5 shows an
example concerning three circular breast tumors of different sizes. The result obtained
from the steady-state analysis is validated in a more realistic scenario by considering the
full transient regime.

The domain Ω is given by a square of size (0.0, 0.5) × (0.0, 0.5)m2. The antennas are
uniformly distributed in Ω around the body B, as shown in Figure 2(a). Since standard
Galerkin method is used to discretize the BVPs, the Ihlenburg-Babuška condition has to
be fulfilled, which is given by k2h < 1, where k is the wave number and h is the relative
element mesh size [9]. In particular, approximately 820×103 triangular elements are used
to discretize the domain Ω, ensuring that the solutions to the Helmholtz problems become
stable. The mesh pattern is sketched in Figure 2(b). We set the weight β = 0.5 in the
objective functional (3.10) and define the stopping criteria as εJ = εγ = 10−4. All the
algorithms were coded in [17].

Ω

D
B

(a) (b)

36 37 38 39 40 41 42 43

(c)

Figure 2. Experiments setting (a) finite elements mesh pattern (b) and
temperature scale in Celsius (c).

The target and the normal body temperatures are defined as θ∗ = 42◦C and θb = 36◦C,
respectively. The temperature θΓ = 25◦C is prescribed on ∂Ω. The specific heat of the
blood is given by cb = 3850 Jkg−1◦C−1 [5]. We also consider that B is surrounded by
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deionized water [1, 30]. For the sake of comparison between the results, a temperature
scale is fixed according to Figure 2(c).

5.1. Example 1: Circular Target. In this experiment, the body B is defined by a circle
with center at (0.25, 0.25) and 10.0cm of radius. It represents mammary tissue assumed
to be composed of fat, for simplicity. The target D has 2.0cm of radius and center
at (0.28, 0.28). See sketch in Figure 3. The material properties used in this example
are summarized in Table 1 [1, 11, 30]. Note that the region D has the same material
properties as the background, so that it does not present as diseased tissue. Actually, D
is just a target to be heated selectively, which makes the problem much more difficult,
since normally the contrasting properties of the cancer induce selective heating of the
target D. We take advantage of this feature in the next experiments.

Ω

B

Figure 3. Example 1. Sketch of the healthy body on gray and of the
target on black.

Table 1. Example 1. Material properties of the deionized water and mam-
mary tissue.

K w εr σ
[Wm◦C−1] [kgm−3s] [Fm−1] [Sm−1]

Water 0.598 0.0 76.5 10−4

Fat 0.20 1.1 20.0 0.12

5.1.1. Working Frequency. The frequency number is of significant importance for this
work because it is directly related to the wave number k and – by consequence – to the
solution of Helmholtz equation (2.4), so that the temperature pattern strongly depends
on the frequency number through the heat problem (2.2). Therefore, three values in the
frequency range currently found in the literature [1, 14, 30, 31] are considered, namely
ω = 100, 200, 300MHz. Note that in this range of frequency, the heating process is driven
mainly by Ohmic effects. Since the electrical properties of biological tissues change ac-
cording to the frequency number, we present in Table 2 [11] the three working frequencies
to be considered together with the associated electrical permittivity and conductibility.

The number of antennas is fixed as N = 36. In order to chose the best working
frequency, only the first order method is used to solve the optimization problem (2.9).
The resulting temperature distributions are presented in Figure 4 for ω = 100MHz (Figure
4(a), after 48 iterations and 1h 57min 19s, with J (θ) = 4.9751), ω = 200MHz (Figure
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Table 2. Example 1. Electrical biological properties considering frequency
number.

ω εr σ
[MHz] [Fm−1] [Sm−1]

100 20.5 0.11
200 20.2 0.12
300 20.0 0.12

4(b), after 25 iterations and 47min 59s, with J (θ) = 3.0303) and ω = 300MHz (Figure
4(c), after 38 iterations and 1h 29min 37s, with J (θ) = 1.6652). As expected, the best
result is obtained with the higher frequency, namely ω = 300MHz, where the hot-spot is
clearly over the target.

