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bCentro Atómico Bariloche, 8400 Bariloche, Argentina

Abstract

The so-called Topological Derivative concept has been seen as a powerful framework to obtain the
optimal topology for several engineering problems. This derivative characterizes the sensitivity
of the problem when a small hole is created at each point of the domain. However, the greatest
limitation of this methodology is that when a hole is created it is impossible to build a homeomorphic
map between the domains in study (because they have not the same topology). Therefore, some
specific mathematical framework should be developed in order to obtain the derivatives. This work
proposes an alternative way to compute the Topological Derivative based on the Shape Sensitivity
Analysis concepts. The main feature of this methodology is that all the mathematical procedure
already developed in the context of Shape Sensitivity Analysis may be used in the calculus of the
Topological Derivative. This idea leads to a more simple and constructive formulation than the ones
found in the literature. Further, to point out the straightforward use of the proposed methodology,
it is applied for solving some design problems in steady-state heat conduction.

keywords: Topological Derivative, Topological-Shape Sensitivity Analysis, Shape Sensitivity Anal-

ysis, Topology Optimization.

1 Introduction

Many physics phenomena can be modelled by a set of partial differential equations with proper bound-
ary conditions (boundary-value problem) or by its equivalent weak form defined over a certain domain.
A question of great importance, that has awaken a lot of interest in recent years, is the ability to obtain
automatically, in agreement with some measure of performance (cost function), the optimal geometry
of the domain of definition of the problem under analysis. Conceptually, the problem is to find the
domain, i.e. its shape and/or topology such that the cost functional is minimized subject to con-
straints imposed by, for example, the boundary-value problem. An already established method in the
literature that addresses this kind of problems is to parameterize the domain of interest followed by
an optimization with respect to these parameters. This leads to the well-known shape optimization
technique. The inconvenience of this approach is that the topology is fixed throughout the optimiza-
tion process. In order to overcome this limitation, topology optimization techniques were developed
where very little is assumed about the initial morphology of the domain. This issue has received
special attention over the past years since the publication of the papers by Bendsøe & Kikuchi [1] and
Bendsøe [2]. The main advantage of this methodology is that the optimal topology can be obtained
even from an initial configuration that is far away from the optimal one. For an overview of the
area of topology optimization of continuum structures, the reader is referred to the review paper by
Eschenauer & Olhoff [5], where 425 references are included.

Important contributions in the field of topology optimization have been obtained by characterizing
the topology as a material density to be determined. In these methodologies the cavities correspond
to a region of zero density while the domain is identified by the region where the density is non-zero.
This approach is based in the concepts of relaxed formulations and homogenization techniques (see, for
instance, Bendsøe & Kikuchi [1]), where, in order to obtain different densities throughout the domain,
a class of microcells of laminated material is introduced and an homogenization method is used to
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compute the physical properties of these microstructures. Therefore, the optimal solution may be seen
as a distribution of fictitious materials that compose the domain. Finally, penalization methods and
filtering techniques are needed to retrieve the feasible design.

More recently, Eschenauer et al. [6], Schumacher [16], Céa et al. [4], Garreau et al. [9, 10] and
Sokolowski & Żochowski [18, 19] presented a method to obtain the optimal topology by calculating the
so-called Topological Derivative. This derivative is a function defined in the domain of interest where,
at each point, it gives the sensitivity of the cost function when a small hole is created at that point,
Fig. (1). Following the paper by Eschenauer & Olhoff [5], the Topological Derivative concept has
been used to solve topology optimization problems where no restrictions concerning the nature of the
phenomena as well as the boundary conditions imposed on the holes are made. However, according
to the approach adopted in the referenced works, this quite general concept can become restrictive,
due to mathematical difficulties involved in the calculation of the Topological Derivative. In fact,
the work of Garreau et al. [10] introduced several simplification hypothesis. For example, the cost
function was assumed to be independent of the domain, only homogeneous Dirichlet and Neumann
boundary conditions on the holes were considered, the source terms of the boundary value problem
were assumed to be constant.

On the other hand, Shape Sensitivity Analysis, which has been shown to be a powerful tool to solve
shape optimization problems, was proposed by Sokolowski & Żochowski [18] and Céa et al. [4] as an
alternative way to evaluate the Topological Derivative. Nevertheless, their theory yields correct results
only for some particular cases (for example, homogeneous Neumann boundary conditions on the hole).
Moreover, in these works, the relation between both concepts was stated without mathematical proof,
remaining open up to the present work.

Figure 1: Obtaining the optimal topology via Topological Derivative.

In this work is introduced a novel definition for the Topological Derivative which allows to correctly
use results from Shape Sensitivity Analysis. This new approach, from now on denoted Topological-
Shape Sensitivity Analysis, is presented in Theorem 1, which formally establishes the relation between
both concepts (Topological Derivative and Shape Sensitivity Analysis). Moreover, since Shape Sensi-
tivity Analysis theory is well developed and has a strong mathematical foundation, this new method-
ology leads to a simple and constructive procedure to calculate the Topological Derivative, that can
be applied for a large class of linear and non-linear engineering problems.

Therefore, the goal of this paper is to present an alternative way to calculate the Topological
Derivative based on the Shape Sensitivity Analysis concepts. Thus, for a review of the contributions
in Topological Derivative, as well as how it is inserted in the context of topology optimization methods,
the reader is referred to [5].

With these ideas in mind, the Topological-Shape Sensitivity Analysis will be presented in Sections
2-4 in the context of a general elliptic boundary value problem. Following this new approach, in
Section 5 the Topological Derivative will be calculated for the Poisson’s problem taking into account
different boundary conditions on the holes (Dirichlet, Neumann or Robin). Finally, in Section 6, this
derivative will be applied in some design problems of steady-state heat conduction.
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2 Definition of the Topological Derivative

As already mentioned, the Topological Derivative furnishes for any point of the domain the sensitivity
of the problem in creating a small hole in that point. Mathematically, this problem may be written
in the following manner:

Let Ω ⊂ R
2 be an open bounded domain, whose boundary Γ is smooth enough, i.e. a unit normal

vector n exist almost everywhere (a.e.), except possibly in a finite set of null measure. Let still
Ωε ⊂ R

2 be a new domain, such that Ωε = Ω−Bε, whose boundary is denoted by Γε = Γ∪∂Bε, where
Bε = Bε ∪ ∂Bε is a ball of radius ε centered on the point x̂ ∈ Ω. So, one has the original domain
without hole Ω and the new one Ωε with a small hole Bε, as may be seen in Fig. (2). Considering a
cost function ψ (·) defined in a certain domain, then the Topological Derivative is written as (Garreau
et al. [10])

D∗

T (x̂) := lim
ε→0

ψ (Ωε)− ψ (Ω)

f (ε)
, (1)

where f (ε) is a negative function that decreases monotonically so that f (ε) → 0 with ε → 0
(0 ≤ ε < 1), depending on the problem under analysis.
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Figure 2: Original Topological Derivative concept.

The inconvenience of working with the definition given by Eq. (1) is that when a hole is created,
it is impossible to establish an homeomorphism between the domains Ωε and Ω. So, the derivative
(Eq. 1) cannot be obtained in a conventional way.

Therefore, the central idea of this work is to start from a problem in that the hole B ε already
exists, i.e. from Ωε, causing a small perturbation δε in the Bε, so that the hole Bε+δε is originated,
which is defined in a new domain Ωε+δε = Ω−Bε+δε, whose boundary is written as Γε+δε = Γ∪∂Bε+δε

(see Fig. 3). Thus, it shall be demonstrated that the Topological Derivative can be redefined in the
following way:

DT (x̂) := lim
ε→0

{

lim
δε→0

ψ (Ωε+δε)− ψ(Ωε)

f (ε+ δε)− f (ε)

}

= lim
ε→0
δε→0

ψ (Ωε+δε)− ψ(Ωε)

f (ε+ δε)− f (ε)
. (2)
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Figure 3: Modified Topological Derivative concept.

