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Abstract. The process of fluid-driven crack propagation in permeable rocks is investigated
by a simple hydro-mechanical model and the concept of topological derivative. Analytical and
numerical computations are made to propose a promising model tested and validated on a series
of bidimensional benchmark examples. The main guidelines for this model is the use of simple
finite elements with a minimal number of user-defined algorithmic parameters.

1. Introduction

The hydraulic fracturing process is an engineering technique used to create and/or propagate
geological faults by means of the pressure of an injected fluid in order to let the gas trapped inside
the rock be extracted at the surface. This extraction process, commonly known as fracking, can
be extremely damageable for the ecosystem due, in part, to the possibility of contamination of the
soil and the creation of uncontrolled seismic effects provoked by the initiation and propagation of
the cracks. In this sense, it is essential to promote accurate developments of theoretical studies
as well as computational tools able to monitor and possibly optimize the real-world process.
This simulation-based approach eventually serves as a scientific support at the disposal of the
decision and policy makers.

The hydraulic fracturing process has been subject of intense research in last years, see for
example [3, 10, 13, 16, 18, 19, 21, 25], to cite a few. For a comprehensive review on the subject,
see the introduction section in [7], where a phase-field approximation in the spirit of Francfort-
Marigo variational approach [11, 12] is proposed. See also [14] where the full Biot system is
combined with a phase-field approach for hydraulic fracture modeling in a porous medium. A
fully-coupled formulation accounting for the displacement, pressure and the phase-field itself has
been proposed in [15], which allows for formulating a free energy functional governing the whole
damage evolution process.

Recently, a simplified hydraulic fracturing model also based on the minimization of the
Francfort-Marigo funcional but using the concept of topological derivative [1, 5, 20, 22, 23]
to nucleate and propagate the cracks has been introduced in [24]. Both approaches of [7] and
[24] are similar in spirit in the sense that on the one hand they are damage approaches to
fracture, or ”smeared crack” approaches (by means of a small infinitesimal parameter), and on
the other hand they avoid the introduction of ad-hoc tools, such as geometry or crack depen-
dent parameters. Moreover, both are based on a unified method to compute the crack opening
and the mechanical equilibrium, possibly coupled, as in the present work, to a porous media
model, computed on the same domain discretization. We stress however that in our method, the
main guideline is the minimal working assumptions, parameters, and equations into play. We
also emphasize that nucleation and propagation are both governed by a threshold approach for
the topological derivative field, leading to remarkably simple algorithm that features a minimal
number of user-defined algorithmic parameters.

In the proposed methodology of [24], the reservoir was modelled as a two dimensional ideal-
ization in which the rock is assumed to be impermeable and with no porosity. In this particular
case, the fluid pressure is constant and confined inside the crack. Obviously, this is not what
takes place in the real process of hydraulic fracture, because the reservoir generally consists in
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a porous medium. Therefore, the proposed pressure evolution strategy was in this preliminary
work a severe simplification of the fracking processes encountered in real world, but nonetheless
the methodology we have followed seemed promising, allowing for the detection of multiples
crack tip opening and the simultaneous computation of multiple fracture paths. Moreover, the
obtained results showed typical features of hydraulic fracture, such as the characterization of the
fault-activation pressure and specific crack path growth, allowing for kinking and bifurcations.
Also, the theoretical study motivated by the fracking model, made in [4] and consisting in a
Γ-convergence result of the damage to the sharp fracture model, was a further preliminary step
to the understanding and the improvement of our model.

Indeed, in the present work, we propose an improvement of the method by letting the propa-
gating medium be permeable and hence we extend the strategy introduced in [24] for a porous
media taking into account the hydro-mechanical model proposed by Biot [2]. In this case, the
crack propagation mechanism is activated by non constant pressure field distributed over the
whole domain. The resulting model is semi-coupled in the sense that the equation for the dis-
placement depend on the pressure through a source term, whereas the equation for the pressure
has no dependence on the displacement, and thus capable to account for the influence of the
fluid on the porous matrix. Therefore, in contrast to our former work [24], a much more real-
istic scenario which takes into account for pressure dropping phenomenon within the crack is
considered. In addition, a specific adjoint state is introduced in order to derive the associated
sensitivities, that is solution to a semi-coupled problem in a reverse sense, where the adjoint
pressure system depends on the displacement field. This extension is non-trivial and represents
the main contribution of the paper from both theoretical and practical point of views. It should
be emphasized, however, that we are interested in the analysis of one particular aspect of the
hydraulic fracturing process, namely, the effect of a non constant distributed pressure field on
the mechanism of crack propagation inside a porous medium. In this sense, we stress that sev-
eral physical aspects associated with the real hydraulic fracturing process, such as thermal and
chemicals effects or elastic waves produced by explosives, are yet neglected. The treatment of the
total coupled case, in transient regime into three spatial dimensions, is now under investigation.

The work is organized as follows. The hydro-mechanical model of hydraulic fracture is in-
troduced in Section 2. In Section 3, the associated topological derivative expression is derived.
The topology optimization algorithm is presented in Section 4. The numerical experiments are
shown in Section 5. The theoretical results in three spatial dimensions are presented in Section
6 for the reader convenience. Finally, some concluding remarks are presented in Section 7.

2. Hydro-mechanical model of hydraulic fracture

Let us consider a saturated porous matrix submitted to a fluid flux that obeys the Darcy law
under the quasi-static loading assumption. The porous matrix, which represents a single block
of the reservoir, is given by an open and bounded geometric domain Ω ⊂ R2 with Lipschitz
boundary ∂Ω. The domain Ω contains a subdomain ω ⊂ Ω, representing the geological fault
into the reservoir. See Figure 1. In the proposed model ω is a damage region, and it is only
in the limit that this damage model is a fracture model, see [4]. To characterize the damage
region, a parameter ρ, defined as

ρ = ρ(x) :=

{
1, if x ∈ Ω \ ω ,
ρ0, if x ∈ ω , (2.1)

with 0 < ρ0 � 1, is introduced. Then, the region Ω \ ω will represent the undamaged porous
medium while ω the geological fault. Since the present model is derived from the one proposed
by Francfort-Marigo [11, 12], the idea consists in minimize a shape functional Fω(u) of the form

Fω(u) = J (u) + κ|ω| , (2.2)

with respect to the geological fault ω, at the quasi-static time step ti. The second term on the
right hand side of (2.2) is the Griffith’s energetic dissipation term while J (u) represents the
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----------

Figure 1. Saturated block containing a geological fault.

total potential energy of the system and is written as

J (u) =
1

2

∫
Ω
σ(u) · (∇u)s dx−

∫
Ω
αp div(u) dx . (2.3)

The displacement field u, at the quasi-static time step ti, is solution to the following variational
problem: Find u ∈ U , such that∫

Ω
σ(u) · (∇η)s dx =

∫
Ω
αp div(η) dx , ∀η ∈ V , (2.4)

where α is the Biot’s coefficient [2] and p is the pressure of the fluid acting into the porous matrix
at the time step ti. More precisely, p = p(x) is solution to the following variational problem:
Find p ∈ P such that ∫