(a) (b) (c)

Figure 4. Example 1. Temperature distribution using 36 antennas. The
target follows highlighted in solid black line. Obtained results for ω =
100MHz (a), ω = 200MHz (b) and ω = 300MHz (c). See Figure 2(c).

5.1.2. Number of Antennas. It is expected that the number of antennas would have in-
fluence on the temperature distribution. Therefore, we fix the frequency as ω = 300MHz
and consider two different numbers of antennas, namely N = 36 and N = 168. Again,
only the first order method is used to solve the optimization problem (2.9).

The resulting temperature distributions are presented in Figure 5, together with the
final current densities. The centers of the circles represent the positions of the antennas
and their radii are proportional to the obtained current densities α?. Finally, positive sign
means that the current flows out the page, otherwise the current flows into the page. In
particular, Figure 5 shows the obtained results for N = 36 (Figure 5(a), after 38 iterations
and 1h 29min 37s, with J (θ) = 1.6652) and N = 168 (Figure 5(b), after 39 iterations and
1h 35min 55s, with J (θ) = 1.6439). The obtained result for N = 168 is a bit better than
the one for N = 36. For a higher number of antennas, the results were not significantly
better than that obtained for N = 168.

5.1.3. Methods Comparison. In this section we compare the performance of the three
devised algorithms of Section 4. The working frequency and number of antennas are fixed
as ω = 300MHz and N = 168, respectively. We start by comparing Algorithms 1 and 2
without regularization, that is we set λ = 0.0. In both cases the initial guess is given by an
uniform current density αi = 3× 102, for i = 1, · · · , N . For a smaller current density, the
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(a) (b)

Figure 5. Example 1. Temperature distribution for ω = 300MHz. The
target follows highlighted in solid black line. The centers of the circles
represent the positions of the antennas and their radii are proportional
to the obtained current densities α?. Finally, positive sign means that
the current flows out the page, otherwise the current flows into the page.
Obtained results for N = 36 antennas (a) and N = 168 antennas (b). See
also Figure 2(c).

second order method requires regularization. Figure 6 shows the obtained results for the
first order method (Figure 6(a), after 50 iterations and 54min 21s, with J (θ) = 1.6956)
and for the second order method (Figure 6(b), after 11 iterations and 2h 26min 26s, with
J (θ) = 1.6182). The convergence histories of both algorithms are presented in Figure 7.
Note that the second order method converges faster to a smaller value of the objective
functional. However, it requires more than two times of CPU consuming with respect to
the first order method.

(a) (b)

Figure 6. Example 1. Temperature distribution for ω = 300MHz and
N = 168. The target follows highlighted in solid black line. Obtained
results for the first order method (a) and for the second order method with
λ = 0.0 (b). See also Figure 2(c).
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Figure 7. Example 1. Comparison between the objective functional val-
ues obtained during the iterative process.

Now, we set an uniform current density αi = 1, for i = 1, · · · , N as initial guess. In
this case, the second order method requires regularization, so that we set λ = 3 × 10−5,
which is the – empirically found – smallest value for the regularizing parameter. Figure 8
shows the obtained results for the first order method (Figure 8(a), after 39 iterations and
1h 35min 55s, with J (θ) = 1.6439) and for the second order method (Figure 8(b), after
58 iterations and 1d 8h 14min 10s, with J (θ) = 1.6443). Both results are quite similar in
terms of temperature distribution and objective functional values. However, the second
order method is much more time consuming than the first order method (more than 20
times).

(a) (b)

Figure 8. Example 1. Temperature distribution for ω = 300MHz and
N = 168. The target follows highlighted in solid black line. Obtained
results for the first order method (a) and for the second order method with
λ = 3× 10−5 (b). See also Figure 2(c).

Finally, in order to compare the performance of the combined method from Section 4.3
with Algorithms 1 and 2, we set the last current density obtained from the first order
method as initial guess to the second order method, but with λ = 0.0. Figure 9 shows the
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initial temperature distribution and final result for the combined method obtained after 40
iterations and 2h 34min 40s, with J (θ) = 1.6438. The combined algorithm converges to a
little bit smaller value of the objective functional, with about 60% more time consuming
than the first order method.

