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Abstract. In the present paper we propose a simple method dealing with growth
control of cracks under contact type boundary conditions on their lips. The aim is
to find a mechanism for decreasing the energy release rate of cracked components,
which means to increase their fracture toughness. The method consists in minimiz-
ing a shape functional defined in terms of the Rice’s integral, with respect to the
nucleation of hard and/or soft inclusions, according to the information provided by
the associated topological derivative. Based on Griffith’s energy criterion, this sim-
ple strategy allows for an increasing of fracture toughness of the cracked component.
Since the problem is non-linear, the domain decomposition technique, combined with
the Steklov-Poincaré pseudo-differential boundary operator, is used to obtain the sen-
sitivity of the associated shape functional with respect to the nucleation of a small
circular inclusion with different material property from the background. Then, the
obtained topological derivatives are used to indicate the regions where the controls
should be positioned in order to solve the minimization problem we are dealing with.
Finally, a numerical example is presented showing the applicability of the proposed
methodology.

1. Introduction

In materials science, toughness is an intrinsic property of components which is used
to describe its capability to resist fracture. In particular, when the original component
is already partially cracked, this property is called fracture toughness and represents the
ability of materials in resisting to the activation of the crack propagation mechanism.
The fracture toughness of a component is related to its energy release rate, which is
defined as the variation of the strain energy stored in the body with respect to the
crack growth. More specifically, based on Griffith’s energy criterion [10], the lower is
the energy release rate of the cracked component the higher is its fracture toughness.
Following this ideas, different strategies in order to reduce the energy release rate of
the components has been proposed in the literature. See for instance [6, 11, 14, 18]
and related works [12, 22, 23].

This paper deals with crack growth control problems by using the concept of topo-
logical derivative [14, 15, 16, 24, 25]. Following the original ideas presented in [29], a
shape functional defined in terms of the Rice’s integral [21] is minimized with respect
to the nucleation of hard and/or soft inclusions far from the crack tip. Since the Rice’s
integral is defined in terms of the energy release, based on Griffith’s energy criterion,
this simple strategy allows for an increasing of fracture toughness of the cracked body.
However, the referred methodology was developed over a linear elastic model. One well-
known limitation of this class of models is that they are not able to distinguish between
traction and compression stress states, so that crack closure phenomenon cannot be
captured, for example. Therefore, in this work an extension of the method presented
in [29] to the non-linear case associated with contact type boundary conditions on the
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Figure 1. Cracked elastic body.

crack lips is proposed. In particular, the sensitivity of the Rice’s integral, with respect
to the nucleation of a small circular inclusion, is obtained by using the Domain Decom-
position Technique combined with the Steklov-Poincaré pseudo-differential boundary
operator [27]. As proposed in [29], the resulting expression is used to indicate the re-
gions where the controls (inclusions) should be positioned (nucleated) in order to solve
the minimization problem. A numerical example based on the famous Bittencourt’s
experiment is presented, showing the effectiveness of the proposed methodology. In
fact, a gain of 13% in the fracture toughness of the mechanical component is observed.

The work is organized as follows. The statement of the problem is presented in
Section 2. In Section 3, the closed formula of the associated topological derivative is
obtained. The numerical experiment is driven in Section 4. Finally, some concluding
remarks are presented in Section 5.

2. Statement of the problem

Let us consider an elastic cracked body represented by an open and bounded domain
D ⊂ R2, with boundary ∂D = ΓN ∪ ΓD ∪ Γc, submitted to surface loads on ΓN ,
prescribed displacements on ΓD and a possible contact condition on Γc. The contour
Γc is used to represent the crack inside the body. We assume that the normal vectors
on both sides of Γc are collinear allowing us to set just one normal vector field n on
the potential contact region. The existing cracks are assumed to be straight lines with
length h and direction e, where e is a unit vector aligned with the crack. The notation
x∗ is used to denote the crack tips. Finally, the cracks Γc are free of traction and a
control region ω∗ ⊂ D containing the crack tip is considered. See sketch in Figure 1.
Then, the mechanical problem is defined as: Find u, such that

div(σ(u)) = 0 in D ,
σ(u) = C∇us

u = 0 on ΓD ,
σ(u)n = q on ΓN ,
[[u]] · n
σnn(u)

σnn(u)([[u]] · n)
σnτ (u)(u · τ) + µa|u · τ |

−µa ≤ σnτ (u)

≥
≤
=
=
≤

0
0
0
0
µa

 on Γc .

