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Abstract. An inverse source problem related to the Poisson equation is the main con-
cern of this work. Specifically, we deal with the reconstruction of a mass distribution in
a geometrical domain from a partial boundary measurement of the associated potential.
The considered problem is motivated by various applications such as the identification
of geological anomalies underneath the Earth’s surface. The proposed approach is based
on the Kohn-Vogelius formulation and the topological derivative method. An explicit
second-order sensitivity related to circular shaped anomalies is calculated for different
examples of the Kohn-Vogelius type functional. Then, the optimal location and size
of the unknown support of the mass distribution are characterized as the solution to
a minimization problem. The resulting reconstruction procedure is non-iterative and
robust with respect to noisy data. Finally, we produce numerical results from four dif-
ferent examples of the Kohn-Vogelius type functional. The results first demonstrate the
method and then compare the robustness of each functional in solving the inverse source
problem.

1. Introduction

In this paper, we consider the reconstruction of a mass density distribution with support
within a geometrical domain from a boundary measurement of the associated potential.
This type of inverse problem has been studied by many authors [19, 24, 30, 33]. Isakov
[30] proved the identifiability of anomalies with star-shaped or convex in one direction
supports. Then, El-Badia and Ha-Duong [19] established the uniqueness in determin-
ing multiply-connected ball-shaped anomalies from a single Cauchy data, while Hettlich
and Rundell [24] considered a Newton-type iterative method to reconstruct the shape
of the anomaly. Liu [33] proposed an iterative approach based on the shape derivative.
They applied the gradient descent algorithm (GDA) and trust-region-reflective algorithm
(TRA) to detect the location, size, and shape of the source. In the context of gravimetry,
Canelas et al. [13] solved this reconstruction problem in the two-dimensional case from
complete boundary measurements. They proposed a method which relies on the mini-
mization of a Kohn-Vogelius type functional by using the topological derivative method.
In [14], the same authors extend the ideas presented in [13] to cover the two and three
spatial dimensions cases with incomplete (partial) boundary measurements.

To reconstruct the location, size, shape and number of the mass density distributions
in the geometrical domain, we follow the ideas presented in [14]. The proposed approach
is based on the Kohn-Vogelius formulation [32] and the topological derivative method
[35]. More precisely, we reconstruct the support ω∗ ⊂ Ω of a source-term, where Ω ⊂ R2,
with boundary ∂Ω, from a partial boundary measurement of the associated potential on
the boundary ΓM ⊂ ∂Ω, but without using the Newtonian potential to complement the
unavailable information about the hidden boundary as presented in [14].
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The Kohn-Vogelius shape functional measures the misfit between the solutions of two
auxiliary problems containing information about the boundary measurements. It is a self
regularization technique that rephrases the inverse problem as an optimization problem
where the support of the anomalies is the unknown variable. The minimum of the Kohn-
Vogelius objective functional is reached when the unknown support coincides with the
actual one. The topology optimization problem consists of minimizing the variation of
the Kohn-Vogelius type functional with respect to a class of mass distributions defined
by a finite number of ball-shaped trial anomalies.

An asymptotic expansion of the Kohn-Vogelius functional with respect to the circular
perturbations is computed using the topological derivative method. The second-order
topological gradient is applied in the context of the proposed source reconstruction prob-
lem. In particular, four different versions of the Kohn-Vogelius shape functional are con-
sidered: the L2(ΓM)-norm, L2(Ω)-norm, H1(Ω)-seminorm and H1(Ω)-norm of the error
function. The main idea of this type of functional was first introduced by Wexler et al. in
[41] where a procedure to detect the unknown impedance from boundary measurements
was proposed. Then, Kohn and Vogelius in [32] suggested a modification of Wexler’s
procedure to make it an alternating direction one by proposing a new misfit gap-cost
functional. Since then, this formulation has been used to solve various inverse problems
[1, 14, 28]. Variants of this type of inverse problem have applications in various fields
such as gravimetry, where the goal is to determine the Earth’s density distribution from
measurements of the gravity and its derivatives on the surface of the Earth [30].

By uniqueness of the auxiliary forward problems, all objective functions are equivalent
in theory. From the practical point of view, however, their effectiveness may depend on
the modeling uncertainties (noisy data) and discretization strategies. The main concern
of this paper is to compare the four metrics in different scenarios, which represents the
main originality of the current article in comparison to Canelas et al. [14]. The findings
reported here are useful not only for readers interested in the topological derivative method
but also for anyone dealing with the inverse source problem and related reconstruction
problems.

