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Abstract. In this work, we propose a full-waveform technique for the spatial reconstruction
and characterization of (micro-) seismic events via joint source location and moment tensor
inversion. The approach is formulated in the frequency domain, and it allows for the simul-
taneous inversion of multiple point-like events. In the core of the proposed methodology is a
grid search for the source locations that encapsulates the optimality condition on the respective
moment tensors. The developments cater for compactly supported elastic bodies in R2; how-
ever our framework is directly extendable to inverse (seismic) source problems in R3 involving
both bounded and unbounded elastic domains. A set of numerical results, targeting laboratory
applications, is included to illustrate the performance of the inverse solution in situations in-
volving: (i) reconstruction of multiple events, (ii) sparse (pointwise) boundary measurements,
(iii) “off-grid” location of the micro-seismic events, and (iv) inexact knowledge of the medium’s
elastic properties.

1. Introduction

Seismic and micro-seismic source characterization is a keen area of research in geophysics, en-
gineering, hydrocarbon production, and materials science due to its central role in the under-
standing of earthquake and faulting processes [17]; monitoring of mines, highway bridges, and
offshore platforms [11]; tracking the progress of hydraulic fracturing [2], and investigating the
failure of brittle materials [8]. Generally speaking any (micro-) seismic source, interpreted as a
sudden material failure, can be characterized by its spatial support, temporal variation, and the
underpinning failure mechanism. In situations when the extent of a material failure is small rel-
ative to the remaining length scales in the problem (e.g. seismic wavelengths and source-receiver
distances), the seismic source can be interpreted as a point source [16, 9]; a hypothesis that is
implicitly assumed hereon. In this setting, the accepted continuum mechanics description of a
seismic source is given by a linear combination of force dipoles [1] whose weights are specified
in terms of the so-called seismic moment tensor [7]; a second-order tensorial quantity whose
accurate reconstruction from remote wavefield measurements is the lynchpin of seismic source
characterization.

Transcending the classical approaches to moment tensor inversion in laboratory [16] and geo-
physical [9] environments that rely on prior knowledge of the source location and possibly other
simplifying assumptions (e.g. far field hypothesis), recent attempts at seismic source characteri-
zation are increasingly based on the full waveform analysis of multi-axial seismic observations [6].
In general, the latter can be pursued either via time- or frequency-domain approaches. As an
example of the former class of inverse solutions, in [19] deploys grid search for the source loca-
tion – aiming to minimize the L2 misfit between the observed and synthetic waveforms, followed
by a least-squares solution for the moment tensor that relies on an a priori premise of the
source time function. In [18], on the other hand, the investigators pursue simultaneous inversion
for the source location, moment tensor, and two-parameter source time function via nonlinear
minimization of the germane L2 waveform misfit, aided by adjoint-field sensitivity estimates.
In recent years, studies in [3, 10] have demonstrated the utility of time reversal methods as a
viable (time- or frequency-domain) alternative for exposing the seismic source location. With
the latter information at hand, a full-waveform reconstruction of the moment tensor, including
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the underpinning source time function, can be conveniently pursued in the frequency domain [5]
by solving the underpinning linear system of equations.

A common thread to the above and related inverse source analyses entails (i) the fundamental
premise of a synchronous seismic source, where all components of its moment tensor share the
same time dependence (given by the source time function); and (ii) the assumption of a single
seismic (point) source, precluding the possibility that two events – originating from distinct
locations – may overlap in time. To provide an alternative to the foregoing analyses that is
free of such impediments, this work deals with spatial reconstruction and characterization of
micro-seismic events in the frequency domain from pointwise wavefield measurements, where
both real and imaginary parts of the associated moment tensors are fully reconstructed. Since
the inverse problem at hand is (as expected) ill-posed, the idea is to rewrite it as an optimization
problem in which a functional measuring the misfit between synthetic and observed waveforms is
minimized with respect to a set of admissible point sources representing the hidden faults. The
necessary optimality conditions are derived in the spirit of the topological derivative method
[12, 13] which, in this context, consists in exposing the perturbation of the functional as a
quadratic function of the germane moment tensor components. Then, the resulting expansion
is trivially minimized with respect to the sought source parameters, leading to a non-iterative
reconstruction algorithm that is initial guess-free and robust with respect to perturbations of
sensory data. We test the proposed technique via numerical experiments designed to examine
its performance under a variety of source, sensing, and uncertainty scenarios.

The paper is organized as follows. The germane (frequency-domain) forward problem and
affiliated inverse problem, targeting the locations and moment-tensor “strengths” of micro-
seismic events from the observed acoustic emission data, are described in Section 2. In Section 3
the germane cost functional, measuring the L2 misfit between the synthetic and sensory data,
is expanded with respect to the set of admissible source densities. The resulting expansion
is used to devise a novel reconstruction algorithm presented in Section 4. A set of numerical
experiments examining the effectiveness of the proposed reconstruction algorithm is provided in
Section 5.