Ω
k∇p · ∇ϕdx = 0 , ∀ϕ ∈ Q . (2.5)

The term σ(ϕ) in (2.3) represents the stress tensor and is defined as

σ(ϕ) = ρC(∇ϕ)s , (2.6)

with the parameter ρ given by (2.1). We consider that the reservoir is composed of an isotropic
material, so that the elasticity tensor C can be written as follows

C = 2µI + λ(I⊗ I) , (2.7)

where I and I are the second and fourth identity tensors, respectively, and µ and λ, given by

µ =
E

2(1 + ν)
and λ =

νE

(1 + ν)(1− 2ν)
, (2.8)

are the Lamé’s coefficients. The strain tensor, denoted by (∇ϕ)s, is defined as

(∇ϕ)s :=
1

2
(∇ϕ+ (∇ϕ)>) . (2.9)

The permeability of the porous medium k in (2.5) assume the values

k = k(x) :=

{
kr, if x ∈ Ω \ ω ,
kf , if x ∈ ω , (2.10)

with kr � kf . The set U and the space V are defined as

V := U := H1
0 (Ω;R2) , (2.11)
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while the set P and the space Q are given by

P :=
{
ϕ ∈ H1(Ω) : ϕ|Γ0

= 0 , ϕ|ΓD
= pi

}
and Q :=

{
ϕ ∈ H1

0 (Ω)
}
, (2.12)

where Γ0 := ∂Ω \ ΓD. The term pi in the set P represents a prescribed pressure on ΓD at the
time step ti, such that

pi = pi−1 + ∆pi , (2.13)

where ∆pi represents the pressure increment. Then, the total prescribed pressure p is given by
the sum

p = p0 +
N∑
i=1

∆pi , (2.14)

where p0 is the initial prescribed pressure and N the total number of increments. Therefore,
the displacement field u and the pressure p, in each quasi-static time step ti, are induced by the
boundary condition pi prescribed on ΓD. Finally, the following adjoint problem is introduced in
order to simplify future derivations: Find q ∈ Q, such that∫

Ω
k∇q · ∇ϕdx =

∫
Ω
α div(u)ϕdx , ∀ϕ ∈ Q , (2.15)

where α is the Biot’s coefficient.
Taking into account all these elements, the minimization problem can be defined as: For each

quasi-static time instant ti,

Minimize
ω⊂Ω

Fω(u), subject to (2.4) , (2.16)

where Fω(u) is given by (2.2).
The same strategy proposed in [24] to deal with the characterization of the critical pressure

is adopted here, i.e., the parameter κ is replaced by a new parameter κδ defined as

κ = κδ :=
κs
δ
, (2.17)

where κs represents a new material property and δ is the length of the initial damage. The
scaling property of κ with respect to δ is crucial in the proof of the Γ-convergence result in [4].

3. Topological derivative method

The topological derivative is defined as the first term of the asymptotic expansion of a given
shape functional with respect to a small parameter that measures the size of singular domain
perturbations, such as holes, inclusions, source-terms and cracks. In other words, the topolog-
ical derivative measures the sensitivity of the associated shape functional with respect to the
nucleation of a singular domain perturbation. In order to introduce these ideas, let us consider
an open and bounded domain Ω ⊂ R2 with a Lipschitz boundary ∂Ω, which is subject to a
nonsmooth perturbation confined in a small region Bε(x̂) of size ε centered at an arbitrary
point x̂ ∈ Ω. We introduce a characteristic function x 7→ χ(x), x ∈ R2, associated with the
unperturbed domain, namely χ = 1Ω, such that:

|Ω| =
∫
R2

χ(x)dx , (3.1)

where |Ω| is the Lebesgue’s measure of Ω. Then, we define a characteristic function associated
with the topologically perturbed domain of the form x 7→ χε(x̂;x), x ∈ R2. In the case of a
perforation, for example, χε(x̂) = 1Ω − 1Bε(x̂), the perforated domain is obtained as Ωε(x̂) =

Ω \ Bε(x̂). Finally, we assume that a given shape functional ψ(χε(x̂)), associated with the
topologically perturbed domain, admits the following topological asymptotic expansion:

ψ(χε(x̂)) = ψ(χ) + f(ε)DTψ(x̂) + o(f(ε)) , (3.2)

where ψ(χ) is the shape functional associated to the original domain, that is, without pertur-
bation, f(ε) is a positive function such that f(ε)→ 0 when ε→ 0 and o(f(ε)) is the remainder.
The function x̂ 7→ DTψ(x̂) is called the topological derivative of ψ at x̂, which can be used as a
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steepest-descent direction in an optimization process like in any method based on the gradient
of the cost functional.

Therefore, in order to evaluate the topological derivative of the shape functional (2.2), it is
necessary first to introduce the topologically perturbed problem. The idea consists in nucleate
a small circular inclusion, denoted by Bε(x̂), of radius ε and centered at the point x̂ ∈ Ω,

such that Bε(x̂) ⊂ Ω and Bε(x̂) ∩ ∂ω = ∅ (see Figure 2). The hydro-mechanical properties
at the inclusion Bε(x̂) will be the same as in the geological fault ω. In order to introduce the

topological perturbation, let us consider three piece-wise constant functions, γε, γ
α
ε and γfε ,

which are defined as

γε = γε(x) :=

{
1 if x ∈ Ω \Bε ,
γ if x ∈ Bε ,

(3.3)

γαε = γαε (x) :=

{
1 if x ∈ Ω \Bε ,
γα if x ∈ Bε ,

(3.4)

and

γfε = γfε (x) :=

{
1 if x ∈ Ω \Bε ,
γf if x ∈ Bε ,

(3.5)

that affect the elasticity tensor C, the Biot’s coefficient α and the permeability k, respectively, as
described in details in Sections 3.1 and 3.2. The shape functional associated with the topological
perturbed problem is written as

Fωε(uε) = Jε(uε) + κ|ωε| , (3.6)

where ωε = ω∪Bε with ω∩Bε = ∅ and Jε(uε) denotes the total potential energy of the perturbed
system.

----------

Figure 2. Perturbed problem.

