
TOPOLOGY DESIGN OF THERMOMECHANICAL ACTUATORS COMBINED

WITH HEAT SOURCE OPTIMIZATION
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Abstract. In the paper a problem of optimal topology and shape design of thermo-mechanical actua-
tors with the heat source support is considered. The objective is to maximize the output displacement
in a prescribed direction on the actuator boundary interacting with an external elastic support exerting
localized reaction force. The thermal excitation results from the heat sources applied within the body
domain and the thermal boundary conditions. This action induces the volumetric thermal strain field
and the residual stress field within the actuator domain. The problem is modeled by a semi-coupled
system of differential equations, where the mechanical field is governed by the Navier equation of the
plane stress elasticity, coupled with the steady state heat conduction problem governed by the Poisson
equation. Several solved specific cases illustrate the design evolution depending on the ratio of support
and averaged actuator stiffness.

1. Introduction

In the paper the topology design of thermomechanical actuators is considered for linear multiphysics
model in the structure of reference configuration given by an open and bounded domain Ω ⊂ R

2, with
Lipschitz boundary denoted as ∂Ω. The displacement field is determined within linear elasticity with
thermally induced stresses. The temperature field is described by the steady-state heat conduction
equation. The state variables include the displacement field u and the temperature field θ. The shape
functional J(Ω) to be minimized is given by the integral of the quantity g = −u · e on Γ⋆. So that
the idea is to maximize the output displacement u in a given direction e on a part of the boundary
Γ⋆ ⊂ ∂Ω, interacting with the external body simulated by an elastic support exerting the reaction
force.

For the purposes of optimum design we are interested in locations and sizes of finite number of
inclusions in Ω. For the sake of simplicity, the sensitivity analysis Ω 7→ J(Ω) is performed for a single
inclusion ε 7→ Bε(x̂) with the fixed center x̂ ∈ Ω, where Bε is a ball of radius ε. As a result, the
asymptotic expansion of J(Ω) with respect to small parameter ε is established at ε = 0+. The result
of sensitivity analysis is called the topological derivative and it depends on the solutions u and θ, as
well as on their corresponding adjoint states, all of them evaluated at the center x̂, on the material
parameters for mechanical and thermal properties, and on the intensity of the heat source.

For the sake of simplicity the unique contrast 0 < γ < ∞ for the coefficients of elliptic operators
is introduced, which means that the material parameters for mechanical and thermal properties of
the small inclusion Bε are governed by the scalar γ. This assumption can be relaxed for the specific
applications, if necessary. In addition we introduce the contrast 0 < γb ≤ 1 for the intensity of the
heat source.

In this way an optimal location of small inclusion and its properties can be determined in order
to minimize the shape functional associated with the model. The topological derivative of the elastic
energy associated with such thermomechanical model has been derived in [9]. However, to our best
knowledge the topological sensitivity analysis of a shape functional specially designed for topology
optimization purposes of thermomechanical actuators cannot be found in the literature. Therefore,
we derive in all details the topological asymptotic expansion of the adopted shape functional and
perform a complete mathematical justification for the obtained formulas.
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Figure 1. Two bars truss submitted to thermal effects.

In the paper we consider the regular perturbations of the coefficients of elliptic operators as well
as of the right hand side for the purposes of asymptotic analysis. The case of singular perturbations
can be considered as well [17] along the lines of the fundamental paper [16]. Self-adjoint extensions
of elliptic operators can be used to model defects for control problems, we refer the reader to [12] for
some results in this direction. Control problems for the wave equations [13] are considered in [14] from
the point of view of sensitivity analysis.

The paper is organized as follows. In Section 1.1 a simple example of a two-bar structure is presented
to illustrate the design evolution dependent on the stiffness ratio of the interacting spring and bar. In
Section 1.2 the topological derivative concept is introduced in the framework of asymptotic analysis
of singulary perturbed domain. The semi-coupled system modeling the thermomechanical actuator as
well as the adopted shape functional are presented in Section 2. The topological optimization procedure
is introduced in details in Section 3. In Section 4 some numerical experiments of topology optimization
of thermomechanical actuators are presented. Finally, the concluding remarks and perspectives are
given in Section 5.

1.1. Motivation: a simple example. As a motivation for this work, let us introduce a simple
analytical example on the optimal design of a thermomechanical actuator. Consider a two-bar system
with hinge supports at two points A and C; and a hinge at a joint point B, see Fig. 1. At the
connection point connection point B the bars are interacting with the rigidly supported spring of
stiffness ks.