2. Inverse problem

Consider a bounded elastic body Ω ⊂ R2 endowed with Lipschitz boundary ∂Ω, mass density ρ,
and fourth-order elasticity tensor C. For further reference, let ΓN ⊂ Γ and ΓD = ∂Ω \ ΓN

denote respectively the parts of ∂Ω subjected to homogeneous Neumann and Dirichlet boundary
conditions. In this setting, we are interested in the inverse source problem of reconstructing the
source density f∗ such that

−∇·(C :∇u)− ρω2u = f∗ in Ω,
u = u∗ on Γm,
u = 0 on ΓD,

n·(C :∇u) = 0 on ΓN,

(2.1)

where u : Ω → C2 is the elastodynamic displacement field; ω denotes the frequency of wave
motion; n is the unit outward normal on ∂Ω; Γm⊂ ΓN is the measurement surface; and u∗ are
the “acoustic emission” data from which we aim to resolve f∗, see Fig. 1. Hereon, we assume
the elastic body Ω to be homogeneous and isotropic, in which case the elasticity tensor reads

C = 2µI4 + λI2 ⊗ I2, (2.2)

where λ and µ are the Lamé moduli, and In is the symmetric nth-order identity tensor.
In the spirit of acoustic emission problems, we next describe the source density f∗ via super-

position of a finite number of dipoles; specifically, we assume that f∗ ∈ Cδ(Ω), where

Cδ(Ω) =
{
f : Ω→ C2 | f(x) =

N∑
i=1

M(i) ·∇ξδ(x− ξ)|ξ=ξ(i)

}
. (2.3)
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Here, δ(·) is the two-dimensional Dirac delta function; N denotes the number of point sources
located at ξ(i) ∈ Ω (i = 1, N), and M(i) ∈ C2×2 is a (symmetric) seismic moment tensor charac-
terizing the ith point source. For completeness, we recall the continuum mechanics definition [1]
of the seismic moment tensor as

M = a JuK⊗ η : C, (2.4)

where a is the area of a newly created micro-fracture (giving rise to the acoustic emission) whose
unit normal is denoted by η, and JuK is the average displacement jump across the micro-fracture.
On the basis of (2.3), we write the sought source density satisfying (2.1) as

f∗(x) =
N∗∑
i=1

M∗
(i) ·∇ξδ(x− ξ)|ξ=ξ∗

(i)
(2.5)

Figure 1. Problem setting.

Remark 1. To establish a clear connection of the above time-harmonic setup with physical ap-
plications, we denote byM∗

(i)(t) the temporal record of a moment tensor describing the (micro-)
seismic event occurring at ξ∗(i), and we assume (without loss of generality) that t = 0 marks the
onset of the event. In this case, we have

M∗
(i)(t) = 0, t < 0,

M∗
(i)(t) 6= 0, t→∞

(2.6)

due to creation of a permanent dislocation at ξ∗(i). As a result, the components of M∗
(i)(t) are

not amenable to the Fourier transform. However their temporal derivatives are, in which case
the moment tensors in (2.5) should be interpreted as

M ∗
(i) = M ∗

(i)(ω) =
1

iω
F
[ d

dt
M∗

(i)(t)
]
(ω),

where F [·] denotes the Fourier transform and i =
√
−1, see [15] for an in-depth discussion.

Remark 2. Most of the existing approaches to moment tensor inversion are based on the as-
sumption of a synchronous seismic source, which states that all components of the moment
tensor M∗

(i)(t) carry the same time dependence – referred to as the source time function [19].
In this work, we implicitly dispense with such hypothesis; as examined in [9], this is one of the
key advantages afforded by the frequency-domain inversion of seismic moment tensors.

Let us rewrite the inverse problem (2.1) as an optimization problem. The associated L2

functional to be minimized in Cδ(Ω) is given by

J (u) :=
1

2

∫
Γm

(u− u∗) · (u− u∗), (2.7)
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where u : Ω→ C2 solves the boundary value problem −∇·(C :∇u)− ρω2u = f in Ω,
u = 0 on ΓD,

n·(C :∇u) = 0 on ΓN,
(2.8)

for a trial source term f ∈ Cδ(Ω). In this setting, the relevant optimization problem can be
stated as

Minimize
f∈Cδ(Ω)

J (u) subject to (2.8). (2.9)

3. Sensitivity Analysis

The next step is to minimize the misfit functional (2.7) with respect to the set of admissible
solutions (2.3). In order to evaluate the germane sensitivities of this functional, the idea is to
perturb the trial source term f ∈ Cδ(Ω) in (2.8) by a fixed number, N , of point sources with
arbitrary locations and generic moment tensors as

fp(x) = f(x) +
N∑
i=1

M (i) ·∇(i)δ(x), (3.1)

where ∇(i)δ(x) := ∇ξδ(x − ξ)|ξ=ξ(i)
, and M(i)∈ C2×2 are symmetric. Hereon, we refer to fp ∈