Since the present problem is formulated under a linear regime, the asymptotic analysis can
be done separately. In Section 3.1, the perturbation is considered on the elastic properties
(elasticity tensor) and on the Biot’s coefficient by setting γf = 1, γ 6= 1 and γα 6= 1. In Section
3.2, the analysis will be done with respect to a perturbation on the permeability by setting
γ = γα = 1 and γf 6= 1. The final result is summarized in Section 3.3.
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3.1. Perturbation on the elastic properties and on the Biot’s coefficient. As mentioned
above, the topological asymptotic analysis will be done first with respect to the perturbation on
the mechanical properties and on the Biot’s coefficient, i.e., with γ 6= 1, γα 6= 1 and γf = 1. In
this case, the total potential energy associated with the perturbed system, denoted by Jε(uε),
is written as

Jε(uε) =
1

2

∫
Ω
σε(uε) · (∇uε)s dx−

∫
Ω
αεp div(uε) dx , (3.7)

where the vector function uε is solution to the following variational problem: Find uε ∈ U , such
that ∫

Ω
σε(uε) · (∇η)s dx =

∫
Ω
αεp div(η) dx , ∀η ∈ V, (3.8)

with σε(uε) = γεσ(uε) and αε = γαε α, where σ(ϕ), γε and γαε are given by (2.6), (3.3) and
(3.4), respectively, and α is the Biot’s coefficient. In order to evaluate the difference between
the energy shape functionals J (u) and Jε(uε), defined in (2.3) and (3.7), respectively, let us
take η = uε − u as test function in the variational equation (2.4). Then, the following equality
is obtained ∫

Ω
σ(u) · (∇u)s dx =

∫
Ω
σ(u) · (∇uε)s dx−

∫
Ω
αp div(uε − u) dx . (3.9)

Replacing (3.9) in (2.3) we have

J (u) =
1

2

∫
Ω
σ(u) · (∇uε)s dx−

1

2

∫
Ω
αp div(uε + u) dx . (3.10)

In the same way, taking η = uε − u in (3.8), it follows that∫
Ω
σε(uε) · (∇uε)s dx =

∫
Ω
σε(uε) · (∇u)s dx+

∫
Ω
αε p div(uε − u) dx . (3.11)

After replacing (3.11) in (3.7) we get

Jε(uε) =
1

2

∫
Ω
σε(uε) · (∇u)s dx− 1

2

∫
Ω
αε p div(uε + u) dx . (3.12)

Now, taking into account the expressions (3.10) and (3.12), the variation of the energy shape
functionals can be written as

Jε(uε)− J (u) =
1

2

∫
Ω
σε(uε) · (∇u)s dx− 1

2

∫
Ω
σ(uε) · (∇u)s dx

− 1

2

∫
Ω
αε p div(uε + u) dx+

1

2

∫
Ω
αp div(uε + u) dx . (3.13)

After applying the definitions of the contrasts γε and γαε given by (3.3) and (3.4), respectively,
we have

Jε(uε)− J (u) =
1

2

∫
Ω\Bε

σ(uε) · (∇u)s dx+
1

2

∫
Bε

γσ(uε) · (∇u)s dx

− 1

2

∫
Ω\Bε

σ(uε) · (∇u)s dx− 1

2

∫
Bε

σ(uε) · (∇u)s dx

− 1

2

∫
Ω\Bε

αp div(uε + u) dx− 1

2

∫
Bε

γααp div(uε + u) dx

+
1

2

∫
Ω\Bε

αp div(uε + u) dx+
1

2

∫
Bε

αp div(uε + u) dx . (3.14)

By adding and subtracting

−1− γα

2

∫
Bε

αp div(u) dx , (3.15)
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the following expression is obtained after cancelling of the identical terms

Jε(uε)− J (u) = −1− γ
2γ

∫
Bε

σε(uε) · (∇u)s dx

+
1− γα

2

∫
Bε

αp div(uε − u) dx+ (1− γα)

∫
Bε

αp div(u) dx . (3.16)

Now, in order to apply the topological derivative definition, it is necessary first to know the
asymptotic behavior of the function uε with respect to the parameter ε. To this end, let us
consider the following ansatz:

uε = u+ wε + ũε , (3.17)

where u is solution to the unperturbed problem (2.4), wε is solution to an auxiliary exterior
problem and ũε is the remainder.

In particular, the following auxiliary boundary value problem is considered when ε→ 0: Find
Sε(wε), such that  divSε(wε) = 0 in R2 ,

Sε(wε) → 0 in ∞ ,
[[Sε(wε)]]n = g on ∂Bε ,

(3.18)

where Sε(wε) = γεC(∇wε)s and g = [ρ−1(1−γα)αp(x̂)I−(1−γ)S(u)(x̂)]n obtained after adding
and subtracting σ(u(x)) and p(x) at the point x̂, with S(u) = C(∇u)s. The boundary value
problem (3.18) admits an explicit solution. For the case p(x) = 0 ∀x ∈ Ω see [17], for instance.
For the situation with constant pressure confined at the inclusion see [24]. For the present case,
taking into account that the stress Sε(wε) is uniform inside the inclusion Bε, the solution of
(3.18) can be written in the following way

Sε(wε)|Bε
= TγS(u)(x̂) + ρ−1Tγ , (3.19)

where Tγ and Tγ are fourth and second order isotropic tensors, respectively. The tensor Tγ is
given by

Tγ =
γ(1− γ)

2(1 + bγ)

(
2bI +

a− b
1 + aγ

I⊗ I

)
(3.20)

and Tγ is written as

Tγ = −(1− γα)αp(x̂)
aγ

1 + aγ
I . (3.21)

The constants a and b are defined in terms of the Lamé’s coefficients as follows

a =
λ+ µ

µ
and b =

λ+ 3µ

λ+ µ
. (3.22)

After multiplying both sides of (3.19) by the parameter ρ, we have

σε(wε)|Bε
= Tγσ(u)(x̂) + Tγ . (3.23)

Note that the result shown in (3.23) fits the famous Eshelby’s problem, see [8, 9].
Let us now consider the problem associated to the term σε(ũε) in order to compensate for

the discrepancies introduced by the auxiliary problem (3.18). To this aim, the remainder ũε is
solution to the following boundary value problem: Find ũε, such that

divσε(ũε) = g0χBε in Ω ,
σε(ũε) = γερC(∇ũε)s ,

ũε = g1 on ∂Ω ,
[[ũε]]

[[σε(ũε)]]n
=
=

0
g2

}
on ∂ω ,

[[ũε]]
[[σε(ũε)]]n

=
=

0
h

}
on ∂Bε ,

(3.24)
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where g0 = (γα−γ)α∇p, g1 = −wε, g2 = −(1−ρ0)S(wε)n and the term h is defined as: h = σ̃n,
with σ̃ = (1 − γα)α (p − p(x̂))I − (1 − γ)(σ(u) − σ(u)(x̂)). The estimate ‖ũε‖H1(Ω;R2) = O(ε2)
holds true.

Lemma 1. Let ũε be the solution of (3.24) or, equivalently, solution to the following variational

problem: Find ũε ∈ Ũε, such that∫
Ω
σε(ũε) · (∇η)s dx = −

∫
Bε

(γα − γ)α∇p · η dx

− (1− ρ0)

∫
∂ω
S(wε)n · η dx+

∫
∂Bε

h · η dx , ∀η ∈ Ṽε . (3.25)

The set Ũε and the space Ṽε are defined as

Ũε :=
{
ϕ ∈ H1(Ω;R2) : [[ϕ]]|Bε

= 0, ϕ|∂Ω
= ε2g

}
, (3.26)

Ṽε :=
{
ϕ ∈ H1(Ω;R2) : [[ϕ]]|Bε

= 0, ϕ|∂Ω
= 0
}
, (3.27)

with g = −ε−2wε. Then, the estimate ‖ũε‖H1(Ω;R2) = O(ε2) holds true.