(2.1)
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For the purposes of this work, it is necessary to introduce the regularized version of
the problem (2.1). In this case, the total potential energy of the system is given by

F(u) =
1

2

∫
D
σ(u) · ∇us −

∫
ΓN

q · u+ µa

∫
Γc

√
(u · τ)2 + a+ µc

∫
Γc

| [[u]] · n |2+ , (2.2)

where the displacement field u is solution to the following variational problem: Find
u ∈ U , such that∫

D
σ(u) · ∇ηs =

∫
ΓN

q · η−µa
∫

Γc

(τ ⊗ τ)u · η√
(u · τ)2 + a

− 2µc

∫
Γc

(| [[u]] ·n |+)n · η ,∀η ∈ V .

(2.3)

The term σ(u) = C∇us is the Cauchy stress tensor. We consider isotropic material,
so that the elasticity tensor C can be written as

C = 2µI + λ(I⊗ I) , (2.4)

where I and I are the second and fourth order identity tensors, respectively, and µ and
λ are the Lamé’s coefficients. In particular, we have

µ =
E

2(1 + ν)
, λ =

νE

(1 + ν)(1− 2ν)
and λ∗ =

νE

1− ν2
, (2.5)

where λ and λ∗ are associated with plane strain and plane stress assumptions, respec-
tively. In addition, E is the Young’s modulus and ν the Poisson’s ratio. The strain
tensor is defined as

∇ϕs := (∇ϕ)s =
1

2
(∇ϕ+ (∇ϕ)>) . (2.6)

In the sequence, the term q ∈ H 1
2 (ΓN ;R2) is a given boundary traction, µa is a known

friction coefficient, τ denotes the tangential vector field on Γc and a ∈ R+ is a regular-
ization parameter. The operator | [[ϕ]] · n |2+, defined as

| [[ϕ]] · n |2+ :=

{
0 if [[ϕ]] · n > 0 ,

([[ϕ]] · n)2 if [[ϕ]] · n ≤ 0 ,
(2.7)

is introduced to impose the non-interpenetration condition through the penalty pa-
rameter µc. Finally, the set U and the space V are defined as

V := U :=
{
ϕ ∈ H1(D) : ϕ|ΓD

= 0
}
. (2.8)

Since we are considering a cracked domain, the propagation mechanism may be
activated according to some dissipation criterion [10]. As mentioned before, the aim is
to find a way to retard or even avoid the triggering of such mechanism by minimizing a
shape functional written in terms of the Rice’s integral with respect to the nucleation
of circular inclusions far from the crack tip.

2.1. Rice’s integral. The Rice’s integral, denoted by J (u), is defined as

J (u) := − d

dh
W(u) , (2.9)

where W(u) is the energy released [21]. By taking the strain energy to compute the
energy release rate, i.e., taking W(u) = −F(u), we have

J (u) = e ·
∫
∂ω∗

Σ(u)n∗ + µa

∫
Γc

∂τV
τ
√

(u · τ)2 + a + µc

∫
Γc

∂τV
τ | [[u]] · n |2+ , (2.10)
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where e is the direction of the crack growth, n∗ is the outward unit normal vector to
∂ω∗ and Σ(u), defined as