Cδ(Ω) as a perturbed source, and we seek to reconstruct M(i) (for a given trial set ξ(i), i = 1, N)
by direct inversion. On the basis of (2.8) and (3.1), we can introduce the forward solution up
as that solving  −∇·(C :∇up)− ρω2up = fp in Ω,

up = 0 on ΓD,
n·(C :∇up) = 0 on ΓN,

(3.2)

which gives rise to the perturbed cost functional

J (up) =
1

2

∫
Γm

(up − u∗) · (up − u∗). (3.3)

Assuming a sufficient number of “micro-seismic” source locations ξ(i) (i = 1, N), we are
interested in obtaining the variation of (2.7) with respect to the components of the moment
tensor M (i) at each location. To facilitate the analysis, one may decompose M (i) into the real
and imaginary parts as

M (i) = A(i) + iB(i), A(i),B(i) ∈ R2×2. (3.4)

Using Einstein summation notation over repeated indexes k, l = 1, 2, we can further write

A(i)∇(i)δ(x) = Akl(i)(ek ⊗ el)∇(i)δ(x) and B(i)∇(i)δ(x) = Bkl
(i)(ek ⊗ el)∇(i)δ(x) , (3.5)

where ek and el are the unit vectors of the reference Cartesian frame, and Akl(i) (resp. Bkl
(i)) are the

components of A(i) (resp. B(i)). With such definitions, the solution of (3.2) can be conveniently
decomposed as

up(x) = u(x) +

N∑
i=1

(
Akl(i) p

kl
(i)(x) +Bkl

(i) ip
kl
(i)(x)

)
(3.6)

where pkl(i) solve the canonical boundary value problems
−∇·(C :∇pkl(i))− ρω2pkl(i) = (ek ⊗ el)∇(i)δ in Ω ,

pkl(i) = 0 on ΓD ,

n·(C :∇pkl(i)) = 0 on ΓN,

(3.7)

for k, l = 1, 2. Here it is useful to note that, thanks to ansatz (3.6), canonical problems (3.7)
are independent of the components Akl(i) and iBkl

(i) of the moment tensor M (i) in (3.4). Now we
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have all elements needed to evaluate the variation of functional (2.7) with respect to Akl(i) and

iBkl
(i). Specifically, on substituting (3.6) in (3.3), we obtain

J (up) = J (u) +

∫
Γm

N∑
i=1

Akl(i)<
{
pkl(i) · (u− u∗)

}
+

∫
Γm

N∑
i=1

Bkl
(i)=

{
−pkl(i) · (u− u∗)

}
+

1

2

∫
Γm

N∑
i=1

N∑
j=1

Akl(i)A
mn
(j) p

kl
(i) · pmn(j) +

1

2

∫
Γm

N∑
i=1

N∑
j=1

Bkl
(i)B

mn
(j) p

kl
(i) · pmn(j) , (3.8)

assuming implicit summation over repeated indexes k, l,m, n = 1, 2.
For a systematic treatment of (3.8), we next introduce the vector of trial source locations

z =
(
ξ(1), ξ(2), . . . , ξ(N)

)
∈ R2N (3.9)

and the affiliated “strength” vectors

a =
(
α(1),α(2), · · · ,α(N)

)
∈ R3N (3.10)

b =
(
β(1),β(2), · · · ,β(N)

)
∈ R3N (3.11)

collecting the respective components of M (i), where

α(i) = (A11
(i), A

22
(i), A

12
(i) = A21

(i)),

β(i) = (B11
(i), B

22
(i), B

12
(i) = B21

(i)).

With such definitions, the residual in (3.8) can be rewritten more compactly as

Ψ(N, z,a, b) := J (up)− J (u) (3.12)

= g · a+
1

2
Ga · a+ h · b+

1

2
Gb · b. (3.13)

Here, vectors g,h ∈ R3N and matrix G ∈ R3N × R3N are respectively defined as

g :=
(
g(1), g(2), · · · , g(N)

)
h :=

(
h(1),h(2), · · · ,h(N)

) and G :=


G(11) G(12) . . . G(1N)

G(21) G(22) . . . G(2N)
...

...
. . .

...
G(N1) G(N2) . . . G(NN)

 , (3.14)

whose entries are given by

g(i) := (g1(i), g2(i), g3(i))

h(i) := (h1(i), h2(i), h3(i))
and G(ij) :=

 G11(ij) G12(ij) G13(ij)

G21(ij) G22(ij) G23(ij)

G31(ij) G32(ij) G33(ij)

 , (3.15)

where

g1(i) :=

∫
Γm

<
{
p11
(i) · (u− u∗)

}
, g2(i) :=

∫
Γm

<
{
p22
(i) · (u− u∗)

}
,

g3(i) :=

∫
Γm

<
{(
p12
(i) + p21

(i)

)
· (u− u∗)

}
,

h1(i) :=

∫
Γm

=
{
−p11

(i) · (u− u∗)
}
, h2(i) :=

∫
Γm

=
{
−p22

(i) · (u− u∗)
}
,

h3(i) :=

∫
Γm

=
{
−
(
p12
(i) + p21

(i)