The paper is organized as follows. In Section 2 the inverse problem to be considered is
rewritten in the form of a topology optimization problem, which consists of minimizing a
Kohn-Vogelius shape functional with respect to a set of ball-shaped anomalies. To solve
this inverse problem the concept of second-order topological derivative is introduced in
Section 3. The resulting Newton-type method is presented in Section 4, together with the
associated reconstruction algorithm. In Section 5, we present numerical examples that
demonstrate the effectiveness of the devised reconstruction algorithm and compare the
distance functions proposed. Finally, in Section 6 there are concluding remarks.

2. Inverse Source Problem

Consider determining a source term f ∗ for the following elliptic problem:
−∆u = f ∗ in Ω,
∂νu = 0 on ΓM ,
u = 0 on Γ0 := ∂Ω\ΓM ,

(2.1)

from the given boundary data:

u = u∗ on ΓM ,
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where Ω ⊂ R2 is an open and bounded domain with a Lipschitz boundary ∂Ω, and ΓM is
an open subset of ∂Ω with a non-void interior (with respect to the boundary topology).
In addition, ∂νu = ∇u · ν and ν is the unit outward normal vector to ∂Ω.

The major difficulty with this inverse problem is that the general source terms are
unidentifiable due to the nature of the boundary data. To handle this question of unique-
ness, a priori assumptions on the class of sources to be detected are made. Hence, the
source term f ∗ is modeled as a discontinuous source, namely,

f ∗ = χω∗

where χω∗ is the characteristic function of the unknown sub-domain ω∗ ⊂ Ω, that have to
be recovered from partial boundary measurement of the associated potential on ΓM .

The inverse problem to be solved consists in finding χω∗ ∈ A(Ω) such that the bound-
ary value problem (2.1) is satisfied. The set of admissible solutions A(Ω) is given by
characteristic functions of the form:

A(Ω) = {χω : Ω 7→ R | χω = 1 in ω and χω = 0 in Ω \ ω}, (2.2)

where ω ⊂ Ω is a Lebesgue measurable set. However, the difficulty is that the inverse
problem (2.1) is an over-determined boundary value problem and there is a lack of stability
in the sense of Hadamard. In order to deal with the over-determined problem, (2.1) is
separated into two well posed problems: given χω ∈ A(Ω), find uD and uN such that −∆uD = χω in Ω

uD = u∗ on ΓM
uD = 0 on Γ0

and

 −∆uN = χω in Ω
∂νu

N = 0 on ΓM
uN = 0 on Γ0

. (2.3)

These problems assume that the medium is big enough that the potential decays to
zero on the portion of the boundary that is not measured (Γ0 = ∂Ω \ ΓM). The solution
to (2.1), due to the uniqueness of the traces of uD and uN on ΓM , is:

If χω = χω∗ ⇒ uD = uN . (2.4)

Then, we find the solution by formulating the inverse problem as a topology optimization
problem which minimizes the difference between uD and uN :

Minimize
χw∈A(Ω)

ρ(uD − uN) (2.5)

where ρ(uD−uN) represents the distance between uD and uN in some appropriated norm.
To measure this distance we will consider different examples of the Kohn-Vogelius type
functional, such as the L2(ΓM)-norm, L2(Ω)-norm, H1(Ω)-seminorm, and H1(Ω)-norm.
Note that in this context, ω can be interpreted as an initial guess for the true anomaly
ω∗. Since ω is arbitrary, we will assume later trivial initial guess given by ω = ∅.

Since the inverse source problem (2.1) is rewritten as a topology optimization problem
(2.5), we seek to solve the optimization problem by using the topological derivative method
which is described in the next section.

3. Topological sensitivity analysis

The topological derivative measures the sensitivity of a given shape function with re-
spect to infinitesimal geometry perturbations such as the creation of inclusions, cracks,
cavities, inhomogeneities, or source-terms. Theoretically, the topological sensitivity con-
cept is the first term of the asymptotic expansion of such shape functions with respect
to the small parameter that measures the size of the introduced perturbation. This idea
was first developed by Schumacher [37] under the name of bubble method in the context
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of compliance minimization in linear elasticity, followed by Sokolowski & Zochowski [38]
and Céa et al. [17]. Since then, this concept has been successfully applied to many rele-
vant scientific and engineering problems such as inverse problems [6, 11, 15, 16, 18, 20],
topology optimization [2, 5, 7, 23], image processing [8, 10, 25, 27], damage [3, 42] and
fracture [4, 40] evolution modeling, and many other applications.