By heating the bars, the vertical displacement at point B is activated and the induced spring force
P = ksh generates compressive force T = P

2 sinβ in the bars. Assume the cross-section area Ar and the

total length of bars to be fixed. The optimal configuration of the bars specified by the angle β is to be
determined, such that the incremental displacement dh of the point B is maximized. Denoting by θ
the temperature and by α the thermal expansion coefficient, the optimization problem can be stated
as follows: {

Maximize
β

F(β) = dh
αL

2
dθ
,

Subjected to L = constant,
(1.1)

Following Fig. 1, we have a = L
2 cos β and h = L

2 sin β. Therefore, the differential elements da and
dh are given by

da = −L
2 sin βdβ + dL

2 cos β, (1.2)

dh = L
2 cosβdβ + dL

2 sinβ. (1.3)

To consider the restriction of the total length of the bars L must be constant, we can set in (1.3)
da = 0 and obtain the following relations

dβ =
dL

L
cot β , and dh =

dL

2 sin β
. (1.4)
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Figure 2. Behaviour of the function F(β).

The spring force increment dP = ksdh induces a compressive bar force increment dT = dP
2 sinβ and

the related strain increment dǫ is

dǫ = − dP

2 sin β

1

EAr
= − ksdh

2 sin β

1

EAr
, (1.5)

where E is the Young’s modulus of the material. The total bar elongation now equals

dL =
L

2

(
αdθ − ksdh

2 sin β

1

EAr

)
= 2 sin βdh . (1.6)

Therefore, from equations (1.1) and (1.6) it follows that

F(β) =
1

2 sin β + η
4 sinβ

=
1

D
, (1.7)

where η = ks
EAr/L

is the ratio of the spring and bar stiffness. This is a fundamental parameter of

the structure response. It is seen that F(β) reaches its maximum when the denominator D reaches a
minimum, thus

dD

dβ
=

cos β

4

(
8− η

sin2 β

)
= 0 , (1.8)

and the optimal configuration is specified for β satisfying the condition:

sin β =

√
η

8
=

1

2

√
η

2
, ⇒ η ≤ 8 and Fopt(β) =

1√
2η

(1.9)

For cos β = 0, its follows that β = π
2 and a = 0 and the configuration corresponding to two vertical

bars, attains a local maximum of F(β). For η = 0, from (1.9) it follows that the optimal configuration
is at β = 0 and a = L

2 . It is represented by two coaxial bars. This case was discussed in the paper [6].
For values of η > 8, eq.(1.8) is satisfied only for β = π

2 . Figure 2 presents the dependence of F(β) on
β and η, and the optimal configurations depending on η are drawn in a dashed line. For instance, in
Figure 3 the optimal configurations for three values of the parameter η are presented. Note that the
optimal configuration of the truss does not depend on the value of the temperature θ and the thermal
expansion coefficient α.

The present example illustrates the evolution of optimal design configuration depending on the
stiffness ratio . For the actuator not interacting with an external body, the values η = 0 and β = 0
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Figure 3. Optimal configurations for (a) η = 0, (b) η = 4 and (c) η > 8.

indicate the design, for which the maximal element rotation and the presence of rotational hinges are
required in the continuum to promote the maximal deflection by the initial strain field. This case was
analyzed in the previous paper [6]. On the other hand, for increasing stiffness ratio η the effect of
the reaction force increases, requiring the stress carrying members oriented along the principal stress
equilibrating the acting force, so the limiting configuration tends to β = π

2 for η ≥ 8, thus resembling
the familiar Michell structures composed of bars carrying compressive or tensile forces.

1.2. Topological derivative concept. The model of coupled equations which we are dealing with
is linear elliptic, hence it is well posed from the point of view of shape optimization. For numerical
solution of optimum design problems it is required to insert inclusions with different properties such as
constitutive or heat source, the new properties are characterized by contrast parameters. For numerical
solution of optimum design problems it is required to insert inclusions made from different material,
the new material is characterized by two contrast parameters for elastic and thermal properties.
The starting point of the numerical procedure of structural optimum design is the evaluation of
the topological derivatives for the specific shape functionals which are taken into account for the
optimization of the structure. The robust formulas for the topological derivatives are important since
the precision of numerical evaluation of the formulas should be sufficient for the identification of local
minima or maxima of the derivatives.