)
· (u− u∗)

}
,
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and

G11(ij) :=

∫
Γm

<
{
p11
(i) · p11

(j)

}
, G12(ij) :=

∫
Γm

<
{
p11
(i) · p22

(j)

}
, G13(ij) :=

∫
Γm

<
{
p11
(i) ·

(
p12
(j) + p21

(j)

)}
,

G21(ij) :=

∫
Γm

<
{
p22
(i) · p11

(j)

}
, G22(ij) :=

∫
Γm

<
{
p22
(i) · p22

(j)

}
, G23(ij) :=

∫
Γm

<
{
p22
(i) ·

(
p12
(j) + p21

(j)

)}
,

G31(ij) :=

∫
Γm

<
{(
p12
(i) + p21

(i)

)
· p11

(j)

}
, G32(ij) :=

∫
Γm

<
{(
p12
(i) + p21

(i)

)
· p22

(j)

}
,

G33(ij) :=

∫
Γm

<
{(
p12
(i) + p21

(i)

)
·
(
p12
(j) + p21

(j)

)}
.

4. Reconstruction Algorithm

For each fixed pair (N, z), we seek (a, b) that minimizes Ψ according to (3.13). Since Ψ represents
a quadratic form with respect to a and b, sufficient optimality conditions

DaΨ(N, z,a, b) · δa = 0, ∀ δa ∈ R3N , (4.1)

DbΨ(N, z,a, b) · δb = 0, ∀ δb ∈ R3N , (4.2)

lead to the linear systems

Ga = −g and Gb = −h. (4.3)

In this setting, the solution (a, b) of (4.3) is implicitly a function of the vector (3.9) of source
locations z, namely a = a(z) and b = b(z). On substituting (4.3) into (3.13), the optimal
vector of source locations z? can be trivially obtained via combinatorial search over a prescribed
grid, Z, of M > N trial source locations geared toward solving the minimization problem

z? = argmin
z⊂Z

{
Ψ(N, z,a(z), b(z)) =

1

2

(
g · a(z) + h · b(z)

)}
. (4.4)

On resolving z?, the components of N reconstructed moment tensors M?
(i) are then given by

the optimal “strength” vectors a? = a(z?) and b? = b(z?). The associated optimal value of
the objective function is denoted as Ψ? := Ψ(N, z?,a?, b?). We remark that when the “true”
number of micro-seismic sources, N∗, is less than N , numerical simulations show that N −N∗
pairs (α?(i),β

?
(i)) in the solution set (a?, b?) take near-trivial values.

To complete the analysis, we next introduce a second-order optimization algorithm that syn-
thesizes the process of obtaining z? and (a?, b?) from the computational point of view. The
input of the algorithm is listed below:

• Upper bound N on the number of (micro-seismic) point sources.
• Grid Z of M > N trial source locations.
• Canonical solutions pkl(i) for each grid point ξ(i) ∈ Z.

The algorithm returns the optimal set of source locations z? and respective moment tensor
components given by (a?, b?). The above procedure, originally developed in [4] in the context
of inverse potential problems, is shown in Algorithm 1 using pseudo-code format. Therein, Π :
{1, 2, . . . ,M}N 7→ Z maps the vector of source indices I = (i1, i2, . . . , iN ) to the corresponding
vector of source locations z ⊂ Z. For further applications of this algorithm, we refer to [14].

In Algorithm 1, optimal source locations z? are obtained through a combinatorial search
over M trial points sampling the set of admissible locations Z. As a result, the computational
complexity C(M,N) of the algorithm can be evaluated by the formula

C(M,N) ≈
(
M
N

)
N3 =

M !

N !(M −N)!
N3.

In Fig. 2, the graphs of N × log10(C(M,N)) for M = 100 and M = 400 are plotted as solid
and dashed lines, respectively. As can be seen from the display, the computational cost of the
algorithm may become prohibitive for N ≈ M/2. In the ensuing numerical examples (Section
5), we set N �M , so that Algorithm 1 runs in a few seconds for all examples.



7

Algorithm 1: Micro-seismic source reconstruction

input : N , Z, pkl(i) ∀ξ(i)∈ Z

1 Initialization: z? ← 0; (a?, b?)← (0,0); Ψ? ←∞; M ← card(Z)

2 for i1 ← 1 to M do
3 for i2 ← i1 + 1 to M do

...
4 for iN ← iN−1 + 1 to M do

5 g ←


g(i1)

g(i2)
...

g(iN )

; h←


h(i1)

h(i2)
...

h(iN )

; G←


G(i1i1) G(i1i2) · · · G(i1iN )

G(i2i1) G(i2i2) · · · G(i2iN )
...

...
. . .

...
G(iN i1) G(iN i2) · · · G(iN iN )


6 a← −G−1g; b← −G−1h; Ψ← 1

2(g · a+ h · b)
7 I ← (i1, i2, . . . , iN ); z ← Π(I)

8 if Ψ < Ψ? then
9 z? ← z; (a?, b?)← (a, b); Ψ? ← Ψ

10 end if

11 end for

12 end for

13 end for

14 return z?, (a?, b?), Ψ?