To present the basic idea of this method, we consider an open and bounded domain
Ω ⊂ Rd (d ∈ {2, 3}) and a non-smooth perturbation confined in a small set ωε,z of size
ε > 0 centred at an arbitrary point z of Ω such that ωε,z b Ω. To be more precise, in this
context ωε,z represents the topological perturbed counterpart of the initial guess ω. We
introduce a characteristic function x 7→ χ(x), x ∈ Ω, associated with the unperturbed
domain, namely χ = 1Ω. Similarly, we define a characteristic function x 7→ χε(z, x), x ∈
Ω, associated to the topologically perturbed domain. In the case of a perforation, for
instance, χε(z) = 1Ω − 1ωε,z and the perturbed domain is given by Ωε,z = Ω\ωε,z. Then,
for a given shape functional G(χε(z)) associated with the topologically perturbed domain,
the topological sensitivity analysis method would provide an asymptotic expansion of
G(χε(z)) of the form:

G(χε(z)) = G(χ) + f1(ε)T (z) + o(f1(ε)), (3.1)

where:

• G(χ) is the shape functional associated with the unperturbed domain;
• ε 7→ f1(ε) is a scalar positive function such that f1(ε)→ 0 when ε→ 0;
• the function z 7→ T (z) is called the first-order “topological derivative” or “topo-

logical sensitivity” of the shape functional G at z and plays the role of leading
term of the variation G(χε(z))− G(χ). Mathematically, we express it as:

T (z) := lim
ε→0

G(χε(z))− G(χ)

f1(ε)
.

We can define the second-order topological derivative of the shape functional G at z by
expanding the remainder term o(f1(ε)) in (3.1). Therefore, an asymptotic expansion of
the functional G at z can be in the following form:

G(χε(z)) = G(χ) + f1(ε)T (z) + f2(ε)T 2(z) + o(f2(ε)), (3.2)

where:

• ε 7→ f2(ε) is a scalar positive function such that f2(ε) = o(f1(ε)) and f2(ε) → 0
when ε→ 0;

• T 2(z) denotes the second-order topological derivative of the shape function G at
z, which can be defined as

T 2(z) := lim
ε→0

G(χε(z))− G(χ)− f1(ε)T (z)

f2(ε)
.

In this paper, the problem is perturbed by introducing balls in order to determine the
sensitivities. Consider n ball-shaped anomalies, with radii and centers ε = (ε1, · · · , εn)
and ξ = (z1, · · · , zn) respectively. This results in the characteristic function:

χωε = χω +
n∑
i=1

χBεi (zi) (3.3)

where Bεi(zi) denotes a ball of radius εi and center zi in Ω, for i = 1, · · · , n. We assume
that Bεi(zi) b Ω such that Bεi(zi) ∩ Bεj(zj) = ∅ for i 6= j. Therefore, given χωε ∈ A(Ω),
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the perturbed counterparts of problems (2.3) are: find uDε and uNε such that −∆uDε = χωε in Ω
uDε = u∗ on ΓM
uDε = 0 on Γ0

and

 −∆uNε = χωε in Ω
∂νu

N
ε = 0 on ΓM
uNε = 0 on Γ0

(3.4)

3.1. Asymptotic analysis of the solution. Let us introduce the following ansätze for
the solutions to the perturbed problems (3.4):

uDε (x) = uD(x) +
n∑
i=1

πε2
i v
D
εi

(x) (3.5)

uNε (x) = uN(x) +
n∑
i=1

πε2
i v
N
εi

(x) (3.6)

where vDεi and vNεi are the solutions of the following auxiliary boundary value problems for
i = 1, · · · , n: find vDεi and vNεi such that

−∆vDεi = 1
πε2i
χBεi (zi) in Ω

vDεi = 0 on ΓM
vDεi = 0 on Γ0

and


−∆vNεi = 1

πε2i
χBεi (zi) in Ω

∂νv
N
εi

= 0 on ΓM
vNεi = 0 on Γ0

(3.7)