Σ(u) =
1

2
(σ(u) · ∇us)I−∇u>σ(u) , (2.11)

is the Eshelby energy-momentum tensor introduced in [7]. In the sequence, V τ is the
tangential component of the shape change velocity field V , which, in the present case,
is defined as

V ∈ C∞(D) : V = e in ω∗ , (2.12)

with compact suport in ω∗.
For the purposes of this work, it is necessary to introduce a representation of J (u)

as an integral over the cracked domain. Alternative representations of J (u) can be
found in [8, 23, 28], for instance. For a more general expression of J (u) into three
spatial dimensions see [9]. According to [28], the derivative of F(u), with respect to
the crack length h, can also be written as

d

dh
F(u) =

∫
D

Σ(u) · ∇V + µa

∫
Γc

∂τV
τ
√

(u · τ)2 + a+ µc

∫
Γc

∂τV
τ | [[u]] · n |2+ . (2.13)

Therefore, the following equivalent form for the Rice’s integral J (u) holds true

J (u) =

∫
D

Σ(u) · ∇V + µa

∫
Γc

∂τV
τ
√

(u · τ)2 + a + µc

∫
Γc

∂τV
τ | [[u]] · n |2+ , (2.14)

where Σ(u) is the Eshelby tensor defined by (2.11). The proof of the equivalence
between the different representations of the Rice’s integral given by (2.10) and (2.14)
can be found in details in [28], for instance.

2.2. Topology optimization problem. The topology optimization problem is based
on Griffith’s energy criterion for crack propagation [10]. This criterion can be written
in terms of the Rice’s integral in the following way:

J (u) +Gs

 < 0 the crack is unstable;
= 0 the crack is in equilibrium;
> 0 the crack is stable,

(2.15)

where Gs > 0 is used to denote the Griffith’s surface energy.
Since Gs is a positive number and taking into account that J (u) is a negative

quantity, the less negative is J (u) the higher is the fracture toughness of the mechanical
component. Therefore, by avoiding trivial solution which consists in rounding the crack
tip, the idea is to maximize J (u) with respect to the nucleation of hard and/or soft
inclusions far from the crack tip. Thus, the optimization problem we are dealing with
can be formulated as follows:

Minimize
Ω⊂D

{−J (u)}, subject to (2.3) , (2.16)

where Ω := D \ ω∗ and J (u) is the Rice’s integral defined through (2.14). Here,
the domain Ω, which is free of geometrical singularities produced by the crack tip, is
assumed to be smooth, with Lipschitz boundary ∂Ω.

A natural approach to deal with such a minimization problem consists in apply
the concept of topological derivative [20, 26]. Therefore, in order to simplify further
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analysis, we introduce the following adjoint state: Find v ∈ V , such that∫
D
σ(v) · ∇ηs = 〈DuJ (u), η〉

=

∫
D

tr(∇V )σ(u) · ∇ηs −
∫
D
σ(η) · (∇u∇V )−

∫
D
σ(u) · (∇η∇V )

+ µa

∫
Γc

∂τV
τ (τ ⊗ τ)u · η√

(u · τ)2 + a
+ 2µc

∫
Γc

∂τV
τ (| [[u]] · n |+)n · η , ∀ η ∈ V , (2.17)

where V is the shape change velocity field defined in (2.12).

3. Topology optimization method

The methodology proposed in [29] is based on the fact that the introduction of
an inclusion at the region where the topological derivative is negative allows for a
decreasing on the values of the associated shape functional. Therefore, the topological
derivative of the shape functional defined by (2.14), with respect to the nucleation
of a small circular inclusion, is obtained. Then, the resulting expression will be used
to indicate the regions where the inclusions should be nucleated in order to solve
the minimization problem (2.16). Since the domain of analysis contains a singularity,
it is necessary first to apply the Domain Decomposition Technique combined with
the Steklov-Poincaré pseudo-differential boundary operator in order to evaluate the
associated topological derivative.