140

20

40

60

80

100

120

0

2001000 400300

Figure 2. Complexity order of Algorithm 1: N × log10(C(M,N)) for M = 100
(solid) and M = 400 (dashed).

Remark 3. In the standard (time-domain) interpretation of acoustic emission signals [16], the
unknown onset “t = 0” of a micro-seismic event, see (2.6), requires the analysis to be reformu-
lated in terms of relative arrival times – which results in a nonlinear minimization problem. In
the context of (4.4), on the other hand, we find by the translation property

F [g(t+ ∆t)](ω) = eiω∆tF [g(t)](ω)

of the Fourier transform that an unknown onset, ∆t(i), of the “(i)”th micro-seismic event (rel-
ative to t = 0 implicit to the Fourier transform) affects only the phase of M?

(i) = M?
(i)(ω) via
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factor eiω∆t(i). As a result, we see that Algorithm 1 yields the event locations ξ(i) and mod-
uli, |M?

(i)|, of the respective moment tensors that are invariant with respect to the unknown
onsets ∆t(i). To highlight the performance of the frequency-domain scheme, we implicitly as-
sume ∆t(i) = 0 in the ensuing examples.

5. Numerical Results

Thanks to the fact that the moment tensor M (i) ∈ C2×2 is symmetric, its eigenvalues can be
conveniently written as

m1,2
(i) :=

1

2

(
tr(M (i))±

√
MD

(i) : MD
(i)

)
(5.1)

in terms of the volumetric tr(M (i)) and deviatoric MD
(i) components of M (i), with

MD
(i) = M (i) −

1

2
tr(M (i))I2. (5.2)

In the sequel, we denote the affiliated eigenvectors by v1,2
(i) .

For the purposes of source inversion, we next consider three types of micro-seismic events given
by the moment tensors M∗

(i) ∈ C2×2 (i = 1, N∗) featuring: (i) complex amplitude γ(i) ∈ C, (ii)

unit normal to the microcrack η(i) ∈ R2 (when applicable), and (iii) Lamé moduli µ and λ of
the background solid [1]. Specifically, when generating the synthetic data u∗ according to (2.1)
and (2.5), we allow for

(1) Cavitation:

M∗
(i) = 2γ(i)(µ+ λ)I2 ⇒ m1,2

(i) = 2γ(i)(µ+ λ); (5.3)

(2) Mode I crack:

M∗
(i) = γ(i)(2µ(η(i) ⊗ η(i)) + λI2) ⇒ m1

(i) = γ(i)(2µ+ λ), m2
(i) = γ(i)λ; (5.4)

(3) Mode II crack:

M∗
(i) = γ(i)µ(η⊥(i) ⊗ η(i) + η(i) ⊗ η⊥(i)) ⇒ m1,2

(i) = ±γ(i)µ. (5.5)

For future reference, the moment tensors given by (5.3)–(5.5) are depicted graphically in Fig. 3.

(a)
m1

(i)
γ(i)

=
m2

(i)
γ(i)

> 0 (b)
m1

(i)
γ(i)

>
m2

(i)
γ(i)

> 0 (c)
m1

(i)
γ(i)

> 0 >
m2

(i)
γ(i)

Figure 3. Representation of the moment tensors M∗
(i) in terms of their eigen-

values m1,2
(i) and eigenvectors v1,2

(i) : (a) cavitation, (b) mode I crack, and (c) mode
II crack.

5.1. Testing setup. The elastic body Ω used for numerical simulations is taken as an ` × `
block of “rock” with mass density ρ and Lamé moduli λ = µ (Poisson’s ratio ν = 0.25), fixed
at the bottom corners as in Fig. 4. The pointwise motion sensors are assumed to be distributed
along the boundary ∂Ω with various densities and apertures as described in the sequel. The
dimensionless frequency of acoustic emission is taken as

ω̄ =
ω `√
µ/ρ

= 10π,
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resulting in the specimen-size-to-shear-wavelength ratio of `/λs = 5. With reference to (2.4),
(3.1) and (5.3)–(5.5), we also introduce the dimensionless coordinates x̄ = `−1x; we consider
the dimensionless source strength γ̄ = `−3γ, and we specify the unit normal to the microcrack
as η = (cos θ, sin θ), where θ is the angle measured counter-clockwise from the horizontal axis.
The forward elastodynamic problem is solved via standard Galerkin finite element method. To
handle the germane wave propagation with sufficient accuracy, domain Ω is first subdivided
into a uniform 10 × 10 grid of square subdomains. Then, each subdomain is discretized via 4n

triangular finite elements with n = 7. Next, the set of admissible source locations Z is taken as
the union of vertices of like triangles with n = 1, giving M = 221 in Algorithm 1. To illustrate
the performance of the inversion algorithm, we adopt the graphical representation of moment
tensors introduced in Fig. 3, and we denote the “true” (resp. reconstructed) sources by thick
red (resp. thin blue) arrows.