Proof. From the definition of function h = σ̃n, with n used to denote the unit normal vector
field on ∂Bε pointing toward to the center of the inclusion, we have∫

∂Bε

h · η dx =

∫
Bε

(γα − γ)α∇p · η dx−
∫
Bε

(1− γα)α (p− p(x̂))div(η) dx

+

∫
Bε

(1− γ) (σ(u)− σ(u)(x̂)) · (∇η)s dx , (3.28)

where we have taken into account that σ̃ = (1− γα)α (p− p(x̂))I− (1− γ)(σ(u)− σ(u)(x̂)) and
that div(σ(u)) = α∇p, which comes out from the variational form (2.4). From this last result,
the variational form (3.25) can be rewritten as follows∫

Ω
σε(ũε) · (∇η)s dx =

∫
Bε

(1− γ) (σ(u)− σ(u)(x̂)) · (∇η)s dx− (1− ρ0)

∫
∂ω
S(wε)n · η dx

−
∫
Bε

(1− γα)α (p− p(x̂))div(η) dx , ∀η ∈ Ṽε . (3.29)

By taking η = ũε − ϕε in (3.29), with ϕε ∈ Ũε, from the strong form (3.24), we have∫
Ω
σε(ũε) · (∇ũε)s dx = ε2

∫
∂Ω
σε(ũε)n · g dx+

∫
Bε

(1− γ) (σ(u)− σ(u)(x̂)) · (∇ũε)s dx

−
∫
Bε

(1− γα)α (p− p(x̂))div(ũε) dx− (1− ρ0)

∫
∂ω
S(wε)n · ũε dx . (3.30)

Then, by applying the Cauchy-Schwarz inequality, it follows that∫
Ω
σε(ũε) · (∇ũε)s dx ≤ ε2 ‖σε(ũε)n‖H−1/2(∂Ω;R2) ‖g‖H1/2(∂Ω;R2)

+ c1 ‖σ(u)− σ(u)(x̂)‖L2(Bε;R2) ‖∇ũε‖L2(Bε;R2)

+ c2 ‖p− p(x̂)‖L2(Bε) ‖∇ũε‖L2(Bε;R2)

+ c3 ‖S(wε)n‖H−1/2(∂ω;R2) ‖ũε‖H1/2(∂ω;R2) . (3.31)

By applying the trace theorem it follows that∫
Ω
σε(ũε) · (∇ũε)s dx ≤ c4(ε2 + ‖x− x̂‖L2(Bε;R2)) ‖ũε‖H1(Ω;R2)

≤ c5ε
2 ‖ũε‖H1(Ω;R2) , (3.32)
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where we have used the interior elliptic regularity of functions u and p together with the fact
that the explicit solution S(wε) is of order O(ε2) far from the inclusion Bε [17]. Finally, from
the coercivity of the bilinear form on the left hand side of the above inequality, we have

c ‖ũε‖2H1(Ω;R2) ≤
∫

Ω
σε(ũε) · (∇ũε)s dx . (3.33)

Then, it follows immediately that

‖ũε‖H1(Ω;R2) ≤ Cε
2 , (3.34)

where C = c5/c is a constant independent of the small parameter ε. �

Now, the integrals in (3.16) can be evaluated explicitly. In fact, after replacing the ansatz for
uε given by (3.17) in the first integral of the (3.16) we have∫

Bε

σε(uε) · (∇u)s dx =

∫
Bε

σε(u) · (∇u)s︸ ︷︷ ︸
(a)

dx+

∫
Bε

σε(wε) · (∇u)s︸ ︷︷ ︸
(b)

dx + E1(ε) . (3.35)

The remainder E1(ε) is given by

E1(ε) =

∫
Bε

σε(ũε) · (∇u)s dx ,

|E1(ε)| ≤ ‖σε(ũε)‖L2(Bε;R2)‖∇u‖L2(Bε;R2)

≤ c1ε‖ũε‖H1(Ω;R2) ≤ c2ε
3 = o(ε2) , (3.36)

where we have used the Cauchy-Schwarz inequality together with the obtained estimate to the
remainder ũε. The term (a) in (3.35) can be developed in terms of ε as follows∫

Bε

σε(u) · (∇u)s dx =

∫
Bε

γσ(u) · (∇u)s dx

= πε2γσ(u)(x̂) · (∇u)s(x̂) + E2(ε) . (3.37)

The remainder E2(ε) is given by

E2(ε) =

∫
Bε

(h− h(x̂)) dx ,

|E2(ε)| ≤ c1ε‖x− x̂‖L2(Bε;R2) ≤ c2ε
3 = o(ε2) , (3.38)

where the notation

h− h(x̂) = γ(σ(u) · (∇u)s − σ(u)(x̂) · (∇u)s(x̂)) , (3.39)

has been introduced. Note that we have used again the Cauchy-Schwarz inequality and, then,
the interior elliptic regularity of the solution u. Since the exact solution to the exterior problem
(3.18) is known, the term (b) in (3.35) can be written as∫

Bε

σε(wε) · (∇u)s dx = πε2(∇u)s(x̂) · (Tγσ(u)(x̂) + Tγ) + E3(ε) . (3.40)

The remainder E3(ε) is given by

E3(ε) =

∫
Bε

σε(wε) · ((∇u)s − (∇u)s(x̂)) dx ,

|E3(ε)| ≤ ‖σε(wε)‖L2(Bε;R2)‖∇u−∇u(x̂)‖L2(Bε;R2)

≤ c1ε‖x− x̂‖L2(Bε;R2) ≤ c2ε
3 = o(ε2) , (3.41)

where we have used again the Cauchy-Schwarz inequality and the interior elliptic regularity of
the solution u.
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By replacing the ansatz for uε given by (3.17) in the second integral of (3.16) we obtain∫
Bε

αp div(uε − u) dx =

∫
Bε

αp div(wε + ũε) dx

=

∫
Bε

αp(x̂) div(wε) dx+ E4(ε) + E5(ε) . (3.42)

The remainder E4(ε) is given by

E4(ε) =

∫
Bε

α (p− p(x̂)) div(wε) dx ,

|E4(ε)| ≤ c1‖x− x̂‖L2(Bε;R2)‖σε(wε)‖L2(Bε;R2) ≤ c2ε
3 = o(ε2) , (3.43)

where we have used the interior elliptic regularity of the function p and the solution to the
problem (3.18). For the remainder E5(ε) we have the following estimate

E5(ε) =

∫
Bε

αp div(ũε) dx ,

|E5(ε)| ≤ c1‖p‖L2(Bε)‖∇ũε‖L2(Bε;R2)

≤ c2ε‖ũε‖H1(Ω;R2) ≤ c2ε
3 = o(ε2) . (3.44)

By using the constitutive relation and some algebraic manipulation, we obtain∫
Bε