This last definition of the Topological Derivative (Eq. 2) merely provides the sensitivity of the
problem when the size of the hole Bε, with ε→ 0, increases and not when it is effectively created (as one
has in the original definition of the Topological Derivative given by Eq. 1). However, it is understood
that to expand a hole of radius ε, when ε → 0, is nothing more than creating it. In fact, a complete
mathematical proof that establishes the relation between both definitions given by Eqs. (1,2) shall be
stated in Section 4 of the present work, where it is also shown that these equations are equivalent to
Eq. (16). This last expression provides the formal relation between the Topological Derivative and the
Shape Sensitivity Analysis. The advantage of the novel definition for the Topological Derivative given
by Eq. (16) is that the whole mathematical framework developed for the Shape Sensitivity Analysis
can be used, from now on, to compute the Topological Derivative.

3 Shape Sensitivity Analysis

Boundary value problems are formulated by differential equations defined point to point in the domain
Ω or, in a more general form, by integral equations in Ω. Therefore, perturbations in this domain
produce, necessarily, alterations as much in the integrand terms, as well as in the domain of integration
itself. In this way, the Shape Sensitivity Analysis is nothing more than determining the variation of
the characteristics associated to the problem due to the modifications in the configuration denoted by
Ω. For such, one can use the concepts developed in the pioneering work of Murat & Simon [14], that
is:

Let Ωε ⊂ R
2 be the domain such as defined in Section 2. Considering that this domain suffers

a perturbation, which can be represented by a smooth and invertible mapping dependent on the
parameter τ , denoted by χ (x, τ) with x ∈ Ωε and τ ∈ R, then, the perturbed domain Ωτ as well as
its boundary Γτ , can be described, respectively, as

Ωτ :=
{

xτ ∈ R
2 | ∃ x ∈ Ωε, xτ = χ (x, τ) , x0 = x and Ω0 = Ωε

}

,
Γτ :=

{

xτ ∈ R
2 | ∃ x ∈ Γε, xτ = χ (x, τ ) , x0 = x and Γ0 = Γε

}

.

Expanding χ (x, τ) in a Taylor series around τ 0 = 0, one has that every point xτ may be written,
for τ small enough, in the following manner

xτ = x + τV (x) , (3)

where V (x) is the shape change velocity or, making a parallel with Continuum Mechanics (Gurtin
[11]), it can be seen as the material velocity.

Thus, taking into account the Shape Sensitivity Analysis concepts, one need to establish the
sensitivity of the cost function ψ (Ωτ ) in relation to the perturbation characterized by τ , which is
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given by the following derivative

dψ (Ωτ )

dτ

∣

∣

∣

∣

τ=0

= lim
τ→0

ψ (Ωτ )− ψ(Ω0)

τ
. (4)

In a quite general manner, the cost function ψ (Ωτ ) can be defined in the following way (see, for
instance, Fancello [8]):

ψ (Ωτ ) := Ψτ (uτ ) =

∫

Ωτ

φΩ (uτ ) dΩτ +

∫

Γτ

φΓ (uτ ) dΓτ , (5)

where uτ is an implicit function of τ through the boundary value problem described in the perturbed
configuration Ωτ , that is:

Find uτ ∈ Uτ , such that

aτ (uτ , wτ ) = lτ (wτ ) ∀ wτ ∈ Vτ and ∀τ ≥ 0 . (6)

where Uτ is the admissible functions set and Vτ is the admissible variations space, which will be defined
later, according to the problem under analysis, and the operator aτ (·, ·) : Uτ ×Vτ → R is a continuous
and Vτ -Elliptic bilinear form and lτ (·) : Vτ → R is a continuous linear functional. In order to facilitate
the presentation of this work, the operator aτ (·, ·) shall be considered symmetric.

Therefore, the derivative of Ψτ (uτ ) in relation to the parameter τ at τ = 0 is given by

d

dτ
Ψτ (uτ )

∣

∣

∣

∣

τ=0

= lim
τ→0

Ψτ (uτ )−Ψ0 (u0)

τ
. (7)

where u0 = uτ |τ=0 = uε is the solution associated to the domain Ωε.
Formally, the calculation of this derivative (Eq. 7) can be written in the following way:

{

Calculate :
d

dτ
Ψτ (uτ )|τ=0

Subject to : aτ (uτ , wτ ) = lτ (wτ ) ∀ wτ ∈ Vτ and ∀τ ≥ 0
. (8)

This issue can be realized using the Lagrangian Method that consists in relaxing the constraint of
the problem, in this case the state equation (Eq. 6), by the Lagrangian multipliers. Therefore, the
Lagrangian written already in the perturbed configuration Ωτ

£τ (uτ , λτ ) = Ψτ (uτ ) + aτ (uτ , λτ )− lτ (λτ ) ∀λτ ∈ Vτ , (9)

allows the derivation of the Shape Sensitivity of the cost function in the following way:

d

dτ
Ψτ (uτ ) =

∂

∂τ
£τ (uτ , λτ ) =

∂

∂τ
Ψτ (uτ ) +

∂

∂τ
aτ (uτ , λτ )−

∂

∂τ
lτ (λτ ) , (10)

where uτ ∈ Uτ is the solution of the state problem (Eq. 6) and λτ ∈ Vτ is the solution of the adjoint
equation given by

aτ (λτ , wτ ) = −

〈

∂Ψτ

∂uτ
, wτ

〉

∀ wτ ∈ Vτ . (11)

Finally, it is enough to show how the Shape Sensitivity Analysis concepts can be utilized to obtain
the Topological Derivative DT (x̂), given by the Eqs. (1 or 2), linking, thereafter, both concepts.
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4 Topological-Shape Sensitivity Analysis

Let ψ (·) be a cost function defined in the domains Ωε = Ω−Bε and Ωε+δε = Ω−Bε+δε. Considering
the Shape Sensitivity Analysis concepts presented earlier in Section 3, one has

Ωε+δε = Ωτ ⇒ Ωε = Ω0 and Γε+δε = Γτ ⇒ Γε = Γ0 , (12)

remembering that only the ball Bε suffers a perturbation δε.
A well-known result (see, for instance, Zolésio [23]), is that only the velocity component in the

normal direction to boundary Γε is significant in the calculation of sensitivity. This result is based on
the idea that only this component, that is Vn, effectively produces change in the shape of the body.
Therefore, considering that V defines an action of change of form such as indicated in Fig. (3), then
this velocity field may be defined as

{

V = Vnn with Vn < 0 constant on ∂Bε

V = 0 on Γ, remembering that Γε = Γ ∪ ∂Bε
. (13)

Therefore, the Eq. (3) results in

xτ = x + τVnn, ∀x ∈ ∂Bε . (14)

In this way, it is possible to associate the perturbation δε with the parameter τ , that is, from the
Eqs. (12,14) and observing that δε = ‖xτ − x‖ for x ∈ ∂Bε and xτ ∈ ∂Bε+δε, one has that

δε = ‖τVnn‖ = τ |Vn| . (15)

Now, the relation between the Topological Derivative and the Shape Sensitivity Analysis concepts
can be demonstrated in the following theorem:

Theorem 1 (Topological-Shape Sensitivity Analysis) Let f (ε) be a function chosen in order to
0 < |D∗

T (x̂)| <∞, then the limit with ε→ 0 that appears in the definition of the Topological Derivative
given by Eq. (1) can be written as

D∗

T (x̂) = DT (x̂) = lim
ε→0

1

f ′ (ε) |Vn|

dψ (Ωτ )

dτ

∣

∣

∣

∣

τ=0

. (16)

Proof. The proof of this theorem is divided into two parts

Part 1 : DT (x̂) = D∗

T (x̂) , (17)

Part 2 : DT (x̂) = lim
ε→0

1

f ′ (ε) |Vn|

dψ (Ωτ )

dτ

∣

∣

∣

∣

τ=0

. (18)

Proof of Part 1: From the Eq. (1) one has that

ψ(Ωε) = ψ(Ω) +D∗

T (x̂)f(ε) +R (f(ε)) , (19)

where R(f(ε)) is used to indicate the higher order terms than f(ε), that is

lim
ε→0

R(f(ε))

f(ε)
= 0 .