In the sequel we tackle several test problems, dealing with both isolated and co-existing
sources of acoustic emission. We first consider an idealized scenario where the locations of
microcracks belong to the set of admissible locations Z, and then proceed to the reconstruction
of arbitrarily-located sources.

x1
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Figure 4. Square “rock” specimen undergoing acoustic emission.

Remark 4. In what follows, our target application is the acoustic emission (AE) analysis of
failure processes in quasi-brittle laboratory samples. Depending on the loading mechanism, either
majority of the specimen’s surface (e.g. non-uniform thermal expansion or drying shrinkage), a
good part of the surface of the specimen (e.g. split cylinder testing), or only its “sides” (e.g.
uniaxial compression) may be available for AE sensing. In this vein, our numerical studies
assume square specimen geometry and cover situations where the part of the external surface
that is available for AE sensing entails anywhere from one to four sides of the square.

5.2. Single cavitation event (ξ∗(1) ∈ Z). In the first example we aim to reconstruct a single
micro-seismic source of type (5.3), with complex amplitude γ̄(1) = 0.01 + 0.02i and location
ξ∗(1) ∈ Z, by using a pair of biaxial motion sensors placed on the top surface of the specimen.
Table 1 lists the respective coordinates of the source and motion sensors. As expected, the
source reconstruction shown in Fig. 5 is practically exact.

Table 1. Source and sensor locations for the single event example.

Source Sensor ξ̄
∗
(i) or x̄

Cavitation (0.25, 0.25)
#1 (0.40, 1.00)
#2 (0.60, 1.00)
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(a) Real part (b) Imaginary part

Figure 5. Reconstruction of a single micro-seismic source using two biaxial
motion sensors.

5.3. Two co-existing events (ξ∗(i)∈ Z). We next seek to reconstruct two micro-seismic sources
representing: (i) mode I crack with γ̄(1) = 0.05 + 0.03i and θ(1) = 20◦, and (ii) mode II crack
with γ̄(2) = 0.03 + 0.05i and θ(2) = 15◦. As before, we make use of two sensors located on the
top surface of the specimen. Table 2 lists the source and sensor coordinates, the former being
limited to the set of admissible locations Z. Again, the reconstruction is nearly exact as shown
in Fig. 6.

Table 2. Source and sensor locations for the dual event example.

Source Sensor ξ̄
∗
(i) or x̄

Mode I crack (0.20, 0.20)
Mode II crack (0.70, 0.20)

#1 (0.00, 1.00)
#2 (0.60, 1.00)
#3 (0.40, 1.00)
#4 (1.00, 1.00)

(a) Real part (b) Imaginary part

Figure 6. Reconstruction of a pair of micro-seismic sources using two biaxial
motion sensors.

5.4. Three co-existing events (ξ∗(i)∈ Z). In this example, we pursue reconstruction of three
micro-seismic sources representing: (i) mode I crack with γ̄(1) = 0.03 + 0.05i and θ(1) = 20◦; (ii)
mode II crack with γ̄(2) = 0.05+0.03i and θ(2) = 15◦, and (iii) cavitation with γ̄(3) = 0.01+0.02i.
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As sensory data, we consider the biaxial motion measurements captured by three pairs of sensors
shown in Fig. 7. For completeness, Table 3 lists the featured source and sensor coordinates, the
former being limited to the set of admissible locations Z. As can be seen from Fig. 7, the quality
of triple source reconstruction is commensurate with that in previous examples.

Table 3. Source and sensor locations for the triple event example.

Source Sensor ξ̄
∗
(i) or x̄

Mode I crack (0.25, 0.25)
Mode II crack (0.70, 0.20)

Cavitation (0.20, 0.80)
#1 (0.40, 1.00)
#2 (0.60, 1.00)
#3 (0.00, 0.40)
#4 (0.00, 0.60)
#5 (1.00, 0.40)
#6 (1.00, 0.60)

(a) Real part (b) Imaginary part

Figure 7. Reconstruction of a triplet of micro-seismic sources using six biaxial
motion sensors.

Remark 5. At this point, it is worth noting that the reconstruction fails if a smaller-than-
featured number of sensors is deployed in each of the foregoing examples. Qualitatively speaking,
this suggests the use of at least two sensors per (micro-seismic) source. When using M sensors
in a laboratory setting, one should accordingly expect to reliably reconstruct up to M/2 simul-
taneous sources. In situations where the reconstruction algorithm consistently exposes > M/2
contemporaneous events, the above result suggests either (i) deploying additional motion sen-
sors, or (ii) retaining only the ”strongest” M/2 events, as quantified e.g. in terms of Frobenius
norm of the moment tensors M (i), i = 1, N . For completeness, we note that in conventional
acoustic emission (AE) testing [8], micro-seismic events are reconstructed one at a time – which
precludes the existence of contemporaneous sources.