3.1. Domain decomposition method. Let us decompose D into two subdomains,
namely, ω∗ ⊂ D and Ω := D \ ω∗ such that ω∗ is the region which contains the
singularity produced by the crack tip. In addition, we consider an intact domain ω of
the form ω := ω∗ ∪ Γc as sketched in Figure 2. Then, the following boundary value
problem is considered: Find w, such that

divσ(w) = 0 in ω∗ ,
σ(w) = C∇ws ,
σ(w)n = g(w) on Γc ,

w = ϕ on ∂ω .

(3.1)

where the vector function g is given by

g(w) = −µa
(τ ⊗ τ)w√
(w · τ)2 + a

− 2µc(| [[w]] · n |+)n . (3.2)

Therefore, by using (3.1) we can define the Steklov-Poincaré pseudo-differential bound-
ary operator S as follows

S : H
1
2 (∂ω) → H−

1
2 (∂ω)

ϕ 7→ σ(w)n∗ ,
(3.3)

where n∗ is the outward normal vector to the boundary ∂ω. Therefore, the following
variational problem is considered over the uncracked domain Ω: Find u ∈ U , such that∫

Ω

σ(u) · ∇ηs +

∫
∂ω

S(u) · η =

∫
ΓN

q · η , ∀η ∈ V . (3.4)

Note that, by setting ϕ = (u)|∂ω , we have w = (u)|ω∗ .
By using the Domain Decomposition Technique, the cracked domain D is decom-

posed, so that the singularity produced by the crack tip is absorbed by the auxiliary
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c

c

Figure 2. Truncated domain.

problem (3.1) defined over the cracked subdomain ω∗. Consequently, the remaining
subdomain Ω becomes smooth, which allows us to evaluate the associated topological
derivative by using known results from the literature. For more details on the domain
decomposition method, see [1, 17, 27] for instance.

Now, in order to apply the concept of topological derivative [20], let us introduce
the topologically perturbed counterpart of the problem (3.4). The idea consists in
nucleating a circular inclusion, denoted by Bε(x̂), of radius ε and center at the arbitrary

point x̂ ∈ Ω, such that Bε(x̂) ⊂ Ω. See sketch in Figure 3. More precisely, we define a
piecewise constant function of the form

γε = γε(x) :=

{
1 if x ∈ Ω \Bε(x̂) ;
γ if x ∈ Bε(x̂) ,

(3.5)

where γ = γ(x) is the contrast in the material properties. The variational formulation
associated with the topologically perturbed problem is stated as: Find uε ∈ U , such
that ∫

Ω

σε(uε) · ∇ηs +

∫
∂ω

S(uε) · η =

∫
ΓN

q · η ∀η ∈ V , (3.6)

where σε(uε) = γεσ(uε). Note that, by setting ϕ = (uε)|∂ω , we have w = (uε)|ω∗ .

c

c

Figure 3. Perturbed problem.
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3.2. Existence of the topological derivative. The existence of the associated topo-
logical derivative is ensured by the following result:

Lemma 1. Let uε and u be solutions of problems (3.6) and (3.4), respectively. Then,
the following estimate holds true:

‖uε − u‖H1(Ω) ≤ Cε , (3.7)

where C is a constant independent of the small parameter ε.

Proof. Let us subtract (3.4) from (3.6). Then, from the definition for the contrast (3.5),
we obtain

0 =

∫
Ω

(σε(uε)− σ(u)) · ∇ηs +

∫
∂ω

S(uε − u) · η

=

∫
Ω\Bε

(σ(uε)− σ(u)) · ∇ηs +

∫
Bε

(γσ(uε)− σ(u)) · ∇ηs +

∫
∂ω

S(uε − u) · η .