In the same way, one has that

ψ(Ωε+δε) = ψ(Ω) +D∗

T (x̂)f(ε+ δε) +R (f(ε+ δε)) . (20)
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Subtracting the Eq. (19) from the Eq. (20) comes

ψ(Ωε+δε)− ψ(Ωε) = D∗

T (x̂) (f(ε+ δε)− f(ε)) +R (f (ε+ δε))−R (f (ε)) . (21)

Dividing the Eq. (21) by f (ε+ δε)− f (ε) one obtains

ψ(Ωε+δε)− ψ(Ωε)

f(ε+ δε)− f(ε)
= D∗

T (x̂) +
R (f (ε+ δε))−R (f (ε))

f (ε+ δε)− f (ε)
.

Taking the limits as indicated in the Eq. (2), one has

DT (x̂) = lim
ε→0
δε→0

ψ (Ωε+δε)− ψ(Ωε)

f (ε+ δε)− f (ε)
= D∗

T (x̂) + lim
ε→0
δε→0

R (f (ε+ δε))−R (f (ε))

f (ε+ δε)− f (ε)
. (22)

Applying the L’Hopital theorem

lim
ε→0
δε→0

R (f (ε+ δε))−R (f (ε))

f (ε+ δε)− f (ε)
= lim

ε→0
δε→0

R′ (f (ε+ δε)) = 0

and substituting this last result in the Eq. (22), one obtains the proof of the first part of this theorem,
that is,

DT (x̂) = D∗

T (x̂) .

Proof of Part 2: Let be the Eq. (2), which can be written as

DT (x̂) = lim
ε→0
δε→0

ψ (Ωε+δε)− ψ(Ωε)
f(ε+δε)−f(ε)

δε
δε

. (23)

But one can observe that

lim
δε→0

f (ε+ δε)− f (ε)

δε
= f ′ (ε) . (24)

Substituting the Eq. (24) in the Eq. (23) comes

DT (x̂) = lim
ε→0

1

f ′ (ε)
lim
δε→0

ψ (Ωε+δε)− ψ(Ωε)

δε
. (25)

Considering the Eqs. (12,4), the Eq. (25) can be written, taking into account that δε = τ |Vn| (Eq.
15), in the following manner

DT (x̂) = lim
ε→0

1

f ′ (ε)
lim
τ→0

ψ (Ωτ )− ψ(Ω0)

τ |Vn|
= lim

ε→0

1

f ′ (ε) |Vn|

dψ (Ωτ )

dτ

∣

∣

∣

∣

τ=0

. (26)

Finally, from the Eq. (26) and the result of the first part of this demonstration (Eq. 17), one can
verify that

D∗

T (x̂) = DT (x̂) = lim
ε→0

1

f ′ (ε) |Vn|

dψ (Ωτ )

dτ

∣

∣

∣

∣

τ=0

and the theorem is demonstrated

This fundamental result establishes, formally, the relation between the Topological Derivative and
the Shape Sensitivity Analysis concepts, such as Sokolowski & Żochowski [18] and Céa et al. [4] have
been perceived.
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5 Topological Derivative applied to the Poisson’s problems

To illustrate the potentialities of the result of Theorem 1, the Topological Derivative will be calculated,
utilizing the Eq. (16), in the problem of steady-state energy transfer in two-dimensional1 rigid bodies.
From the equations of the first law of the thermodynamics (energy balance) in permanent regime
and considering the constitutive equation given by the Fourier’s law for isotropic materials, one has a
problem that may be modeled by a second order elliptic boundary value problem, classically known
as the Poisson’s equation (see, for instance, Carlson [3] or Slattery [17]). On the holes, boundary
conditions will be imposed either in the temperature (Dirichlet), in the heat flux (Neumann) or even
in both variables (Robin). Physically, the holes can be interpreted as cooling channels, where the
convection is totally predominant (prescribed temperature) or where there is a prescribed heat flux
(thermal isolation, for example). A more realistic situation can be considered admitting a finite
and non-null convection in the holes. Such a phenomenon can be modeled through the well-known
Newton’s law of cooling, leading to the mixed boundary conditions (Robin) on the holes.

5.1 Formulation of the problem

Let a rigid body be represented by Ωε ⊂ R
2 with a small hole Bε centered in x̂ ∈ Ω, whose boundary

Γε = Γ ∪ ∂Bε is such that Γ = ΓN ∪ ΓD ∪ ΓR, with ΓN , ΓD, ΓR, ∂Bε mutually disjoint. Considering
that the body is submitted to a constant excitation b in the domain Ωε and Dirichlet (or essential),
Neumann (or natural) and/or Robin (or mixed) boundary conditions on ΓD, ΓN and ΓR, respectively,
and that on the contour of the holes (on ∂Bε), will also be imposed either Dirichlet, Neumann or
Robin boundary conditions. Thus, the solution uε must satisfy the Poisson’s equation, that is:











































Find uε, such that
−k∆uε= b in Ωε

uε= ū on ΓD

−k
∂uε

∂n
= q̄ on ΓN

−k
∂uε

∂n
= hc (uε − u∞) on ΓR

h(α, β, γ) = 0 on ∂Bε

, (27)

where the function h(α, β, γ) is such that:

h(α, β, γ) = α (uε − ū
ε) + β

(

k
∂uε

∂n
+ q̄ε

)

+ γ

(

k
∂uε

∂n
+ hε

c (uε − u
ε
∞

)

)

= 0 , (28)

and α, β, γ ∈ {0, 1} with α+ β + γ = 1.
Therefore, the three kind of boundary conditions on ∂Bε considered in this work are obtained

combining the parameters α, β and γ adequately, that is:

h(α, β, γ) =



















uε − ū
ε, if α = 1, β = γ = 0, Dirichlet

k
∂uε

∂n
+ q̄ε, if β = 1, α = γ = 0, Neumann

k
∂uε

∂n
+ hε

c (uε − u
ε
∞

) , if γ = 1, α = β = 0, Robin

. (29)

The parameters k, ū, q̄, u∞, hc, ū
ε, q̄ε, uε

∞
and hε

c are considered, for simplicity, constants in
relation to τ , where:

- k is the thermal conductivity;

1It is important to mention that the extension to three-dimensional domains is straightforward to consider.
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- ū is the prescribed temperature on ΓD;

- q̄ is the prescribed heat flux on ΓN ;

- u∞ and hc are the temperature and the heat-transfer coefficient of the outside medium, respectively;

- ūε is the prescribed temperature on ∂Bε, when α = 1, β = γ = 0;

- q̄ε is the prescribed heat flux on ∂Bε, when β = 1, α = γ = 0;

- uε
∞

and hε
c are the temperature and the heat-transfer coefficient in the interior of the channels,

respectively, when γ = 1, α = β = 0;

The problem given by Eq. (27) can be written in the variational form. In other words, this means
to solve the set of Eqs. (27) in the weak sense, that is:

Find uε∈ Uε, such that
aε (uε, wε) = lε (wε) ∀ wε ∈ Vε , (30)

where aε (uε, wε) and lε (wε) are written, respectively, as

aε (uε, wε) =

∫

Ωε

k∇uε · ∇wε dΩε +

∫

ΓR

hcuεwε dΓ + γ

∫

∂Bε

hε
cuεwε d∂Bε , (31)

lε (wε) =

∫

Ωε

bwε dΩε −

∫

ΓN

q̄wε dΓ +

∫

ΓR

hcu∞wε dΓ

− β

∫

∂Bε

q̄εwε d∂Bε + γ

∫

∂Bε

hε
cu

ε
∞
wε d∂Bε (32)

and the admissible functions set Uε and the admissible variations space Vε are given, respectively, by

Uε =
{

uε ∈ H
1 (Ωε) | uε|ΓD

= ū and α uε|∂Bε
= αūε

}

,

Vε =
{

wε ∈ H
1 (Ωε) | wε|ΓD

= 0 and α wε|∂Bε
= 0
}

,

where H1 (·) is a Hilbert space of order 1 defined in a given domain. It is important to mention that,
when α = 1, uε|∂Bε

= ūε and wε|∂Bε
= 0; and when α = 0, uε|∂Bε

and wε|∂Bε
are free on ∂Bε.