αp(x̂) div(wε) dx =

∫
Bε

αp(x̂)
1

2ργ(µ+ λ)
trσε(wε) dx , (3.45)

where trσε(wε), evaluated inside the inclusion, is written as

trσε(wε)|Bε(x̂)
=

aγ

1 + aγ
[(1− γ)trσ(u)(x̂)− 2(1− γα)αp(x̂)] . (3.46)

The last term in (3.16) can be developed as follows∫
Bε

αp div(u) dx = πε2αp(x̂) div(u)(x̂) + E6(ε) , (3.47)

with the remainder E6(ε) defined as

E6(ε) =

∫
Bε

(h− h(x̂)) dx ,

|E6(ε)| ≤ c1ε‖x− x̂‖L2(Bε;R2) ≤ c2ε
3 = o(ε2) , (3.48)

where the following notation has been introduced

h− h(x̂) = αp div(u)(x)− αp(x̂) div(u)(x̂) . (3.49)

Note that we have used the Cauchy-Schwarz inequality and the interior elliptic regularity of the
solutions u and p.

From the above results, the variation of the energy shape functionals, given by (3.16), can be
rewritten as

Jε(uε)− J (u) =− πε2 1− γ
2γ

[γσ(u)(x̂) + (Tγσ(u)(x̂) + Tγ)] · (∇u)s(x̂)

+ πε2a

2

1− γ
1 + aγ

(1− γα)αp(x̂) div(u)(x̂) + πε2(1− γα)αp(x̂) div(u)(x̂)

− πε2 (1− γα)2

2ρµ(1 + aγ)
α2 p(x̂)2 +

6∑
i=1

Ei(ε) , (3.50)
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where |Ei(ε)| = o(ε2), for i = 1, ..., 6, as shown. Rearranging the above terms, the following
expression is obtained

Jε(uε)− J (u) = πε2Pγσ(u)(x̂) · (∇u)s(x̂)

+ πε2 1 + a

1 + aγ
(1− γα)αp(x̂) div(u)(x̂)− πε2 (1− γα)2

2ρµ(1 + aγ)
α2 p(x̂)2 +

6∑
i=1

Ei(ε) , (3.51)

where Pγ is given

Pγ = −1

2

1− γ
1 + bγ

(
(1 + b)I +

1

2
(a− b) 1− γ

1 + aγ
I⊗ I

)
, (3.52)

with the coefficients a and b defined by (3.22).

3.2. Perturbation on the permeability. Now, we consider γf 6= 1 with γ = γα = 1. In this
case, the total energy of the perturbed system Jε(uε) is given by

Jε(uε) =
1

2

∫
Ω
σ(uε) · (∇uε)s dx−

∫
Ω
αpε div(uε) dx , (3.53)

with the vector function uε solution to the following variational problem: Find uε ∈ U , such
that ∫

Ω
σ(uε) · (∇η)s dx =

∫
Ω
αpε div(η) dx , ∀η ∈ V, (3.54)

where pε is solution to the problem: Find pε ∈ P, such that∫
Ω
kε∇pε · ∇ϕdx = 0 , ∀ϕ ∈ Q , (3.55)

with kε = γfε k, where γfε is given by (3.5).
Again, in order to evaluate the difference between the energy shape functionals J (u) and

Jε(uε), which are now defined through (2.3) and (3.53), respectively, we take first η = uε− u as
test function in problem (2.4). Then, the following equality is obtained∫

Ω
σ(u) · (∇u)s dx =

∫
Ω
σ(u) · (∇uε)s dx−

∫
Ω
αp div(uε − u) dx . (3.56)

By replacing (3.56) in (2.3) we have

J (u) =
1

2

∫
Ω
σ(u) · (∇uε)s dx−

1

2

∫
Ω
αp div(uε + u) dx . (3.57)

In the same way, let us take η = uε − u as test function in (3.54) to obtain∫
Ω
σ(uε) · (∇uε)s dx =

∫
Ω
σ(uε) · (∇u)s dx+

∫
Ω
αpε div(uε − u) dx . (3.58)

After replacing (3.58) in (3.53) we get

Jε(uε) =
1

2

∫
Ω
σ(uε) · (∇u)s dx− 1

2

∫
Ω
αpε div(uε + u) dx . (3.59)

From equations (3.57) and (3.59), the variation of the energy shape functionals is written as

Jε(uε)− J (u) = −1

2

∫
Ω
α (pε − p) div(uε + u) dx . (3.60)

At this point, we write uε + u = 2u+ (uε − u) to obtain

Jε(uε)− J (u) = −
∫

Ω
α (pε − p) div(u) dx+ E7(ε) , (3.61)

where

E7(ε) = −1

2

∫
Ω
α (pε − p) div(uε − u) dx . (3.62)

The estimate |E7(ε)| = o(ε2) holds true and will be verified in the next two Lemmas.
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By subtracting (2.5) of (3.55) and applying the definition of the contrast γfε given by (3.5),
the following expression is obtained∫

Ω\Bε

k∇pε · ∇ϕdx+

∫
Bε

γf k∇pε · ∇ϕdx−
∫

Ω\Bε

k∇p · ∇ϕdx−
∫
Bε

k∇p · ∇ϕdx = 0 . (3.63)

By adding and subtracting the term∫
Bε

k∇(pε − p) · ∇ϕdx , (3.64)

after cancelling the identical terms, we obtain the following equality∫
Ω
k∇(pε − p) · ∇ϕdx = (1− γf )

∫
Bε

k∇pε · ∇ϕdx . (3.65)

Finally, by taking ϕ = pε − p in (2.15) and ϕ = q in (3.65), with q solution of (2.15), expansion
(3.61) can be conveniently rewritten as

Jε(uε)− J (u) = −(1− γf )

∫
Bε

k∇pε · ∇q dx . (3.66)

Now, it is necessary to know the asymptotic behavior of the solution pε with respect to the
small parameter ε. To this end, let us propose the following ansatz:

pε = p+ wpε + p̃ε , (3.67)

where p is solution to the unperturbed problem (2.5), wpε is solution to an auxiliary exterior
problem and p̃ε is the remainder.

The auxiliary exterior problem is defined as: Find wpε(x), such that
div(γfε∇wpε) = 0 in R2 ,

wpε → 0 in ∞ ,
[[wpε ]][[

γfε∇wpε
]]
· n

=
=

0
g

}
on ∂Bε ,

(3.68)

with g = −(1− γf )∇p(x̂) · n obtained from Taylor series expansion of p(x) around the point x̂.
The problem (3.68) has an explicit solution, namely

wpε(x)|
R2\Bε

=
1− γf

1 + γf
ε2

‖x− x̂‖2
∇p(x̂) · (x− x̂) , (3.69)

wpε(x)|Bε
=

1− γf

1 + γf
∇p(x̂) · (x− x̂) . (3.70)

For more details about the problem (3.68) and its solution see [17, Ch. 5, pp. 144], where the
estimate ‖p̃ε‖H1(Ω) = O(ε2) can also be verified.