After adding and subtracting the term∫
Bε

γσ(u) · ∇ηs

in the above expression, we have∫
Ω

σε(uε − u) · ∇ηs +

∫
∂ω

S(uε − u) · η =

∫
Bε

(1− γ)σ(u) · ∇ηs . (3.8)

By taking η = uε − u as test function in (3.8) we obtain the following equality∫
Ω

σε(uε − u) · ∇(uε − u)s +

∫
∂ω

S(uε − u) · (uε − u) =

∫
Bε

T(u) · ∇(uε − u)s , (3.9)

where we have introduced the notation

T(u) = (1− γ)σ(u) . (3.10)

From the Cauchy-Schwartz inequality, it follows that∫
Bε

T(u) · ∇(uε − u)s ≤ ‖T(u)‖L2(Bε)‖∇(uε − u)‖L2(Bε)

≤ C0ε‖∇(uε − u)‖L2(Bε)

≤ C1ε‖uε − u‖H1(Ω) . (3.11)

By coercivity of the bilinear form on the left-hand side of (3.11) we have

c‖uε − u‖2
H1(Ω) ≤

∫
Ω

σε(uε − u) · ∇(uε − u)s +

∫
∂ω

S(uε − u) · (uε − u) , (3.12)

which leads to the result with C = C1/c independent of the small parameter ε. �

3.3. Topological derivative formula. Since the topological perturbation is nucle-
ated far from the control region ω∗ and taking into account the definition of the shape
change velocity field V from (2.12), the Rice’s integral (2.14) becomes concentrated
over the fixed domain ω∗. In this particular case, the topological derivative can be
adapted from [4]. For the general case associated with singular domain perturbations,
which is much more complicated from the mathematical point view, see for instance
[19, 27]. See also [3] for the complete topological asymptotic expansion of solutions
governed by the elasticity system.
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Theorem 2. The topological derivative of the shape functional {−J (u)}, where J (u)
is the Rice’s integral given by (2.14), with respect to the nucleation of a small circular
inclusion endowed with contrast γ, can be written in terms of the solutions to the direct
(3.4) and adjoint (2.17) problems, namely:

T (x) = Pγσ(u)(x) · ∇vs(x), ∀x ∈ Ω , (3.13)

where the polarization tensor Pγ is given by a fourth order isotropic tensor as follows

Pγ = − 1− γ
1 + βγ

(
(1 + β)I +

1

2
(α− β)

1− γ
1 + αγ

I⊗ I

)
, (3.14)

with the coefficients α and β defined as

α =
µ+ λ

µ
and β =

3µ+ λ

µ+ λ
. (3.15)

Corollary 3. The following limit cases for the contrast parameter γ can be formally
obtained from Theorem 2, whose rigorous mathematical justification can be found in
[2], for instance:
Case 1. Contrast parameter going to zero (γ → 0),

T0(x) = P0σ(u)(x) · ∇vs(x) , (3.16)

where the polarization tensor P0 is given by

P0 = −4µ+ 2λ

µ+ λ

(
I− µ− λ

4µ
I⊗ I

)
. (3.17)

Case 2. Contrast parameter going to infinity (γ →∞),

T∞(x) = P∞σ(u)(x) · ∇vs(x) , (3.18)

with the polarization tensor P∞ given by

P∞ =
4µ+ 2λ

3µ+ λ

(
I +

µ− λ
4(µ+ λ)

I⊗ I

)
. (3.19)

4. Bittencourt’s experiment

In this section a well-known numerical experiment is presented in order to illustrate
some preliminary results. As mentioned before, the obtained topological derivatives
will be used to indicate the regions where the controls should be positioned. Then, a
combination of such indications is performed in order to verify the effects caused by
the topological changes. The mechanical problem is solved by using the Finite Element
Method with linear triangular elements only.

This example, called Bittencourt’s experiment [5], has been proposed in [13]. The
geometry and boundary conditions can be seen in details in Figure 4. A concentrated
load q = −(0, 104) lbf is applied at the middle point of the top face. In particular, we
highlight the three holes located between the load and initial crack of. In addition, the
control region ω∗ is given by a circle centered at the crack tip with radius r∗ = 0.5 in.
It is assumed that the structure is under plane strain assumption. The remainder
parameters are shown in Table 1.