Since vDεi and vNεi depend on εi in the ball Bεi(zi), separate them into two parts:

vDεi (x) = pεi(x) + qDi (x) (3.8)

vNεi (x) = pεi(x) + qNi (x) (3.9)

where pεi is solution of the following boundary value problem defined in a big ball BR(zi) ⊃
Ω of radius R and centre at zi: find pεi such that{

−∆pεi = 1
πε2i
χBεi (zi) in BR(zi)

pεi = 1
2π

lnR on ∂BR(zi)
(3.10)

The above boundary value problem admits the explicit solution, namely:

pεi(x) =

{
− 1

4π
(‖x−zi‖

2

ε2i
+ 2 ln εi − 1) x ∈ Bεi(zi)

− 1
2π

ln ‖x− zi‖ x ∈ BR(zi) \ Bεi(zi)
(3.11)

Finally, qDi and qNi must compensate for the discrepancies left by pεi on ∂Ω. In particular,
they are the solutions to the following boundary value problems: find qDi and qNi such
that {

−∆qDi = 0 in Ω
qDi = 1

2π
ln ‖x− zi‖ on ∂Ω

(3.12)
−∆qNi = 0 in Ω
∂νq

N
i = 1

2π
x−zi
‖x−zi‖2 · ν on ΓM

qNi = 1
2π

ln ‖x− zi‖ on Γ0

(3.13)

Therefore, the difference between uDε and uNε is simply given by

uDε − uNε = uD − uN +
n∑
i=1

πε2
ihi, (3.14)

with hi = qDi − qNi . The following result justifies the ansätze (3.5) and (3.6):
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Lemma 1. Let us consider the expansion (3.14), then the following estimate holds true

‖wε − w‖H1(Ω) ≤ C|ε|2, (3.15)

where wε := uDε − uNε , w := uD − uN , |ε| = ε1 + · · ·+ εn and C is a constant independent
of the small parameters εi, for i = 1, · · · , n.

Proof. By taking into account the triangular inequality in expansion (3.14), we have

‖(uDε − uNε )− (uD − uN)‖H1(Ω) ≤ C1

n∑
i=1

ε2
i ‖hi‖H1(Ω), (3.16)

which leads to the result provided that each hi is independent of εi, for i = 1, · · · , n. �

3.2. Asymptotic analysis of the distance function. In this section, we want to find
a better approximation ωε than the initial guess ω to the target ω∗. Therefore, let us
propose an expansion of the form:

Ψn(α, ξ) = α · d(ξ) +
1

2
H(ξ)α · α, (3.17)

where Ψn(α, ξ) = ρ(uDε − uNε ) − ρ(uD − uN) and vector α = (α1, · · ·αn), with αi = πε2
i ,

remembering that n is the number of anomalies to be reconstructed, ξ are their locations
and α their sizes (areas). Note that the number of anomalies n to be reconstructed is
arbitrary. However, since we are interested in comparing different distance functions, for
the sake of simplicity we assume that n is given. Finally, vector d and matrix H, with
entries

d(ξ) =


d1

d2
...
dn

 and H(ξ) =


H11 H12 · · · H1n

H21 H22 · · · H2n
...

...
. . .

...
Hn1 Hn2 · · · Hnn

 , (3.18)

will be defined according to each distance function.

3.2.1. L2(ΓM)-norm. Consider ρ(uD − uN) = J1(uD, uN), with

J1(uD, uN) :=

∫
ΓM

|uD − uN |2. (3.19)

The associated topological asymptotic expansion is:

J1(uDε , u
N
ε ) =

∫
ΓM

|uDε − uNε |2

= J1(uD, uN) + 2
n∑
i=1

πε2
i

∫
ΓM

(uD − uN)hi +
n∑

i,j=1

πε2
iπε

2
j

∫
ΓM

hihj (3.20)

such that the entries of the vector d and matrix H are:

di = 2

∫
ΓM

(uD − uN)hi and Hij = 2

∫
ΓM

hihj (3.21)
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3.2.2. L2(Ω)-norm. Consider ρ(uD − uN) = J2(uD, uN), with

J2(uD, uN) :=

∫
Ω

|uD − uN |2. (3.22)

The associated topological asymptotic expansion is:

J2(uDε , u
N
ε ) =

∫
Ω

|uDε − uNε |2

= J2(uD, uN) + 2
n∑
i=1

πε2
i

∫
Ω

(uD − uN)hi +
n∑

i,j=1

πε2
iπε

2
j

∫
Ω

hihj (3.23)

such that the entries of the vector d and matrix H are:

di = 2

∫
Ω

(uD − uN)hi and Hij = 2

∫
Ω

hihj (3.24)

3.2.3. H1(Ω)-seminorm. Consider ρ(uD − uN) = J3(uD, uN), with

J3(uD, uN) :=

∫
Ω

‖∇(uD − uN)‖2. (3.25)

Its associated topological asymptotic expansion is:

J3(uDε , u
N
ε ) =

∫
Ω

‖∇(uDε − uNε )‖2 (3.26)

= J3(uD, uN) + 2
n∑
i=1

πε2
i

∫
Ω

∇(uD − uN) · ∇hi +
n∑

i,j=1

πε2
iπε

2
j

∫
Ω

∇hi · ∇hj

such that the entries of the vector d and matrix H are:

di = 2

∫
Ω

∇(uD − uN) · ∇hi and Hij = 2

∫
Ω

∇hi · ∇hj (3.27)

3.2.4. H1(Ω)-norm. Consider ρ(uD − uN) = J2(uD, uN) + J3(uD, uN), with

J2(uD, uN) + J3(uD, uN) =

∫
Ω

|uD − uN |2 +

∫
Ω

‖∇(uD − uN)‖2. (3.28)

Its associated topological asymptotic expansion is:

J2(uDε , u
N
ε ) + J3(uDε , u

N
ε ) = J2(uD, uN) + J3(uD, uN)

+ 2
n∑
i=1

πε2
i

∫
Ω

(uD − uN)hi +
n∑

i,j=1

πε2
iπε

2
j

∫
Ω

hihj

+ 2
n∑
i=1

πε2
i

∫
Ω

∇(uD − uN) · ∇hi +
n∑

i,j=1

πε2
iπε

2
j

∫
Ω

∇hi · ∇hj (3.29)

such that the entries of the vector d and matrix H are:

di = 2

∫
Ω

((uD − uN)hi +∇(uD − uN) · ∇hi) (3.30)

Hij = 2

∫
Ω

(hihj +∇hi · ∇hj) (3.31)
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Remark 2. Since we are dealing with topological perturbation given by circular anomalies,
the resulting expansions (3.20), (3.23), (3.26) and (3.29) fit the ansatz (3.17), which is
exact up to order |α|2. For arbitrary-shaped anomalies, the analysis becomes more involved
and non-trivial remainder terms should appear, which would have to be estimated in an
appropriate norm.

4. Reconstruction algorithm

Given the general function of form (3.17), the minimum is found when:

〈DαΨn(α, ξ), β〉 = 0 ∀β ∈ Rn (4.1)

Furthermore, given Hij is symmetric positive definite, the minimum of the function with
respect to α is the global minimum. In particular,

(H(ξ)α + d(ξ)) · β = 0 ∀β ⇒ H(ξ)α = −d(ξ) (4.2)

provided that H = H>. Therefore,

α = α(ξ) = −H(ξ)−1d(ξ), (4.3)

such that the quantity α, solving (4.3), becomes a function of the locations ξ. Replacing
the solution of (4.3) into Ψn(α, ξ), defined by (3.17), the optimal locations ξ? can be
obtained from a combinatorial search over the domain Ω. These locations are the solutions
to the following minimization problem:

ξ? = argmin
ξ∈X

{
Ψn(α(ξ), ξ) =

1

2
α(ξ) · d(ξ)

}
, (4.4)

where the set of admissible locations of anomalies X is defined as

X = {xi ∈ Ω : i = 1, · · · ,m and n ≤ m <∞}. (4.5)

Then, the optimal sizes are given by α? = α(ξ?).
To summarize, we have introduced a second order topology optimization algorithm

which is able to find the optimal sizes α? of the hidden anomalies and their locations ξ?

for a given number n of trial balls. The inputs to the algorithm are:

• the vector d and the matrix H, whose entries are given by f(i) := di and A(i, j) :=
Hij, respectively;
• the m = card(X) points at which the system (4.3) is solved;
• the number n of anomalies to be reconstructed.

The algorithm returns the optimal sizes α? and locations ξ?. The above procedure is
written in pseudo-code format as shown in Algorithm 1. In the algorithm, Π maps the
vector of nodal indices I = (i1, i2, . . . , in) to the corresponding vector of nodal coordinates
ξ. For further applications of this algorithm we refer to [13, 14, 21, 22, 34, 36], which
can be combined with well-established and more computationally sophisticated iterative
methods [9, 12, 26, 31, 39].