The next two results ensure the existence of the topological derivative associated with the
case analysed in this section.

Lemma 2. Let p and pε be the solutions of (2.5) and (3.55), respectively. Then, the following
estimate holds true:

‖pε − p‖L2(Ω) = o(ε). (3.71)

Proof. From the ansatz (3.67) proposed to pε, and by applying the triangular inequality together
with the known estimate for p̃ε, we obtain

‖pε − p‖L2(Ω) ≤ ‖w
p
ε‖L2(Ω) +O(ε2) . (3.72)
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By defining a ball BR(x̂) of radius R and center in x̂ ∈ Ω, so that BR(x̂) ⊃ Ω, the following
result is obtained

‖wpε‖L2(Ω) ≤ ‖wpε‖L2(BR)

=

(∫
BR\Bε

|wpε |
2 dx+

∫
Bε

|wpε |
2 dx

)1/2

. (3.73)

From wpε given by (3.69) and (3.70), we can evaluate explicitly the integrals in (3.73), namely

‖wpε‖L2(BR) ≤ cε
2
√
|log(ε)| = o(ε) . (3.74)

Then,

‖pε − p‖L2(Ω) = o(ε) +O(ε2) = o(ε) . (3.75)

�

Lemma 3. Let u and uε be the solutions of (2.4) and (3.54), respectively. Then, the following
estimate holds true:

‖uε − u‖H1(Ω;R2) = o(ε). (3.76)

Proof. By subtracting (2.4) from (3.54) and taking η = uε − u it follows that∫
Ω
σ(uε − u) · ∇(uε − u)s dx =

∫
Ω
α(pε − p) div(uε − u) dx . (3.77)

The application of the Cauchy-Schwarz inequality leads to∫
Ω
σ(uε − u) · ∇(uε − u)s dx ≤ C1‖pε − p‖L2(Ω)‖∇(uε − u)‖L2(Ω;R2)

≤ C1‖pε − p‖L2(Ω)‖uε − u‖H1(Ω;R2) . (3.78)

From the coercivity of the bilinear form at the left hand side of (3.77) we have

c‖uε − u‖2H1(Ω;R2) ≤
∫

Ω
σε(uε − u) · ∇(uε − u)s dx . (3.79)

Then, taking into account Lemma 2, the proof is concluded with C = C1/c independent of the
parameter ε. �

Let us come back to the definition of E7(ε) given by (3.62). From the Cauchy-Schwarz in-
equality, we obtain

|E7(ε)| ≤ c1 ‖pε − p‖L2(Ω) ‖∇(uε − u)‖L2(Ω;R2) = o(ε2) , (3.80)

where we have used Lemmas 2 and 3.
Now, replacing the ansatz (3.67) proposed to pε in the integral (3.66) we have∫

Bε

k∇pε · ∇q dx =

∫
Bε

k∇p · ∇q dx︸ ︷︷ ︸
(a)

+

∫
Bε

k∇wpε · ∇q dx︸ ︷︷ ︸
(b)

+ E8(ε) . (3.81)

The remainder E8(ε) is given by

E8(ε) =

∫
Bε

k∇p̃ε · ∇q dx ,

|E8(ε)| ≤ ‖k∇p̃ε‖L2(Bε)‖∇q‖L2(Bε)

≤ c1ε‖p̃ε‖H1(Ω) ≤ c2ε
3 = o(ε2) , (3.82)

where we have used the Cauchy-Schwarz inequality together with the known estimate to p̃ε.
The term (a) in (3.81) can be developed in terms of ε as∫

Bε

k∇p · ∇q dx = πε2k∇p(x̂) · ∇q(x̂) + E9(ε) , (3.83)
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with the remainder E9(ε) defined by

E9(ε) =

∫
Bε

(h− h(x̂)) dx ,

|E9(ε)| ≤ c1ε‖x− x̂‖L2(Bε;R2) ≤ c2ε
3 = o(ε2) , (3.84)

where the notation

h− h(x̂) = k∇p · ∇q − k∇p(x̂) · ∇q(x̂) , (3.85)

has been introduced. In this case, we have used the Cauchy-Schwarz inequality and the interior
elliptic regularity of the function p.

Since the exact solution of the auxiliary problem (3.68) is known, the term (b) in (3.81) can
be written as ∫

Bε

k∇wpε · ∇q dx = πε2k∇wpε · ∇q(x̂) + E10(ε) . (3.86)

The remainder E10(ε) is given by

E10(ε) =

∫
Bε

k∇wpε · (∇q −∇q(x̂)) dx ,

|E10(ε)| ≤ ‖k∇wpε‖L2(Bε)‖∇q −∇q(x̂)‖L2(Bε)

≤ c1ε‖x− x̂‖L2(Bε;R2) ≤ c2ε
3 = o(ε2) . (3.87)

Therefore, from the above results, the variation (3.66) can be rewritten as

Jε(uε)− J (u) = −πε2(1− γf ) [k∇p(x̂) + k∇wpε ] · ∇q(x̂) +
10∑
i=7

Ei(ε)

= −πε2 2
1− γf

1 + γf
k∇p(x̂) · ∇q(x̂) +

10∑
i=7

Ei(ε) , (3.88)

where the remainders |Ei(ε)| = o(ε2), for i = 7, ..., 10, as shown.

3.3. Topological derivative formula. The topological derivative of the shape functional (2.2),
with respect to the nucleation of a small circular inclusion characterized by the contrasts γ, γα

and γf , is given by the following sum

DTFω(x) = DTJ (x) + κδDT |ω|(x) ∀x ∈ Ω . (3.89)

The last term κδDT |ω|(x) is trivially obtained and given by

κδDT |ω|(x) =

{
+κδ, if x ∈ Ω \ ω ,
−κδ, if x ∈ ω . (3.90)

The variations between the energy functionals J (u) and Jε(uε) have been developed in Sections
3.1 and 3.2. From these variations, we can identify function f(ε) = πε2 and thus evaluate
the term DTJ (x). In particular, by taking into account the variations (3.51) and (3.88), the
topological derivative [5, 17, 20] of the energy shape functional is given by

DTJ (x) = Pγσ(u)(x) · (∇u)s(x) +
1 + a

1 + aγ
(1− γα)αp(x) div(u)(x)

− (1− γα)2

2ρµ(1 + aγ)
α2 p(x)2 − 2

1− γf

1 + γf
k∇p(x) · ∇q(x) , (3.91)

with the polarization tensor Pγ given by (3.52).
In order to check for the correctness of result (3.91), we consider a domain Ω = (0, 1)×(0, 1) m2

representing a clamped block with a centered inclusion denoted by Bε(x0). The Young modulus,
Poisson ratio, Biot coefficient and permeability are given by E = 17.000 MPa, ν = 0.2, α = 0, 1
and k = 1, 0 mD in Ω \Bε(x0) and E = 17.000× 10−6 MPa, ν = 0, 2, α = 1, 0 and k = 103 mD
in Bε(x0), respectively. The adopted values for the material properties are precisely the same
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as in Section 5, showing the numerical experiments. The bottom of Ω is subject to a pressure
of 1 MPa, whereas on its top a null pressure is prescribed. Now, let us introduce the following
quantities

δψ(ε) :=
Jε(uε)− J (u)

|Bε(x0)|
(3.92)

DTψ(x0) := lim
ε→0

δψ(ε). (3.93)

Finally, we consider ε = 2−n, with n = 3, · · · 8 integer. The problem is discretized into 105.138
linear triangular finite elements, with the mesh intensified toward the center of the inclusion.
From these elements, the graph δψ(ε)×1/ε is ploted in Figure 3. We observe that the horizontal
asymptote (solid line) corresponds to the topological derivative evaluated at the center x0 of Ω,
whose value is given by DTψ(x0).