As seen in Section 3, the boundary value problem written in the reference configuration (Eq. 30),
must also be satisfied in the perturbed configuration Ωτ , ∀τ ≥ 0. In this way, considering the Eq. (6),
the bilinear form aτ (uτ , wτ ) and the linear functional lτ (wτ ) are given, respectively, by

aτ (uτ , wτ ) =

∫

Ωτ

k∇τuτ · ∇τwτ dΩτ +

∫

ΓR

hcuτwτ dΓ + γ

∫

∂Bετ

hε
cuτwτ d∂Bετ

, (33)

lτ (wτ ) =

∫

Ωτ

bwτ dΩτ −

∫

ΓN

q̄wτ dΓ +

∫

ΓR

hcu∞wτ dΓ

− β

∫

∂Bετ

q̄εwτ d∂Bετ
+ γ

∫

∂Bετ

hε
cu

ε
∞
wτ d∂Bετ

, (34)

where uτ ∈ Uτ := Uε(Ωτ ), wτ ∈ Vτ := Vε(Ωτ ), ετ = ε+ τ |Vn| and ∇τ (·) is adopted to denote

∇τ (·) :=
∂

∂xτ

(·) .

Observe that the boundary Γ = ΓN ∪ΓD ∪ΓR is fixed, as can be seen in the definition of the velocity
field given by Eq. (13).
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5.2 Calculus of the Topological Derivative

To obtain the expression of the Topological-Shape Sensitivity Analysis, it is necessary firstly to calcu-
late the derivative of the cost function Ψτ (uτ ) in relation to the parameter τ , at τ = 0 (see Theorem
1, Eq. 16). As seen in Section 3, the calculation of sensitivity of the cost function Ψτ can be realized
evoking the Lagrangian Method, that is: Let uτ and λτ be solutions of the state and adjoint equations,
respectively, then Eq. (10) holds.

The cost function Ψτ is, in a certain way, arbitrary. However, to arrive at its derivative one must
adopt a Ψτ in particular, depending on the interest and the application that one has in mind. In the
heat conduction problem here under study it can be adopted, among others, cost functions like:

a - Internal energy

Ψτ (uτ ) :=
1

2
aτ (uτ , uτ ) . (35)

b - Work of external sources (compliance)

Ψτ (uτ ) := lτ (uτ ) . (36)

c - Total potential energy

Ψτ (uτ ) :=
1

2
aτ (uτ , uτ )− lτ (uτ ) . (37)

d - Energy in transit

Ψτ (uτ ) :=

∫

Ωτ

|qτ |
2 dΩτ , where qτ = −k∇τuτ . (38)

e - Prescribed temperature on a fixed portion Γū of the contour Γε

Ψ(uτ ) :=

∫

Γū

(uτ − ū)
2 dΓ . (39)

f - Prescribed flux on a fixed portion Γq̄ of the contour Γε

Ψ(uτ ) :=

∫

Γq̄

(

k
∂uτ

∂n
+ q̄

)2

dΓ . (40)

For the linear problem here considered, the choice of whatever of the cost functions (a), (b) and
(c) results equivalent and simplifies the calculation of the Topological Derivative because the solution
λτ (Eq. 11) can be obtained explicitly, that is, without the necessity of solving the adjoint equation.
This doesn’t occur with the cost functions (d), (e) and (f), which require that the adjoint equation
must be effectively solved, increasing, therefore, the computational cost of the problem.

Following, the total potential energy (cost function (c), Eq. 37) is adopted as an example of
objective function, which, in this case, is defined as2:

Ψτ (uτ ) :=
1

2

(

∫

Ωτ

k∇τuτ · ∇τuτ dΩτ +

∫

ΓR

hcu
2
τ dΓ + γ

∫

∂Bετ

hε
cu

2
τ d∂Bετ

)

−

∫

Ωτ

buτ dΩτ+

∫

ΓN

q̄uτ dΓ−

∫

ΓR

hcu∞uτ dΓ

+ β

∫

∂Bετ

q̄εuτ d∂Bετ
− γ

∫

∂Bετ

hε
cu

ε
∞
uτ d∂Bετ

. (41)

2A physical interpretation for that function will be discussed in more detail in Section 6.
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It is important to stand out that the methodology here proposed is not limited to this cost function
in particular (Eq. 37), that is, any one of the six cost functions presented could be adopted, or another
more general (even with constraints, for example) that haven’t been mentioned.

Once characterized the cost function to be studied (Eq. 41), one can calculate the derivative of
the Lagrangian (Eq. 10). Thus, the adjoint equation (Eq. 11) for this particular case remains:

Find λτ ∈ Vτ , such that

aτ (λτ , wτ ) = −

〈

∂Ψτ

∂uτ

, wτ

〉

= − (aτ (uτ , wτ )− lτ (wτ )) = 0 ∀ wτ ∈ Vτ ,

⇒ λτ = 0, see Eq. (6) . (42)

Therefore, for uτ and λτ = 0 solutions of the state and adjoint equations, respectively, the derivative
of the Lagrangian (Eq. 10) remains

∂

∂τ
£τ (uτ , uτ ) =

1

2

∂

∂τ
aτ (uτ , uτ )−

∂

∂τ
lτ (uτ ) . (43)

The derivatives in the referential configuration Ωτ |τ=0 = Ωε can be obtained by the Reynolds’
transport theorem (see, for instance, Gurtin [11]). Thus, the derivative of the bilinear form aτ (uτ , uτ )
becomes

∂aτ

∂τ

∣

∣

∣

∣

τ=0

=

∫

Ωε

[

∂

∂τ
(k∇τuτ · ∇τuτ )

∣

∣

∣

∣

τ=0

+ k∇uε · ∇uε divV

]

dΩε

+ γ

∫

∂Bε

hε
cu

2
ε divΓV d∂Bε , (44)

where divΓV = (I− n⊗ n) · ∇V is the superficial divergent of the velocity V.
The derivative of the gradient of a scalar field that appears in the Eq. (44), is given by

∂

∂τ
(∇τuτ )

∣

∣

∣

∣

τ=0

= − (∇V)T ∇uε . (45)

Substituting this last result in the Eq. (44) one has that

∂aτ

∂τ

∣

∣

∣

∣

τ=0

= −

∫

Ωε

[(

∇VT +∇V
)

k∇uε · ∇uε − k∇uε · ∇uε divV
]

dΩε

+ γ

∫

∂Bε

hε
cu

2
ε divΓV d∂Bε . (46)

In the same way, the derivative of the functional lτ (uτ ) can be calculated in the following manner