5.5. Two co-existing events (ξ∗(i) /∈ Z). We next consider a more realistic scenario where the
“true” source positions ξ∗(i) do not belong to the set of admissible locations Z. The idea is to
start with a “rough” grid search in terms of Z, and to follow up with recursive grid refinement
around previously recovered source locations – up to a prescribed stopping criterion.

In this example, we use 16 biaxial sensors distributed uniformly over ∂Ω to reconstruct two
co-existing events: (i) mode I crack with γ̄(1) = 0.05 + 0.03i and θ(1) = 20◦, and (ii) mode II
crack with γ̄(2) = 0.03 + 0.05i and θ(2) = 15◦. Table 4 specifies the source locations, neither of
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which belongs to the set of admissible locations Z. For generality, we further assume that the
exact number of sources is unknown by setting N = 3 > N∗ = 2.

To initiate the recursive search algorithm, we first subdivide Ω into a uniform 4 × 4 grid
of square regions. Then, each `

4 ×
`
4 region is further split into 4n triangles, using n = 8 for

the computational mesh and letting n = 1 to establish the initial set, Z1, of admissible source
locations shown in Fig. 8(a). Since ξ∗(i) /∈ Z1, the vector of reconstructed locations z?1 is found
to contain a set of nodes surrounding the exact locations. Next, the set of admissible locations
Z1 is replaced by a denser grid, Z ′2, obtained by letting n = 2. Then, a new set of admissible
locations Z2 – shown in Fig. 8(b) – is constructed as the restriction Z ′2 to circular regions of
radius `/2n centred at z?1. By setting n← n+ 1, the process is repeated up to n = 8, resulting
in eight iterations of adaptive grid refinement. As an illustration, Fig. 8(c) and Fig. 8(d) plot
respectively the refinements Z3 and Z4.

The source reconstructions given by the last two iterations (n = 7 and n = 8) are shown
respectively in Fig. 9 and Fig. 10. In each case, the two events are well resolved in terms of
both location and moment tensor. Due to the premise N = 3, a third fault is also found, but
with a negligible strength (invisible in the diagrams). Note that ξ∗(i) /∈ Z7 but ξ∗(i) ∈ Z8, which
explains nearly exact reconstruction obtained for n = 8 and a small distortion observed for
n = 7. For completeness, diminishing values of the cost functional Ψ? stemming from (4.4)
during the iterative reconstruction process are shown in Fig. 11.

Table 4. Source locations for the dual “off-grid” event example.

Source ξ̄
∗
(i)

Mode I crack (0.3837, 0.2939)
Mode II crack (0.7257, 0.3700)

(a) iteration #1 (b) iteration #2

(c) iteration #3 (d) iteration #4

Figure 8. Grid search refinements Z1 through Z4.

5.6. Reconstruction under random modeling errors (ξ∗(i) ∈ Z). For completeness, we
next examine the robustness of the reconstruction algorithm with respect to random modeling
errors. To this end, we assume the “true” material parameters to vary (from one finite element
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(a) Real part (b) Imaginary part

Figure 9. Reconstruction of a dual “off-grid” micro-seismic source using sixteen
biaxial motion sensors: iteration n = 7.

(a) Real part (b) Imaginary part

Figure 10. Reconstruction of a dual “off-grid” micro-seismic source using six-
teen biaxial motion sensors: iteration n = 8.

1 2 3 4 5 6 7 8

0.0

0.5

1.0

1.5

2.0

2.5

Figure 11. Variation of the objective functional Ψ? during adaptive grid refinement.
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to another) according to

µη = µ(1 + ητ) , λη = λ(1 + ητ) and ρη = ρ(1 + ητ) , (5.6)

where τ : Ω 7→ (0, 1) is a random variable, η specifies the amplitude of fluctuations and the
domain is subdivided into 10× 10 subregions. To have a meaningful representation of material
heterogeneities, each subregion is discretized by 44 triangular elements where the corrupted
material parameters are evaluated according to (5.6). In this way, the average heterogeneity
size dh can be computed as dh/λs = (5/10)/42 ' 0.03, i.e. 3% of the shear wavelength. For
consistency, such material distribution is then projected onto a finer mesh with 47 triangular
elements per subregion, leading to a finite element discretization that is commensurate with
those in Sections 5.2–5.4. As before, the reconstruction algorithm assumes a homogeneous
background model with Lamé parameters λ = µ and mass density ρ. For completeness, the
perturbation function (1 + ητ) is plotted in Fig. 12 with η = 1.

Remark 6. With reference to (5.6), we note that the assumed perturbation does not affect the

phase velocity in the elastic solid, since for instance we have cs =
√
µ/ρ =

√
µη/ρη = cs,η in

terms of shear waves. Such fluctuation, however, does affect the seismic impedance inside Ω;
for example it is clear that ρ cs 6= ρη cs,η, which inherently affects the elastic wave reflection and
transmission between neighboring finite elements.

Figure 12. Spatial variation of the multiplier (1 + ητ) used to perturb the
background material properties (η = 1).