-14.5
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-13.5

-13

-12.5

-12

0 50 100 150 200 250

Figure 3. Variation of the energy shape functional δψ(ε) from (3.92) with re-
spect to 1/ε.

4. Topology optimization algorithm

The original algorithm, proposed to study the crack nucleation/propagation based only on the
topological derivative field, was proposed in [23] and extended to the hydraulic fracture context
in [24]. It is based on the introduction of an inclusion at the region where the topological deriv-
ative is negative. This strategy is justified by the fact that the introduction of an infinitesimal
inclusion where the topological derivative is negative decreases the values of the associated shape
functional. In this way, the crack path is characterized by the sequence of inclusions nucleated
during the minimization process. Since several improvements with respect to the methodology
presented in [24] were made, the main aspects of the new algorithm is presented in the next
section.

4.1. Description of the algorithm. As mentioned, the size of the inclusion to be nucleated
is associated with the region ω∗ where the topological derivative is negative, i.e.,

ω∗ := {x ∈ Ω : DTFω(x) < 0} . (4.1)

Let DTF∗ω be the minimum value of the topological derivative, i.e.,

DTF∗ω := min
x∈ω∗

DTFω(x) . (4.2)
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The inclusion to be nucleated inside the region ω∗, denoted by ωβ, is defined as

ωβ := {x ∈ ω∗ : DTFω(x) ≤ (1− β)DTF∗ω} , (4.3)

where β ∈ (0, 1) is chosen in such a way that |ωβ| ≈ πδ2/4 (and |ωβ| ≤ πδ2/4) is satisfied, where
δ represents the thickness of the initial damage. The steps of the new algorithm are detailed
below in the form of a pseudo-code, see Algorithm 1.

Algorithm 1: Damage evolution algorithm.

Input : Ω, ω, δ, N , p0, ∆pi
Output: Optimal topology ω∗

1 for i = 1 : N do
2 solve the pressure problem (2.5);

3 solve the coupled elasticity system (2.4);

4 solve the adjoint state (2.15);

5 evaluate the topological derivative DTFω according to (3.89);

6 compute the threshold ω∗ from (4.1);

7 while |ω∗| ≥ πδ2/4 do
8 intensify the mesh at the crack tip;

9 solve the pressure problem and the coupled elasticity system;

10 solve the adjoint state and evaluate the topological derivative DTFω;

11 compute the threshold ω∗ from (4.1);

12 compute the threshold ωβ from (4.3);

13 nucleate a new inclusion ωβ inside ω∗;

14 update the damaged region: ω ← ω ∪ ωβ;

15 solve the pressure, elasticity and adjoint problems and evaluate DTFω;

16 evaluate the shape functional Fω from (2.2);

17 if the shape functional increases, then break;

18 else compute the threshold ω∗;

19 end while

20 end for

Note that the line 13 in the Algorithm 1 represents the crack propagation process. For more
details concerning the the Algorithm 1, see [24].

5. Numerical Experiments

In all examples, the reference domain Ω represents one block of the reservoir which contains a
single geological fracture. In particular, the domain Ω is given by a square with dimension (5×
5)m2 as shown in Figure 4. The preexisting geological fracture is represented by an initial damage
with length h and width δ. The region to be fractured is identified by the distribution of elastic
material and the compliant material is used to represent the geological fracture. Homogeneous
Dirichlet boundary conditions are considered in all sides of the domain, except in the last example
concerning in-situ stress. The structure is assumed to be under plane strain assumption and the
total intensity of the prescribed pressure p̄ on ΓD is divided into N = 200 uniform increments.
Finally, linear triangular finite elements are used to discretize the hydro-mechanical coupled
system.

5.1. Benchmark example. In this first example, the geological fracture is located at the center
of the bottom side immediately above the pressurization well. The modulus of elasticity E, the
Poisson ratio ν, the permeability of the medium k and the Biot’s coefficients αm at the matrix
and αf at the fracture corresponds to the values from [18]. All data of the present example
are summarized in Table 1, where the parameter l represents the diameter of the inclusion.

The first observed critical pressure was p1
c = 3, 68 MPa at pseudo time-step i = 184 . The
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Figure 4. Benchmark example: One block of the reservoir containing a single
geological fracture.

Table 1. Benchmark example: Parameters.

Parameter Value Parameter Value

h 1,0 m E 17.000 MPa
δ 0,025 m ρ0 10−6

l (2/3)δ ν 0,2
p 4,0 MPa κs 590,0 J/m
k 1,0 mD αm 0,1
γf 103 αf 1,0

material distribution after the damage evolution induced by this first critical pressure is presented
in Figure 5(a). Figure 5(b) shows the history of the shape functional Fω from (2.2) during
the optimization process described by the internal loop of Algorithm 1. Note that the model
dissipates energy in all iterations. After then, three new critical pressures has been detected,
namely, p2

c = 3, 84 MPa at pseudo time-step i = 192, p3
c = 3, 92 MPa at pseudo time-step i = 196

and p4
c = 3, 96 MPa at pseudo time-step i = 198. The observation of distinct critical pressures

is due to the pressure drop while the geological fracture grows. Since the damage evolution
associated with each new critical pressure is small with respect to the propagation related with
the first critical pressure, only the final result is shown in Figure 6. The pressure distribution
at the precise moment before the first propagation and at the end of the entirely process can be
observed in Figures 7(a) and 7(b), respectively.

5.2. Stratified block. In this next example, we consider a stratified block composed by two
layers with different permeability and modulus of elasticity, namely, k1 = 1 mD and k2 = 0, 5×k1

and E1 = 17 GPa and E2 = 2 × E1. Two cases are considered, which are referred to as Case
1 and Case 2. The different cases treated in this example differ from each other by the spatial
distribution of the material properties as indicated in Figures 8(a) and 8(b), representing Case
1 and Case 2, respectively. The parameters used in this example are summarized in Table 2. In
Case 1, twenty one distinct critical pressures have been detected, the first one was p1

c = 3, 80 MPa
at pseudo time-step i = 190 and the last one p21

c = 5, 56 MPa at pseudo time-step i = 278. In
Case 2, twelve critical pressures were observed, with p1

c = 6, 36 MPa at pseudo time-step i = 318
and p12

c = 7, 88 MPa at pseudo time-step i = 394. Once again, the observation of different
critical pressures is due to the pressure drop while the geological fracture grows. The damage
distributions at the end of the optimization process are presented in Figure 9. Combinations
such as (E1, k2) and (E2, k1) produces the same observed result.
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Figure 5. Benchmark example: Results for p1
c = 3, 68MPa at pseudo time-step

i = 184, (a) obtained damage distribution and (b) history of the shape functional
Fω from (2.2) during the optimization process described by the internal loop of
Algorithm 1.