∂lτ
∂τ

∣

∣

∣

∣

τ=0

=

∫

Ωε

buε divV dΩε − β

∫

∂Bε

q̄εuε divΓV d∂Bε

+ γ

∫

∂Bε

hε
cu

ε
∞
uε divΓV d∂Bε . (47)

Thus, substituting the Eqs. (46,47) in the Eq. (43), the derivative of the Lagrangian becomes

∂£τ

∂τ

∣

∣

∣

∣

τ=0

= −
1

2

∫

Ωε

[(

∇VT +∇V
)

k∇uε · ∇uε − k∇uε · ∇uε divV
]

dΩε

+
1

2
γ

∫

∂Bε

hε
cu

2
ε divΓV d∂Bε −

∫

Ωε

buε divV dΩε

+ β

∫

∂Bε

q̄εuε divΓV d∂Bε − γ

∫

∂Bε

hε
cu

ε
∞
uε divΓV d∂Bε . (48)
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Rearranging the Eq. (48) one has

d£τ

dτ

∣

∣

∣

∣

τ=0

= −
1

2

∫

Ωε

Σ · ∇V dΩε

+
1

2

∫

∂Bε

[γhε
cuε (uε − 2uε

∞
) + 2βq̄εuε] divΓV d∂Bε , (49)

where Σ can be interpreted as a generalization of the Energy-Momentum Tensor of Eshelby (see, for
instance, Eshelby [7] or Taroco et al. [21]), which, for the problem under study, results in a second
order symmetric tensor, given by

Σ = 2 (k∇uε ⊗∇uε) + (2buε − k∇uε · ∇uε) I .

In the Eq. (49), the integral in the domain Ωε can be carry to the contour Γε, that is, considering
the tensorial relationship

div
(

ΣTV
)

= Σ · ∇V + V · divΣ ,

Σ · ∇V = div
(

ΣTV
)

−V · divΣ ,

however, one has that

divΣ = 2 [∇ (∇uε)] k∇uε + 2∇uε div (k∇uε) + 2b∇uε − 2 [∇ (∇uε)]
T k∇uε

= 2∇uε (k∆uε + b) .

Thus, from the state equation given by Eq. (27) one has that divΣ = 0, therefore,

Σ · ∇V = div
(

ΣTV
)

. (50)

Finally, from the Eq. (50) the derivative of the Lagrangian (Eq. 49) becomes an integral only defined
on the boundary Γε, that is,

dΨτ

dτ

∣

∣

∣

∣

τ=0

=
∂£τ

∂τ

∣

∣

∣

∣

τ=0

= −
1

2

∫

Γε

Σn ·V dΓε

+
1

2

∫

∂Bε

[γhε
cuε (uε − 2uε

∞
) + 2βq̄εuε] divΓV d∂Bε .

From the definition of the velocity field given by the Eq. (13) and remembering that ετ = ε+τ |Vn|
and that Ωε ⊂ R

2, on has

d

dτ

∫

∂Bετ

d∂Bετ

∣

∣

∣

∣

∣

τ=0

=
d

dτ
[2π (ε+ τ |Vn|)]

∣

∣

∣

∣

τ=0

= 2π |Vn| ,

=

∫

∂Bε

divΓV d∂Bε = 2πε divΓV

⇒ divΓV =
1

ε
|Vn| . (51)

Further, as the portion of the boundary Γε = Γ∪ ∂Bε effectively submitted to the perturbation δε (or
τ |Vn|) is ∂Bε, then the derivative of the cost function results in

dΨτ

dτ

∣

∣

∣

∣

τ=0

= −
1

2
Vn

∫

∂Bε

{

Σn · n−
sign (Vn)

ε
[γhε

cuε (uε − 2uε
∞

) + 2βq̄εuε]

}

d∂Bε . (52)
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Substituting the Eq. (52) in the definition of the Topological Derivative obtained via Shape
Sensitivity Analysis (Eq. 16) and considering that the hole is subject to an expansion (sign (Vn) = −1),
one has that

DT (x̂) =
1

2
lim
ε→0

1

f ′ (ε)

∫

∂Bε

{

Σn · n +
1

ε
[γhε

cuε (uε − 2uε
∞

) + 2βq̄εuε]

}

d∂Bε . (53)

As the gradient ∇uε defined in the contour ∂Bε can be decomposed into a normal and tangential
components, that is

(∇uε · n)n :=
∂uε

∂n
n and (∇uε · t) t :=

∂uε

∂t
t ,

the Eq. (53) can be written, considering still that

Σn · n = 2k

(

∂uε

∂n

)2

+ 2buε − k∇uε · ∇uε ,

in the following way

DT (x̂) =
1

2
lim
ε→0

1

f ′ (ε)

∫

∂Bε

{

k

(

∂uε

∂n

)2

− k

(

∂uε

∂t

)2

+ 2buε +
1

ε
[γhε

cuε (uε − 2uε
∞

) + 2βq̄εuε]

}

d∂Bε .

(54)
Now, it is enough to calculate this limit with ε→ 0 to obtain the final expression of the Topological

Derivative.

5.3 Calculus of the limit with ε→ 0

This point of the work deserves special attention, since that via Shape Sensitivity Analysis one obtains
the Topological Derivative expressed in terms of a limit with ε→ 0 (Eq. 54). To calculate this limit,
one needs to explicitly know the behavior of the solution uε when ε → 0, as well as its normal and
tangential derivatives. Thus, an Asymptotic Analysis of uε shall be performed for the problem here
studied, that is:

Considering a boundary value problem such as the one described by the Eq. (27), but now defined
in a ring A = BR −Bε ⊂ Ωε ⊂ R

2, centered in x̂ ∈ Ω, where R >> ε is such that R→ 0, when ε→ 0.
This new problem can be formulated in the following way:



















Find vε, such that

−∆vε = b̃ in A
vε = ϕ on ∂BR

α̃vε + β̃
∂vε

∂n
= h̃ on ∂Bε

, (55)

where b̃ = b/k, α̃ = α + γhε
c, β̃ = k (β + γ) and h̃ = αūε − βq̄ε + γhε

cu
ε
∞

(see Eq. 28). Moreover,
ϕ := uε|∂BR

, then vε = uε|A , i.e. both problems given by the Eqs. (27,55) have the same solution in
A. In this way, one can use the method of separation of variables to make a Fourier series expansion
of vε, in order to obtain uε explicitly. That is, introducing the polar coordinate system (r, θ), the
solution vε, as a function of r and θ, can be expressed for ε ≤ r ≤ R as follows

vε (r, θ) =

∞
∑

n=0

(vn(r) cosnθ + v̂n(r) sinnθ) .
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Utilizing the boundary conditions

(

α̃vε + β̃
∂vε

∂n

)
∣

∣

∣

∣

∂Bε

= h̃ and vε|∂BR
= ϕ =

∞
∑

n=0

(Rnϕn cosnθ +Rnϕ̂n sinnθ) ,

one obtains

vε (r, θ) = −
b̃

4
r2 + ln r

(

α̃ b̃
4(R2 − ε2) + α̃ϕ0 − h̃+ β̃ b̃

2ε

α̃(lnR− ln ε) + β̃/ε

)

+
lnR

(

h̃+ α̃ b̃
4ε

2 − β̃ b̃
2ε
)

−
(

α̃ ln ε− β̃/ε
)(

ϕ0 + b̃
4R

2
)

α̃(lnR− ln ε) + β̃/ε

+

∞
∑

n=1

(

εα̃+ nβ̃
)

rn − ε2n
(

εα̃− nβ̃
)

r−n

(

εα̃+ nβ̃
)

− (ε/R)2n
(

εα̃− nβ̃
) (ϕn cosnθ + ϕ̂n sinnθ) .