(a) (b)

Figure 9. Example 1. Temperature distribution for ω = 300MHz and
N = 168. The target follows highlighted in solid black line. Initial tem-
perature distribution (a) and obtained result for the combined method (b).
See also Figure 2(c).

Table 3 presents the minimum and maximum current densities values Je(xi) = αi/(ωµ0)
obtained for each method by taking into account the last set of experiments.

Table 3. Example 1. Extremes current densities values Je(xi) = αi/(ωµ0)
[Am−2].

Method Minimum Maximum

First Order −0.0773 0.0766
Second Order −0.0767 0.0769

Combined −16.2819 13.8939

Through this example it is shown that the three methods perform well in selectively
heating a given target. However, the second order method either strongly depends on the
initial guess or it is too time consuming after regularization. Therefore, in the next set of
examples, only the first order algorithm and the combined method are used in order to
perform further comparisons.

5.2. Example 2: Circular Breast Tumor. In this section, the target is finally char-
acterized as a tumor, in the case a breast tumor, so that the same geometries for the
healthy tissue B and target D as before are considered, but with D representing a dis-
eased tissue. The material properties of the breast tumor D are summarized in Table
4 [1, 11, 30], whereas the remainder part are characterized according to Table 1. The
working frequency and number of antennas are fixed as ω = 300MHz and N = 168,
respectively.

Figure 10 shows the initial temperature distribution, the obtained results for the first
order method (Figure 10(b), after 35 iterations and 1h 28min 55s, with J (θ) = 0.6135)
and for the combined method (Figure 10(c), after 42 iterations and 5h 42min 59s, with
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Table 4. Example 2. Material properties of the breast tumor for ω = 300MHz.

K w εr σ
[Wm◦C−1] [kgm−3] [Fm−1] [Sm−1]

0.56 1.8 58.2 0.82

J (θ) = 0.6125). As expected, the hot spots are more concentrated over the target than in
the previous example. This phenomenon occurs because the tumor is more vascularized,
which induces a temperature increasing over it when exposed to the electromagnetic field.
The model problem takes it into account mainly through the parameter σ, whose value is
higher in the tumor than in the healthy tissue. See Figures 9(b) and 10(c) for homogeneous
and heterogeneous media, respectively, where the heat is more concentrated within the
tumor than in the target. Finally, Table 5 presents the minimum and maximum current
densities values Je(xi) = αi/(ωµ0) obtained for both methods. In general, the first order
method performs as good as the combined one, but with low computational cost (about
4 times faster).

(a) (b) (c)

Figure 10. Example 2. Temperature distribution for ω = 300MHz and
N = 168. The tumor follows highlighted in solid black line. Initial temper-
ature distribution (a) and obtained results for the first order method (b) as
well as for the combined method (c). See also Figure 2(c).

Table 5. Example 2. Extremes current densities values Je(xi) = αi/(ωµ0)
[Am−2].

Method Minimum Maximum

First Order −0.0329 0.0387
Combined −0.0328 0.0385

5.3. Example 3: L-Shaped Breast Tumor. It is well known that the tumor may
assume different shapes [18]. Therefore, let us consider the same example as before ac-
cording to Tables 1 and 4, but with the target D representing a L-Shaped tumor with
horizontal and vertical brackets of sizes 5.0cm × 1.0cm and 1.0cm × 4.0cm, respectively.
See sketch in Figure 11. Again, the working frequency and number of antennas are set as
ω = 300MHz and N = 168, respectively.
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Ω

B

Figure 11. Example 3. Sketch of the healthy body on gray and of the
L-Shaped tumor on black.