In the first example, we aim to reconstruct a single mode II event with γ̄(1) = 0.05 + 0.03i
and θ(1) = 15◦ using the six sensors shown in Fig. 7. The coordinates of the microcrack and
those of the sensors are given in Table 3. We assume that the number of faults is not known,
and we set N = 2 > N∗ = 1. The results of source reconstruction for η = 0.0%, 0.5%, 1.0% and
2.0% are shown respectively in Figs. 13–16. For η = 0.0%, the reconstruction is nearly exact.
For η = 0.5%, the reconstruction is still good, but there is a minuscule artifact in the form of a
“phantom” second event as permitted by the premise N = 2. This type of solution degradation
continues to grow for η = 1.5% and η = 2.0% as can be seen from the respective displays.

For completeness of discussion, we next introduce the effective “noise level” in the data due
to (5.6) as

N :=
‖u0 − uη‖L2(Ω)

‖u0‖L2(Ω)
, (5.7)

where u0 = uη |η=0
and uη is the acoustic emission field due to exact source distribution (2.5)

computed assuming (5.6) for the background solid. Similarly, we introduce the resulting error
in the reconstruction of the moment tensor as

E :=
‖M∗

(1) −M (1)‖
‖M∗

(1)‖
, (5.8)
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where ‖ · ‖ denotes the Frobenius norm. With such definitions at hand, Table 5 lists N and E
for η = 0.5%, 1.0% and 2.0%. As can be seen from the tabulated values, the moment tensor
reconstruction is fairly resilient to “noise” present in the data.

(a) Real part (b) Imaginary part

Figure 13. Reconstruction of a single (mode II) micro-seismic source: back-
ground perturbation level η = 0.0% (N = 0% and E = 0%).

(a) Real part (b) Imaginary part

Figure 14. Reconstruction of a single (mode II) micro-seismic source: back-
ground perturbation level η = 0.5% (N = 10% and E = 2%).

Table 5. Reconstruction of a single (mode II) micro-seismic source: “Noise
level” in the data and relative error in the reconstruction of the moment tensor
versus background perturbation level.

η N E
0.5% 10% 2%
1.0% 21% 11%
2.0% 51% 33%

In the last example, we aim to reconstruct three co-existing events in the perturbed medium (5.6)
by setting N = N∗ = 3. The target is the same as in Section 5.4, see Table 3 for event locations.
In this case, however, we use 40 sensors uniformly distributed on ∂Ω in order to combat the
modelling errors. For η = 0.0%, the reconstruction is nearly exact and practically the same as in
Fig. 7. The source reconstructions obtained for η = 1.0% and η = 1.5% are shown respectively
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(a) Real part (b) Imaginary part

Figure 15. Reconstruction of a single (mode II) micro-seismic source: back-
ground perturbation level η = 1.0% (N = 21% and E = 11%).

(a) Real part (b) Imaginary part

Figure 16. Reconstruction of a single (mode II) micro-seismic source: back-
ground perturbation level η = 2.0% (N = 51% and E = 33%).

in Fig. 17 and Fig. 18. For η = 1.0%, the result is still reasonable in the sense that (i) the event
locations are accurately resolved and (ii) the character of each event is preserved (cavitation vs.
mode I crack vs. mode II crack), despite apparent degradation in the moment tensor recon-
struction. However, for η = 1.5% the reconstruction error is significant in that the algorithm is
unable to resolve the cavitation event near the upper left corner of the domain.

6. Conclusions

In this study, we propose an algorithm for the frequency-domain reconstruction of (micro-) seis-
mic events using full-waveform analysis of the acoustic emission data. The inversion approach
integrates a combinatorial grid search for source locations with the sensitivity analysis in terms
of moment tensor components to arrive at an effective algorithm that simultaneously returns
both micro-seismic source coordinates and respective tensorial “strengths”. We investigate the
performance of the algorithm, assuming pointwise waveform observations, via numerical exam-
ples that include both isolated and multiple point sources. Under ideal testing conditions, the
results suggest that two point receivers per acoustic emission source may provide sufficient in-
formation for accurate inversion. To enable the reconstruction of arbitrarily located (“off-grid”)
sources, we also introduce an iterative scheme that recursively refines the search grid around
“coarsely” reconstructed source locations. The results show that the course reconstructions are
inherently confined to the neigborhood of “true” source locations, thus lending credence to the
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(a) Real part (b) Imaginary part

Figure 17. Reconstruction of a triplet of micro-seismic sources: background
perturbation level η = 1.0% (N = 21%).

(a) Real part (b) Imaginary part

Figure 18. Reconstruction of a triplet of micro-seismic sources: background
perturbation level η = 1.5% (N = 36%).

proposed recursive scheme. For generality, we also investigate the micro-seismic source recon-
struction under the adverse condition of randomly perturbed background medium, whose local
fluctuations are unavailable as prior information. The results show a significant resilience of the
reconstruction algorithm to this type of modeling errors.
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