The solution uε|∂Bε
= vε|∂Bε

= vε (ε, θ) is easily calculated as

uε|∂Bε
= −

b̃

4
ε2 + ln ε

(

α̃ b̃
4(R2 − ε2) + α̃ϕ0 − h̃+ β̃ b̃

2ε

α̃(lnR− ln ε) + β̃/ε

)

+
lnR

(

h̃+ α̃ b̃
4ε

2 − β̃ b̃
2ε
)

−
(

α̃ ln ε− β̃/ε
)(

ϕ0 + b̃
4R

2
)

α̃(lnR− ln ε) + β̃/ε

+

∞
∑

n=1

2nβ̃εn (ϕn cosnθ + ϕ̂n sinnθ)
(

εα̃+ nβ̃
)

− (ε/R)2n
(

εα̃− nβ̃
) . (56)

Now, it is enough to calculate the normal and tangential derivatives of uε on ∂Bε, that is

∂uε

∂n

∣

∣

∣

∣

∂Bε

=
∂vε

∂n

∣

∣

∣

∣

∂Bε

= −
∂vε

∂r

∣

∣

∣

∣

r=ε

=
b̃

2
ε−

1

ε

(

α̃ b̃
4(R2 − ε2) + α̃ϕ0 − h̃+ β̃ b̃

2ε

α̃(lnR− ln ε) + β̃/ε

)

−

∞
∑

n=1

2nα̃εn (ϕn cosnθ + ϕ̂n sinnθ)
(

εα̃+ nβ̃
)

− (ε/R)2n
(

εα̃− nβ̃
) , (57)

∂uε

∂t

∣

∣

∣

∣

∂Bε

=
∂vε

∂t

∣

∣

∣

∣

∂Bε

=
1

r

∂vε

∂θ

∣

∣

∣

∣

r=ε

=

∞
∑

n=1

2n2β̃εn−1 (ϕ̂n cosnθ − ϕn sinnθ)
(

εα̃+ nβ̃
)

− (ε/R)2n
(

εα̃− nβ̃
) . (58)

With these results in hand (Eqs. 56, 57, 58), the limit with ε → 0 in Eq. (54) can be calculated,
in order to obtain the final expression of the Topological Derivative. It is important to mention that
the solution defined in the domain Ω (without hole) will be denoted by u.

5.3.1 Neumann boundary condition on the hole (β = 1, α = γ = 0)

Making β = 1, α = γ = 0 and substituting in the Eq. (54) one has that

DT (x̂)N =
1

2
lim
ε→0

1

f ′ (ε)

∫

∂Bε

[

k

(

∂uε

∂n

)2

− k

(

∂uε

∂t

)2

+ 2buε +
2

ε
q̄εuε

]

d∂Bε . (59)
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Taking into account that, in this case, −k∂uε/∂n = q̄ε on ∂Bε, the Eq. (59) remains

DT (x̂)N =
1

2
lim
ε→0

1

f ′ (ε)

∫

∂Bε

[

q̄ε

k

2

− k

(

∂uε

∂t

)2

+ 2buε +
2

ε
q̄εuε

]

d∂Bε . (60)

Considering q̄ε = 0 (Neumann homogeneous boundary condition) and substituting the Eqs. (56,58)
in the Eq. (60) one observes that the solution uε is non-singular. Hence,

f ′ (ε) = −2πε⇒ f (ε) = −πε2

and applying the localization theorem (see, for instance, Gurtin [11]), one obtains

DT (x̂)N0
= k∇u (x̂) · ∇u (x̂)− bu (x̂) . (61)

In the same way, for q̄ε 6= 0 (Neumann non-homogeneous boundary condition), one has

f ′ (ε) = −2π ⇒ f (ε) = −2πε

and then
DT (x̂)N = −q̄εu (x̂) . (62)

where u is the solution defined in the original domain Ω.

5.3.2 Robin boundary condition on the hole (γ = 1, α = β = 0)

For γ = 1, α = β = 0 the Eq. (54) provides

DT (x̂)R =
1

2
lim
ε→0

1

f ′ (ε)

∫

∂Bε

[

k

(

∂uε

∂n

)2

− k

(

∂uε

∂t

)2

+ 2buε +
1

ε
hε

cuε (uε − 2uε
∞

)

]

d∂Bε . (63)

Substituting the Eqs. (56,57,58) in the Eq. (63) one has that the dominant term is given, since uε

is non-singular, by
1

ε
hε

cuε (uε − 2uε
∞

) ,

then,
f ′ (ε) = −2π ⇒ f (ε) = −2πε

and, applying the localization theorem, one obtains

DT (x̂)R = −
1

2
hε

cu (x̂) (u (x̂)− 2uε
∞

) . (64)

5.3.3 Dirichlet boundary condition on the hole (α = 1, β = γ = 0)

Making α = 1, β = γ = 0 and substituting in the Eq. (54) one has that

DT (x̂)D =
1

2
lim
ε→0

1

f ′ (ε)

∫

∂Bε

[

k

(

∂uε

∂n

)2

− k

(

∂uε

∂t

)2

+ 2buε

]

d∂Bε . (65)

Taking into account that on ∂Bε, uε = ūε and that ∂uε/∂t = 0 (see Eq. 58), the Eq. (65) remains

DT (x̂)D =
1

2
lim
ε→0

1

f ′ (ε)

∫

∂Bε

[

k

(

∂uε

∂n

)2

+ 2būε

]

d∂Bε . (66)
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In this case, from the Eq. (57) one observes that the solution uε is singular3, that is, the dominant
term is given by k(∂uε/∂n)2 and ∂uε/∂n is such that

lim
ε→0

[

∂uε

∂n
ε ln (ε)

]

= u (x̂)− ūε .

Therefore, one observes that

f ′ (ε) = −
2π

ε ln (ε)2
⇒ f (ε) =

2π

ln (ε)
.

Considering this last result and substituting the Eq. (57) in the Eq. (66), one has, after applying
the localization theorem, that

DT (x̂)D = −
1

2
k (u (x̂)− ūε)2 . (67)

5.4 Summary of the results

A summary of the obtained results is shown in the Table 1, where one has the final expressions of the
Topological Derivatives for the Poisson’s problem, which were obtained via Shape Sensitivity Analysis
(Theorem 1), considering the various types of boundary conditions studied (Eqs. 61, 62, 64, 67),
taking as a cost function the total potential energy (Eq. 41).

Table 1: Topological Derivatives in 2D Poisson’s problem, for Neumann (β = 1, α = γ = 0), Robin
(γ = 1, α = β = 0) or Dirichlet (α = 1, β = γ = 0) boundary condition on the hole and considering
the total potential energy as the cost function.

Boundary Conditions f (ε) DT

β = 1, α = γ = 0 and q̄ε = 0 −πε2 k∇u · ∇u− bu

β = 1, α = γ = 0 and q̄ε 6= 0 −2πε −q̄εu

γ = 1, α = β = 0 −2πε −
1

2
hε

cu (u− 2uε
∞

)

α = 1, β = γ = 0
2π

log (ε)
−

1

2
k (u− ūε)2

From the analysis of the Table 1 one observes that it is sufficient to calculate the solution of the
original problem (without hole), that is u, to obtain the sensitivity of the cost function when a hole
is created in an arbitrary point x̂ ∈Ω. Thus, the Topological Derivative can be obtained without
additional cost, besides that necessary in the calculation of u and λ and/or ∇u and ∇λ (note that in

3In the Saint-Venant theory of torsion of elastic shaft, which may also be modeled through the Poisson’s equation,
one has a very special case of Dirichlet boundary condition that doesn’t originate singularities in the solution.
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this case λ = 0 due to the choice of a particular cost function, as can be seen in Eq. 42). Another
important consequence of the Theorem 1 is that the Topological Derivative can be calculated in more
complex cases than the one here considered: in cases where it is not possible to make an Asymptotic
Analysis of the solution. In fact, the Shape Sensitivity Analysis can be realized without further
problems in such situations and the limit with ε→ 0, that appears in the Eq. (16), can be calculated
employing an appropriate numerical method.