Figure 6. Benchmark example: Damage distribution for p4
c = 3, 96 MPa at

pseudo time-step i = 198.

Table 2. Stratified block: Parameters.

Parameter Value Parameter Value

h 1,0 m E1 17.000 MPa
δ 0,025 m ρ0 10−6

l (2/3)δ ν 0,2
p 8,0 MPa κs 590,0 J/m
k1 1,0 mD αm 0,1
γf 103 αf 1,0

5.3. Heterogeneous medium. In this example, a heterogeneous medium is considered again.
However, in this case the permeability k and the Young’s modulus E are corrupt with White
Gaussian Noise (WGN) of zero mean and standard deviation τ . Therefore, k and E are replaced
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Figure 7. Benchmark example: Pressure distribution.

(E , k )1 1
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(a) Case 1
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(E , k )2 2

(b) Case 2

Figure 8. Stratified block with different material distribution.

by kτ = k(1− τps) and Eτ = E(1 + τes), where s : Ω→ R is a function assuming random values
in the interval (0, 1) and τp = 0, 5 and τe = 2, 0 corresponds to the noise levels. The parameters
are presented in Table 3. Figures 10(a) and 10(b) show the corrupted Young’s modulus Eτ (x)
and the corrupted permeability kτ (x), respectively. The resulting damage evolution associated

Table 3. Heterogeneous medium: Parameters.

Parameter Value Parameter Value

h 1,0 m E 17.000 MPa
δ 0,0625 m ρ0 10−6

l (2/3)δ ν 0,2
p 8,0 MPa κs 590,0 J/m
k 1,0 mD αm 0,1
γf 103 αf 1,0

with each detected critical pressure is presented in Figure 11. Note that, due to the heterogeneity
of the medium, we can observe kinking and bifurcations phenomena, which is expected from the
physical point of view.
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(a) Case 1: p1
c = 3, 80 MPa at i = 190 (b) Case 1: p21

c = 5, 56 MPa at i = 278

(c) Case 2: p1
c = 6, 63 MPa at i = 318 (d) Case 2: p12

c = 7, 88 MPa at i = 394

Figure 9. Stratified block: Final results.

(a) Corrupted Young’s modulus (b) Corrupted permeability

Figure 10. Heterogeneous medium.
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(a) pc = 5, 28 at i = 264 (b) pc = 5, 36 at i = 268 (c) pc = 5, 48 at i = 274 (d) pc = 5, 52 at i = 276

(e) pc = 5, 56 at i = 278 (f) pc = 5, 60 at i = 280 (g) pc = 5, 68 at i = 284 (h) pc = 5, 84 at i = 292

(i) pc = 5, 88 at i = 294 (j) pc = 5, 96 at i = 298 (k) pc = 6, 08 at i = 304 (l) pc = 6, 28 at i = 314

(m) pc = 6, 72 at i = 336 (n) pc = 6, 88 at i = 344 (o) pc = 7, 32 at i = 366 (p) pc = 7, 60 at i = 380

Figure 11. Heterogeneous medium: damage evolution for each obtained critical
pressure in MPa.

5.4. Block subject to in-situ stresses effects. In this last example, we consider that the
reservoir is subject to a uniaxial loading which induces a traction tension σH = 50MPa acting
horizontally, representing the in-situ stress. The preexisting geological fracture is located at
the center of the block forming an angle of 30o with respect to the horizontal axis, as shown
in Figure 12(a). The parameters used in this example are presented in Table 4. The related
critical pressure was pc = 1, 08MPa at i = 54. The result can be observed in Figure 12(b). Note
that, instead propagates straight following the main axis of the initial fault, the crack reorients
itself along the vertical direction, forming two opposite kinks at the crack tips [6].
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(a) Initial crack (b) Final result

Figure 12. Block subject to in-situ stresses effects.

Table 4. Block subject to in-situ stresses effects: Parameters.

Parameter Value Parameter Value

h 1,0 m E 17.000 MPa
δ 0,0625 m ρ0 10−6

l (2/3)δ ν 0,2
p 4,0 MPa κs 190.000 J/m
k 1,0 mD αm 0,1
γf 103 αf 1,0

6. Fracking modeling in three spatial dimensions

In this section we present the topological derivative associated with the hydro-mechanical
model of Section 2 in three spatial dimensions. The derivations follow the same steps as presented
in Section 3. In particular, the topological derivative of the energy shape functional, written in
terms of the Young modulus and Poisson ratio, is given by

DTJ (x) = Pγσ(u)(x) · (∇u)s(x) + 3a(1− γα)αp(x) div(u)(x)

− 3

2

(3a− 1)(1− 2ν)

ρE(1− γ)
(1− γα)2α2p(x)2 − 3

1− γf

2 + γf
k∇p(x) · ∇q(x) , (6.1)

where the polarization tensor Pγ is now defined as

Pγ = −1− γ
2

(3bI + (a− b) I⊗ I) , (6.2)

with the coefficients a and b redefined as follows

a =
(1− ν)

3(1− ν)− (1 + ν)(1− γ)
and b =

5(1− ν)

15(1− ν)− (8− 10ν)(1− γ)
. (6.3)

The displacement u, the pressure p and the adjoint pressure q are solutions of the three dimen-
sional counter-parts of the variational problems (2.4), (2.5) and (2.15), respectively. We note
however that in order to apply the result (6.1) in the fracking modeling context, Algorithm 1 has
to be adapted to the three dimensional case accordingly, which seems to be not straightforward,
requiring further developments.
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7. Conclusion

The first challenge of this study was to show that a simple model of hydro-mechanical crack
propagation in permeable rocks was possible. Simple means (i) based on the minimization of
an energy shape functional; (ii) governed by the computation of a single field, the topological
derivative, able to determine nucleation, advance, bifurcation of multiple cracks; with a minimal
number of user-defined algorithmic parameters. This aim was achieved, and the simulations we
made showed good to very good agreement with known benchmark examples obtained by other
methods. We emphasize also that an extremely simple numerical method, namely triangular
finite elements was used to compute all mechanical fields including the crack aperture. In this
work the model was limited to two-dimensional domains but the three dimensional case is already
a work in progress, as shown in Section 6. Transient effects is also a matter of future research.
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CMAFcIO, Alameda da Universidade, 1749-016 Lisboa, Portugal

E-mail address: vangoeth@fc.ul.pt