5. Numerical results

In this section, the described algorithm is implemented to first establish its validity in
solving the inverse problem we are dealing with. Then, it compares the distance functions
(error norms) proposed. Each example is two-dimensional and in a semi-circular domain
with a radius of 1 that is discretized with 33,280 three-node finite elements. The measured
portion of the boundary is the top of the semi-circle. Each example also has a grid of
points, which is a subset of the mesh’s nodes, which will be the candidate points for each
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Algorithm 1: Second Order Reconstruction Algorithm

input : d, H, m, n;
output: the optimal solution Ψ?

n, α?, ξ?;

1 Initialization: Ψ?
n ←∞; α? ← 0; ξ? ← 0;

2 for i1 ← 1 to m do
3 for i2 ← i1 + 1 to m do

...
4 for in ← in−1 + 1 to m do

5 d←


f(i1)
f(i2)

...
f(in)

; H ←


A(i1, i1) A(i1, i2) · · · A(i1, in)
A(i2, i1) A(i2, i2) · · · A(i2, in)

...
...

. . .
...

A(in, i1) A(in, i2) · · · A(in, in)

;

6 I ← (i1, i2, . . . , in); ξ ← Π(I); α← −H−1d ; Ψn ←
1

2
d · α;

7 if Ψn < Ψ?
n then

8 ξ? ← ξ; α? ← α; Ψ?
n ← Ψn;

9 end if
10 end for
11 end for
12 end for
13 return Ψ?

n, α?, ξ?;

(a) Target (b) Result

Figure 1. Example 1: Three balls, on-grid, no noise.

ball’s center, over which the optimization problem (4.4) is solved. Finally, as already
mentioned, we assume trivial initial guess, namely ω = ∅.

5.1. Example 1: Three balls, on-grid, no noise. In this initial example, we consider
three balls of varying sizes. The center points of the balls are within the set of 1093
grid points and there is no noise corrupting the boundary measurement generated from
the solution, as shown in Figure 1a. To solve this inverse problem the L2(ΓM)-norm is
employed as the distance function. The method proposed finds three balls with the correct
center-points and radii with 2.7 × 10−4%, 1.9 × 10−4%, and 1.1 × 10−4% error as shown
in Figure 1b. This demonstrates that in the ideal case, non-corrupted measurements and
the center points within the given set, the found balls match the target.

5.2. Example 2: One rectangle, on-grid, no noise. In this example we consider
one 0.4 wide and 0.2 high rectangle which will be reconstructed as one and two balls.
The centroid of the rectangle is within the set of 1093 grid points and there is no noise
corrupting the boundary measurement generated from the solution, as shown in Figure 2.
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Figure 2. Example 2: Rectangular target, no noise, on grid.

(a) One ball (b) Two balls

Figure 3. Example 2: Reconstruction of one rectangular target, no noise,
on grid.

Table 1. Example 2: Error in constructing one rectangular target from
one ball, no noise, on grid.

Distance Function L2(ΓM)-norm L2(Ω)-norm H1(Ω)-seminorm H1(Ω)-norm
% Error in
equivalent radius

9.0136 0.8125 9.0398 9.0361

Distance from rectangle’s
centroid to ball’s center

6.94× 10−2 1.03× 10−5 6.94× 10−2 6.94× 10−2

Table 2. Example 2: Error in constructing one rectangular target from
two balls, no noise, on grid.

Distance Function L2(ΓM)-norm L2(Ω)-norm H1(Ω)-seminorm H1(Ω)-norm
% Error in
equivalent radius

0.1787 0.1783 0.1798 0.1797

Distance from rectangles’
compound centroid
to ball’s center

4.13× 10−3 4.11× 10−3 4.16× 10−3 4.16× 10−3

To solve this inverse problem all four error norms are employed as the distance function.
The equivalent radius of the rectangle is defined as the radius of a circle with the same
area. The method proposed first reconstructs the rectangular anomaly as one ball as
shown in Figure 3. The resulting difference in centroid location and equivalent radius are
listed in Table 1. This demonstrates that in the case that the target is not the assumed
shape the equivalent centroid and area are reconstructed exactly for the L2(Ω)-norm, and
close to this for the other error norms. Then the method reconstructs the rectangular
anomaly as two balls as shown in Figure 3 and the error in compound centroid and
equivalent radius is listed in Table 2. In this case the equivalent centroid and area are
almost exactly reconstructed. The small error and lack of symmetry is likely due to the
non-conforming mesh. However, it has shown in further examples that this method does
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Figure 4. Example 3: Target for one ball, no noise.
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Figure 5. Example 3: Result for one ball, no noise, with varying grid densities.

not reconstruct more complex shapes well. It often fails with shapes such as an L-shaped
anomaly.