6 Numerical experiments

In this work, it was firstly shown the relation between the Topological Derivative and the Shape
Sensitivity Analysis, leading to the Topological-Shape Sensitivity Analysis (Section 4). Soon after, in
Section 5, the calculation of the Topological Derivative was performed for the Poisson’s problem (Eq.
27), considering as a constraint the state equation in its weak form (Eq. 30) and as a cost function the
total potential energy (Eq. 41). This objective function can be interpreted, in this case, as a measure
of the heat flux, or even, as a measure of energy in transit in the body under analysis.

Then, the goal of this Section is to point out, by several numerical experiments, the effectiveness
of the information given by the Topological Derivatives summarized in Table 1. In fact, this derivative
gives the information on the opportunity to create a small hole in the domain. Therefore, as stated
in the works of Céa et al. [4] and Garreau et al. [10], the function DT (x̂) can be used similarly to a
descent direction in a topology optimization process (for a survey on topology optimization methods,
the reader is referred to the review paper by Eschenauer et. al. [5]). However, it is easy to see that, in
the manner as shown in the present work, it is still necessary to consider some additional constraint in
the problem, besides the state equation, in order to avoid that any iterative procedure leads merely to
the trivial solution of the problem, i.e. meas (Ω) = 0. A simple way to outline this problem consists
in introducing a Stop Criterion in the process. Thus, following [4, 10], the iterative procedure to be
used in the numerical experiments can be stated as:

Considering the sequence {Ωj}, where j is the j-th iteration, then:

1. Provide the initial domain Ω and the Stop Criterion.

2. While the Stop Criterion is not satisfied do:

(a) Find the solution uj associated to the domain Ωj.

(b) Calculate DT (x̂)j according to Table (1).

(c) Create the holes in the points x̂ corresponding to ηj
inf ≤ DT (x̂)j ≤ ηj

sup, where ηj
inf and ηj

sup

are specify proportionally to the volume of material to be removed in each iteration j.

(d) Define the new domain Ωj+1.

(e) Make j ← j + 1.

3. At this stage, it is hoped to have in hand the desired final design.

As can be seen in Table 1, the Topological Derivative DT (x̂) depends on the u (x̂) and/or ∇u (x̂),
the source b and the boundary conditions on ∂Bε. In this work, the solution u (x̂) is calculated
via Finite Element Method (see, for instance, Szabó & I. Babuška [20]), that is, u (x̂) ≈ uh (x̂) and
∇u (x̂) ≈ ∇uh (x̂), where∇uh (x̂) is obtained by a post-processing of the approximated solution uh (x̂),
such as proposed in the work of Hinton & Campbell [12]. More specifically, in the following examples
the three node triangular finite element is adopted for the discretization of the estate equation (see, for
instance, Zienkiewicz & Taylor [22] and Hughes [13]). Furthermore, the Topological Derivative DT (x̂)
is evaluated on the nodal points of the finite elements mesh, being that the elements that share the
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node which satisfies ηinf ≤ DT (x̂) ≤ ηsup are eliminated, in the way of creating the holes in the finite
elements mesh (for more technical details, see the work of Novotny [15]). This procedure, already
proposed by Céa et al. [4] and Garreau et al. [10], is essentially the so-called hard-kill method, also
discussed in [5].

6.1 Example 1 - design of heat conductors

In this example, three distinct cases will be analyzed, where, in all of them, a domain Ω = (0, 10) ×
(0, 10) will be considered, whose contour is given by ∂Ω = ΓD ∪ ΓN , where ΓD = ΓD1

∪ ΓD2
and

meas (ΓD1
) = meas (ΓD2

) = 4. On ΓN one has that q̄ = 0 and on ΓD1
and ΓD2

are prescribed the
temperatures ū1 = 0 and ū2 = 100, respectively. In the holes created via Topological Derivative, Neu-
mann homogeneous boundary conditions are imposed, that is, q̄ε = 0 on ∂Bε, hence, the Topological
Derivative will be calculated by the Eq. (61), considering b = 0 and k = 1, i.e.:

DT (x̂)N0
≈ ∇uh (x̂) · ∇uh (x̂) .

Therefore, the idea is to create holes where the cost function given by Eq. (41) is less sensible,
that is, where DT (x̂) assumes the smallest values. In this way, it is desired to obtain different
configurations of heat conductors, depending as how ΓD1

and ΓD2
are disposed on ∂Ω. The adopted

Stop Criterion is over the final volume to be obtained. That is, the idea is creating the holes while
meas (Ω) ≥ meas(Ω̂), where meas(Ω̂) corresponds to the final volume required. In all cases to be
analyzed, 0.5% of material shall be removed at each iteration.

• Case A: The initial domain Ω and the disposition of ΓD1
and ΓD2

are presented in Fig. (4a).
The finite elements mesh used to discretize Ω can be seen in Fig. (4b).
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(a) initial domain Ω (b) mesh

Figure 4: Example 1 - Case A: model and mesh with 3656 finite elements.

In this case, the adopted stop criterion is given by meas(Ω̂) = 0.8meas(Ω). The Topological
Derivatives calculated in the iterations j = 0, j = 10, j = 20 and j = 35 are shown in Fig. (5),
where one observes a heat conductor that divides the flux, directing it from ΓD2

to ΓD1
, as can

be seen in Fig. (6).
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(a) Topological Derivative at j = 0 (b) Topological Derivative at j = 10

(c) Topological Derivative at j = 20 (d) Topological Derivative at j = 35

Figure 5: Example 1 - Case A: obtained result.

(a) heat flux at j = 0 (b) heat flux at j = 35

Figure 6: Example 1 - Case A: heat flux.

In Fig. (7) is shown the cost function (total potential energy) calculated in each iteration, where
one note that it diminishes during the iterative process.
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Figure 7: Example 1 - Case A: cost function Ψ(u) in each iteration.

• Case B: The Fig. (8a) shows the disposition of ΓD1
and ΓD2

and the initial domain Ω, having
a hole BR in it baricenter, whose radius is R = 2. Due to the symmetry of the problem, only
half of Ω is discretize, as can be seen in Fig. (8b).
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Figure 8: Example 1 - Case B: model and mesh with 1583 finite elements.

The Topological Derivative calculated in the first iteration (j = 0) can be seen in Fig. (9a). In
Fig. (9b) is shown the design obtained in the last iteration (j = 56), considering meas(Ω̂) =
0.7meas(Ω). As in the previous case, one also observes a heat conductor that directs the flux
from ΓD2

to ΓD1
(see Fig. 10)
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(a) Topological Derivative at j = 0 (b) final domain Ω56

Figure 9: Example 1 - Case B: obtained result.

(a) heat flux at j = 0 (b) heat flux at j = 56

Figure 10: Example 1 - Case B: heat flux.

• Case C: In Fig. (11a) is presented the initial domain Ω, as well as the disposition of ΓD1
and

ΓD2
. Due to the symmetry of the problem, only half of Ω is discretized, as can be seen in Fig.

(11b).

G
D

2

G
D

1

G
D

1

W

G
N

(a) initial domain Ω (b) mesh

Figure 11: Example 1 - Case C: model and mesh with 1822 finite elements.

The Topological Derivative calculated in the first iteration is shown in Fig. (12a). The design
obtained in the last iteration (j = 78), considering meas(Ω̂) = 0.6meas(Ω), is presented in Fig.
(12b), where one clearly observes, again, a heat conductor that directs the flux from ΓD2

to ΓD1
.
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(a) Topological Derivative at j = 0 (b) final domain Ω78

Figure 12: Example 1 - Case C: obtained result.