In Figure 12 it is shown the obtained results for the first order method (Figure 12(a),
after 60 iterations and 2h 1min 7s, with J (θ) = 0.8708) and for the combined method
(Figure 12(b), after 64 iterations and 4h 38min 30s, with J (θ) = 0.8224). In terms
of objective functional value, the combined method performs better than the first order
method, but with higher computational cost (more than 2 times). Therefore, in the next
set of examples, only the combined method is used. Finally, Table 6 presents the minimum
and maximum current densities values Je(xi) = αi/(ωµ0) obtained for both methods.

(a) (b)

Figure 12. Example 3. Temperature distribution for ω = 300MHz and
N = 168. The target follows highlighted in solid black line. Obtained
results for the first order method (a) and for the combined method (b). See
Figure 2(c).

Table 6. Example 3. Extremes current densities values Je(xi) = αi/(ωµ0)
[Am−2].

Method Minimum Maximum

First Order −0.0500 0.0577
Combined −0.1891 0.3393
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5.4. Example 4: Prostate Tumor. In this section we consider a prostate tumor. Re-
gion B represents a man’s abdominal cross section, which is assumed to be composed by
bones, bladder, muscle and fat. The tumor has 2.0cm of radius and center at (0.25, 0.21)
within the prostate region. See sketch in Figure 13. The bladder is treated as a muscle,
because it is assumed to be empty. The material properties for bladder, muscle and bones
are summarized in Table 7 [6, 28], whereas the remainder part are characterized accord-
ing to Tables 1 and 4 from the former examples. The working frequency and number of
antennas are fixed as ω = 300MHz and N = 168, respectively.

Ω

B

Figure 13. Example 4. Sketch of a man’s abdominal cross section. Fat,
bones and muscles are highlighted in dark gray, gray and light gray, re-
spectively, whereas the bladder appears in yellow and the prostate tumor
in black.

Table 7. Example 4. Material properties of the bladder, muscle and bones
for ω = 300MHz.

Tissue K w εr σ
[Wm◦C−1] [kgm−3] [Fm−1] [Sm−1]

Bladder and Muscle 0.56 3.6 75.0 0.39
Bone 0.16 0.177 60.0 0.02

Figure 14 shows the final result for the combined method of Section 4.3 obtained after
107 iterations and 19h 30min 5s, with J (θ) = 1.2785. Note that the method is able
to selectively heat the tumor close to the target temperature of 42.0◦C, while keeping
the temperature within the healthy tissues around 37.5◦C. The oscillations observed in
the temperature distribution and the high computational cost may be explained by the
heterogeneity of the medium. The values for current densities Je(xi) = αi/(ωµ0) are in
the range [−0.0876, 0.0531]Am−2.

5.5. Example 5: Three Breast Tumors. In this section we test the capability of the
combined method in selectively heat three breast tumors of different sizes all together.
The obtained result is used later in a full transient analysis. Let us consider the breast
as described in Section 5.1 with three tumors of radii 2.0cm, 1.5cm, 1.0cm and centers
at (0.28, 0.28), (0.22, 0.2) and (0.2, 0.28), respectively. See sketch in Figure 15. The
material properties are the same used in previous examples, which follow summarized
through Tables 1 and 4. The working frequency and number of antennas are fixed as
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Figure 14. Example 4. Temperature distribution for ω = 300MHz and
N = 168. The target follows highlighted in solid black line. Obtained
results for combined method. See also Figure 2(c).

ω = 300MHz and N = 168, respectively. The thermal capacity K, specific heat of the
blood cb, perfusion rate of the blood w, electrical conductivity σ and wave number k are
corrupted with 40% of White Gaussian Noise (WGN).

Ω

Figure 15. Example 5. Sketch of the healthy body and breast tumors
corrupted with 40% of WGN.

5.5.1. Steady-State Analysis. The final current densities and the resulting temperature
distribution are presented in Figure 16 for the combined method, obtained after 143
iterations and 5h 55min 50s, with J (θ) = 1.1028. The centers of the circles represent the
positions of the antennas and their radii are proportional to the obtained current densities
α?. Positive sign means that the current flows out the page, otherwise the current flows
into the page. From an analysis of Figure 16, it is possible to infer that the method is
able to selectively heat the three tumors simultaneously even in the presence of noise,
which represents an important improvement with respect to previous work by [1], where
distributed antennas have been considered. The values for current densities Je(xi) =
αi/(ωµ0) are in the range [−25.8851, 36.3134]Am−2. However, less than ten antennas
have relevant current densities values. See Figure 16. Therefore, it is expected that the
same temperature pattern could be reached by using a smaller number of antennas.