5.3. Example 3: One ball, no noise, with varying grid densities. In this example
consider one ball with a radius of 0.1 where the center point is not within the set of grid
points, with no noise corrupting the boundary measurement, as shown in Figure 4. Here
we consider grids with 79, 287, 1093, and 4665 points and all four distance functions.
Based on the error in found center and radius plotted in Figure 5, it is clear that as
the grid is refined, regardless of distance function, the method converges towards a more
accurate solution. Therefore, regardless of grid density or distance function, the found
center point is the closest to the true one. Also, it is shown that any error in center point
is compensated for by the radius of the ball.

5.4. Example 4: One ball, on-grid, with varying levels of noise. In this example
consider one ball where the center point is within the set of 1093 grid points. Normally
distributed random numbers, seeded with a value of one, are generated to act as noise. A
varying percent of this noise is then used to corrupt the target, which induces a corrupted
boundary measurement. In particular, the target source f ∗ is replaced by

f ∗µ(x) = f ∗(x) + µτ(x), (5.1)

where τ : Ω 7→ R is a random variable taking values in (0, 1) and µ corresponds to the
noise level, as shown in Figure 6. Note that in this context, noisy data can be interpreted
as modeling uncertainties. For each level of boundary measurement corruption, the error
in found center and radius is calculated for each distance function, as shown in Figure 7.
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(a) µ = 5% (b) µ = 10% (c) µ = 15% (d) µ = 20% (e) µ = 25%

(f) µ = 30% (g) µ = 35% (h) µ = 40% (i) µ = 45% (j) µ = 50%

Figure 6. Example 4: Target for one ball corrupted with varying levels
of noise µ.
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Figure 7. Example 4: Result for one ball, on-grid, with varying levels of noise.

These graphs demonstrate that, at larger percentages of noise, the L2-norms tend to be
more accurate. This is most likely due to the finite element integration.

5.5. Example 5: One ball, off-grid, with varying levels of noise. This experiment
is the same as Example 4, except the center point of the ball is not within the set of grid
points. From Figure 8, similar to Example 3, it is shown that the inverse problem solution
tends to be more resistant to noise when the L2-norms are used as the distance functions.
This difference seems to be more significant when the center point is not contained within
the set of grid points.

6. Conclusions

In this paper, we consider the inverse source problem from a partial boundary measure-
ment of the associated potential. This inverse problem is nonlinear and ill-posed [29]. The
physical motivation of this problem comes from gravimetry such as the reconstruction of
the mass density distribution of small regions of Earth, located close to its surface. Fol-
lowing the approach introduced in [14], we have proposed a non-iterative reconstruction
method to detect the salient features of the hidden anomalies, such as the location, the
size, the shape and the number, but without using the Newtonian potential to comple-
ment the unavailable information about the hidden boundary. In this setting, the inverse
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Figure 8. Example 5: Result for one ball, off-grid, with varying levels of noise.

problem becomes more difficult to be solved, so that non-ball shaped anomalies are hard
to reconstruct. The proposed approach is based on the Kohn-Vogelius formulation and
the topological derivative method. The inverse source problem has been reformulated as
a topology optimization problem. A second-order topological sensitivity is derived for
different error norms. In particular, four examples of the Kohn-Vogelius functional are
considered, namely L2(ΓM)-norm, L2(Ω)-norm, H1(Ω)-seminorm and H1(Ω)-norm of the
error function. The second-order topological sensitivity has been used to devise a fast
Newton-type reconstruction algorithm based on a simple optimization step. Finally, we
have presented an extensive set of numerical experiments. First, the validity of the method
is demonstrated and then the robustness of four different cost functions are compared. It
is shown that although in theory the cost functions are identical, due to the discretization
technique the L2-norms tend to be more robust with respect to noise.
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