This example, although academic, shows that the Topological Derivative can be used to determine
where the holes must be positioned, in order to automatically design components able to channel the
heat flux from ΓD2

(hotter region) to ΓD1
(more cold region).

6.2 Example 2 - design of a heat exchanger

In this example, one seeks to design a heat exchanger. Accordingly, it is necessary to create the
holes where the cost function (Eq. 41) is more sensible, that is, where DT (x̂) assumes the greatest
absolute values. In practice, the Neumann or Dirichlet boundary conditions on ∂Bε are very severe
hypothesis, the reason for which only the Robin boundary conditions shall be imposed on ∂Bε, whose
Topological Derivative is given by Eq. (64), that is,

DT (x̂)R ≈ −
1

2
hε

cuh (x̂) (uh (x̂)− 2uε
∞

) ,

The problem being considered can be seen in Fig. (13), where one has a body denoted by Ω,
whose thermal conductivity is such that k = 204W/ (m oC) , and a cooling surface, ΓR, which is
exposed to the ambient air (steady air) at a temperature u∞ = 25oC, leading to a heat-transfer
coefficient hc = 20W/

(

m2 oC
)

. When a cooling channel is introduced, one has water at a temperature
uε
∞

= 30oC, that flows throughout the interior of it, in order to induce a heat-transfer coefficient
hε

c = 200W/
(

m2 oC
)

. Finally, the heat flux q̄ prescribed on ΓN presents a piecewise linear distribution,
where the smallest value is q̄1 = 2 × 103W/m2 and the greatest value is q̄2 = 2 × 104W/m2. Due to
the periodical symmetry of the problem, only a part 2L × L, where L = 4m, of the whole domain is
discretized (see mesh shown in Fig. 13), and the gray region of width a = 1m each one, shown in the
same figure, shall not be perturbed, being considered the structural part of the problem.
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Figure 13: Example 2: model and mesh with 1086 finite elements.

If the holes are created where the cost function (Eq. 41) is more sensible, then the maximum
temperature, denoted by umax in Fig. (13), should be diminished up to the required value u∗

max.
Then, the idea is to change the design of the structure, by introducing holes, up to umax ≤ u∗max.
Considering this condition as the Stop Criterion to be adopted, where u∗

max = 200oC, and removing
1% of the material in each iteration, one observes that the temperature umax actually diminishes
during the iterative process, which can be seen in Fig. (14).
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Figure 14: Example 2: maximum temperature (umax) in each iteration.

Through analysis of Fig. (14), one notes that the condition umax < u∗max is reached in the iteration
j = 5, from which umax presents an asymptotic behavior. Thus, if the required temperature were
u∗max << 200oC (u∗max = 100oC, for instance), the flow condition imposed into the cooling channels
(represented by the parameters hε

c and uε
∞

) would be insufficient to reach it.
The temperature distribution obtained in each iteration is shown in Fig. (15), where one observes

a diminution of the temperature in the whole domain, as the cooling channels are being automatically
introduced via Topological Derivative, whose distribution calculated in each iteration can be seen in
Fig. (16).
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(a) temperature at j = 0 (b) temperature at j = 1

(c) temperature at j = 2 (d) temperature at j = 3

(e) temperature at j = 4 (f) temperature at j = 5

Figure 15: Example 2: temperature distribution obtained during the iterative process.
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(a) Topological Derivative at j = 0 (b) Topological Derivative at j = 1

(c) Topological Derivative at j = 2 (d) Topological Derivative at j = 3

(e) Topological Derivative at j = 4 (f) Topological Derivative at j = 5

Figure 16: Example 2: Topological Derivative obtained during the iterative process.

The final design obtained in the iteration j = 5 is presented in Fig. (17), where one notes that the
distance between the channels grows as these stand back from the point of maximum temperature, as
it was expected.

Figure 17: Example 2 - final design.

This example shows how the Topological Derivative can be utilized to design heat exchangers, in
order to automatically determinate where the cooling channels must be positioned, satisfying some
requirement.
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Now, considering that the fluid flows throughout the channels in such high velocity that induces
a heat-transfer coefficient hε

c → ∞, the Newton’s law of cooling degenerates to a Dirichlet boundary
condition on the holes, that is ūε = uε

∞
, where ūε is the prescribed temperature on ∂Bε. Thus, this

same problem will be analyzed considering the Dirichlet boundary condition on ∂Bε, whose Topological
Derivative if given by Eq. (67), that is

DT (x̂)D ≈ −
1

2
k (uh (x̂)− ūε)2 ,

where ūε = 30oC.
The Topological Derivative calculated in the iteration j = 0 and j = 5 are shown in Fig. (18).

(a) Topological Derivative at j = 0 (b) Topological Derivative at j = 5

Figure 18: Example 2: Topological Derivative obtained in the first (a) and in the last (b) iterations,
considering the Dirichlet boundary condition on the holes.

The temperature distribution obtained in the last iteration (j = 5) is presented in Fig. (19a), where
one has that umax ≈ 124oC << u∗max, which was expected, since the Dirichlet boundary condition
on the channels represents hε

c → ∞. The final design is shown in Fig. (19b), where it is possible to
observe a distribution of the channels similar that the one already obtained.

(a) temperatura at j = 5 (b) final design

Figure 19: Example 2: Temperature distribution calculated in the iteration j = 5 (a) and final design
obtained (b), considering the Dirichlet boundary condition on the holes.

This last analysis shows that, even utilizing a very simplified model (Dirichlet boundary condition
on the holes), one obtains satisfactory results, at least from the qualitative point of view.

7 Conclusions

In this work, Shape Sensitivity Analysis was employed to evaluate the Topological Derivative in an
alternative way. The relationship between both concepts was formally demonstrated in Theorem
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1, leading to the Topological-Shape Sensitivity Analysis. This theorem shows that the Topological
Derivative is a generalization of the Shape Sensitivity Analysis concept. Therefore, as shown in Section
5, results obtained in Shape Sensitivity Analysis can be used to perform the Topological Derivative in
a simple and constructive way.

In order to illustrate the potentialities of the result obtained in Theorem 1, the Topological Deriva-
tive was calculated, utilizing Eq. (16), for a steady-state heat conduction problem with total potential
energy as the cost function. This is an adequate example since not only it has several practical appli-
cations, but one can also study the effects on the theory of different boundary conditions on the hole
(Dirichlet, Neumann or Robin boundary conditions). It is important to mention that the extension
of the methodology here proposed to other engineering problems (non-linear solid mechanics, fluid
mechanics, electromagnetism, and so on) with general cost functions is straightforward.

The Topological-Shape Sensitivity Analysis, i.e. the Topological Derivative based on Shape Sen-
sitivity Analysis, was expressed in terms of the limit ε → 0 in Eq. (54). To calculate this limit, it
was necessary to make an asymptotic analysis of the solution uε and of its normal and tangential
derivatives, which allowed to apply the localization theorem in Eq. (54) to obtain the results shown
in Table 1. However, when it is not possible to perform an asymptotic analysis of the solution (for
instance, in non-linear problems in general) the limit ε→ 0 in Eq. (54) can be estimated numerically,
allowing to extend the methodology proposed in this work to more complex problems.

Finally, in Section 6, the Topological Derivative was used to improve the design of heat conducting
components, showing that it provides an useful information for positioning holes. This fact high-
lights that the Topological Derivative concept is a tool that can be applied in topology optimization
algorithms, as pointed out by Eschenauer & Olhoff [5]. In addition, other strategies using the infor-
mation provided by the Topological-Shape Sensitivity Analysis must be investigated. Among those,
an strategy that exploits the eigenvectors of the tensor Σ will be studied in future works.
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