The obtained topological derivatives in the neighborhood of the control region ω∗

(see Figure 4 for details) are presented in Figure 5. In particular, the limit Cases 1
and 2, according to (3.16) and (3.18) in Corollary 3, are presented in Figures 5(a) and
5(b), respectively. Note that, as indicated in Figure 5(a), two soft inclusions should be
nucleated at both sides of the crack tip. Now, taking into account the result showed in
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20

Figure 4. Bittencourt’s experiment. Geometry and boundary conditions.

Table 1. Bittencourt’s experiment. Parameters.

Parameter Value
E 4.5× 105 psi
ν 0.35
e (0, 1)
h 1.5 in
c 5 in

-60

-40

-20

0

20

40

60

80

100

120

140

(a) Case 1: T0(x)

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

(b) Case 2: T∞(x)

Figure 5. Bittencourt’s experiment. Topological derivatives in the
neighborhood of the control region ω∗ centered at the crack tip (see
Figure 4 for details).

Figure 5(b), a hard inclusion should be nucleated in front of the crack in the direction
of the applied load.
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In order to verify the effects caused by the nucleation of such inclusions, the following
four cases are considered. Case A: no inclusions are nucleated; Case B: a hard inclusion
is nucleated at the point (5.4125,2.25) since T∞(x) < 0; Case C: two soft inclusions
are nucleated at the points (4.125,1.75) and (5.87,1.125) since T0(x) < 0; Case D: the
cases B and C are considered simultaneously. In all cases the radius of the inclusion
is r = 0.25 in. See Figure 6 for details, where white/black circles represent soft/hard
inclusions.

...

(a) Case A

...

(b) Case B

...

(c) Case C

...

(d) Case D

Figure 6. Cases A, B, C, and D.

The obtained results are presented in Table 2, which are also presented in Figure
7 after normalization with respect to the first value obtained of −J (u). Note that

Table 2. Bittencourt’s experiment. Obtained results.

Cases A B C D
−J (u) 101.5803 97.291 92.1696 88.3871

the values of the associated shape functional decreases after introducing the topology
changes according to the signal of the topological derivative. In the last case, for
example, a gain of approximately 13% is observed.
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A B C D
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Figure 7. Bittencourt’s experiment. Obtained results.

5. Conclusions

In this paper, an extension of the methodology proposed in [29] to deal with crack
growth control problems to the non-linear case by considering contact type bound-
ary conditions on the crack lips, is proposed. The main idea consists in minimizing
a shape functional defined in terms of the Rice’s integral by nucleating hard and/or
soft inclusions far from the crack tip according to the information provided by the
topological derivative. In particular, the Domain Decomposition Technique, combined
with the Steklov-Poincaré pseudo-differential boundary operator, is used to obtain the
sensitivity of the associated shape functional with respect to the nucleation of a small
circular inclusion with different material property from the background. Then, the re-
sulting expression is used to indicate the regions where the controls (inclusions) should
be positioned (nucleated) in order to solve the minimization problem. According to
Griffith energy criterion, this procedure allows for an increase of the fracture toughness
of the cracked component. The well-known Bittencourt’s experiment is presented to
illustrate the applicability of the method in the case of pure traction. In fact, this ex-
ample shows that a gain of 13% in the fracture toughness of the mechanical component
can be obtained by applying the proposed method. Finally, it should be emphasized
that the numerical example can be seen as a preliminary result only. Actually, fur-
ther studies related to the implementation of the numerical treatment of the problems
with the non-interpenetration conditions are now under investigation. In addition, the
numerical experiments only show a tendency on the behavior of the shape function
after nucleate inclusions according to the value of the topological derivative. Solving
a topology optimization problem in the strict sense by using the derived theoretical
results is subject of future work.
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