5.5.2. Transient Analysis. Let us consider the obtained current density α? from the last
experiment in a full transient analysis. We start by introducing the heat equation for
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Figure 16. Example 5. Temperature distribution for ω = 300MHz, N =
168 and 40% of WGN. The target follows highlighted in solid black line.
The centers of the circles represent the positions of the antennas and their
radii are proportional to the obtained current densities α?. Finally, positive
sign means that the current flows out the page, otherwise the current flows
into the page. Obtained results for combined method. See also Figure 2(c).

living tissues in which the temperature θ : Ω× (0, T ) 7→ R is solution of [25, 30]:

θ ∈ V :

∫
Ω

ρc
∂θ

∂t
ηdx+

∫
Ω

[K∇θ · ∇η + cbw(θ − θb)η] dx =
1

2

∫
Ω

σ|u|2ηdx, ∀η ∈ V0

(5.1)
where T is the final time analysis, ρ is the tissue density [kgm−3] and c is the specific heat of
the tissue [Jkg−1◦C−1]. The values of ρ and c are summarized in Table 8 [7, 30]. The same
values of the previous experiment are used for the others material properties, according
to Tables 1 and 4. Standard backward Euler method is used in the time discretization
[2]. We set ∆t = 1.0s as time step for a T = 60 minutes of simulation and θ0(x) = θb as
the initial temperature.

Table 8. Example 5. Physical properties for transient analysis at 300MHz
of working frequency.

ρ c
[kgm−3] [Jkg−1◦C−1]

Water 1000.0 4178.0
Tumor 1020.0 3639.0

Fat 1020.0 2387.0

The time evolution process is summarized in Figure 17. The transient period takes
about 20 minutes. After that, the objective functional value converges to J (θ) = 1.2098,
which is 10.0% higher than the one obtained in the steady-state regime. However, the
temperature within the tumors are close to the target temperature. Note that at t =
5min, the temperature over the tumors is close to 40◦C and after t = 10min the target
temperature is reached.
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Figure 17. Example 5. Obtained result for the transient simulation. The
temperature scale is the same as in Figure 2(c).

6. Concluding Remarks

In this paper a novel approach for pointwise antenna design in hyperthermia therapy
has been proposed. The forward problem is modeled by the steady-state heat equation
coupled with the Helmholtz equation. The basic idea consists in minimize a cost func-
tional measuring the misfit between the target temperature and the temperature obtained
from the model problem, with respect to the current densities passing through the anten-
nas. The adjoint sensitivity analysis is used in order to simplify the form of the associated
derivatives. In particular, the resulting sensitivities are used to devise first and second
order antenna design algorithms as well as a third one that combines both the previous
algorithms. Numerical experiments are presented showing different features of the pro-
posed methodology, including its capability in selectively heating simultaneously several
targets up to the desired temperature, by keeping the temperature under control in the
remainder part of the body. Finally, a selected result is used in a full transient analy-
sis, where the hot spots are keeping over the diseased tissues during the whole heating
process. However, we are aware that hyperthermia therapy is a purely three dimensional
phenomenon where the electromagnetic effects are governed by the Maxwell system and
the material properties of living tissues may depend on the temperature, leading to more
complicated non-linear forward problems. Therefore, the extension to such real-life sce-
narios requires further investigation, including the use of efficient numerical methods for
solving the associated BVPs, as can be found in [19, Chapters 5 and 6], for instance.
In addition, hyperthermia treatment also requires temperature measurements during the
heating process by using inverse problem techniques [15]. Therefore, this paper can be
seen as a preliminary study showing that the proposed methodology works properly in
such a simplified setting.
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