In order to introduce these concepts, let us consider an open bounded domain Ω ⊂ R
2, which is

subjected to a non-smooth perturbation in a small region Bε(x̂) of size ε with center at an arbitrary
point x̂ ∈ Ω. Thus, introducing a characteristic function χ = 1Ω, associated to the unperturbed
domain, it is possible to define the characteristic function associated to the topological perturbed
domain χε. Particularly, if the topological perturbation is a inclusion, we have χε(x̂) = 1Ω − (1 −
γ)1

Bε(x̂)
, where γ ∈ R

+ is the contrast parameter, see Figure 4. Then it is assumed that a given shape

functional ψ(χε(x̂)), associated to the topological perturbed domain, admits the following topological
asymptotic expansion

ψ(χε(x̂)) = ψ(χ) + f(ε)Tχ(x̂) + o(f(ε)) , (1.10)

where ψ(χ) is the shape functional associated to the unperturbed domain, f(ε) is a function such that
f(ε) → 0+, with ε → 0+. A function x̂ 7→ Tχ(x̂) is the so-called topological derivative of ψ in the
point x̂. Thus, the topological derivative can be seen as a first order correction factor over ψ(χ) to
approximate ψ(χε(x̂)). Note that, the shape functionals ψ(χε(x̂)) and ψ(χ) are associated to domains
with different topologies. Therefore, the unknown function Tχ(x̂) it is determined by performing the
topological asymptotic analysis (see, for instance, the book [17]).

In the following, we introduce the notation used in the paper for the contrasts, which characterize
the topological perturbation of the constitutive parameters and heat source support. The continuous
topological derivative is discretized for the purposes of the gradient type a level set numerical method.
The structure under considerations is defined in a subdomain Ω of the fixed hold all domain D ⊂ R

2.
The characteristic function of Ω is denoted by χ. In the subdomain Σ ⊂ Ω the heating source is
applied. The characteristic function of Σ is denoted by χb. Thus, within the numerical method the
two characteristic functions are iterated in order to achieve the local optimality of combined design.
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Figure 4. Topological derivative concept.

For a general description, it is convenient to introduce two contrast functions γ and γb defined for our
convenience in D, the functions uniquely determine the domains Ω and Σ. Namely,

γ(x) =

{
ρ0 if x ∈ Ω
ρ1 if x ∈ D \ Ω , , and γb(x) =

{
δ0 if x ∈ Σ
δ1 if x ∈ D \ Σ , . (1.11)

where 0 < ρ0 << ρ1 and 0 < δ0 << δ1. In our analyses, we select ρ0 << 1, δ0 << 1, ρ1 := ρ−1
0 and

δ1 := δ−1
0 .

Remark 1. It is clear that the asymptotic analysis with respect to the coefficients of the elliptic

operator is involved. Such an analysis is simple in the case of the source.

Remark 2. It is convenient to consider the evolution of the domain Ω during the topological optimiza-

tion in the whole hold all domain, that is why we can consider the extensions of the contrast functions

to the hold all domain D.

The topological derivative concept was rigorously introduced in [20]. Since then this concept has
been widely used in several research areas and engineering applications, see for instance the works by
[10, 11, 3, 8, 7, 21, 1] and the books [17, 18]. In particular, for the mathematical analysis related to the
fully coupled piezoelectric problem see [5]. In particular, in this work, the topological derivative Tχ(x̂)
will be used as a feasible descent direction in a computational framework for topology optimization.

2. Problem Formulation

Let us now introduce the thermomechanical semi-coupled model. Firstly, consider an open bounded
domain D ∈ R

2, with smooth boundary ∂D. Inside D is defined the domain Ω of the structural
part, such that Ω ⊆ D. Then, D is the so-called hold-all domain. The displacement field in D is
determined within the linear elasticity with thermally induced stresses for isotropic materials. The
temperature field is described by the steady-state heat conduction equation. The state variables
include the displacement field and the temperature field. The shape functional which we are dealing
with is given by

J (u) := −
∫

Γ⋆

e · u , (2.1)

where Γ⋆ is a part of the boundary ∂Ω where the displacement u has to be maximized in a given
direction specified by the unit vector e. The vector function u solves the coupled system of boundary
value problem, namely

u ∈ V(D) :

∫

D
σ(u) · (∇ξ)s =

∫

D
ρβθdiv(ξ) +

∫

Γ⋆

ksu · ξ ∀ξ ∈ V(D) . (2.2)

The space of admissible displacements is defined as

V(D) :=
{
φ ∈ H1(D) : φ|Γu

= 0
}
, (2.3)

with H1(D) := H1(D;R2) and Γu is used to denote a part of the boundary ∂Ω where the displacement
u is prescribed. Also, in Γ⋆ is placed a spring with stiffness ks. The parameter ρ in (2.2) is given by:

ρ =

{
1 in Ω
ρ0 in D \Ω . (2.4)
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The Cauchy stress tensor related to the total displacement gradient is defined as

σ(u) := ρC(∇u)s , (2.5)

where (∇u)s is used to denote the symmetric part of the gradient of the displacement field u, i.e.

(∇u)s := 1

2
(∇u+ (∇u)⊤) . (2.6)

In addition, C denotes the four-order elastic tensor given by

C = 2µI+ λ(I⊗ I) , (2.7)

where µ and λ are the Lame’s coefficients. The coefficient β in (2.2) is defined as

β = α(2µ + 3λ) , (2.8)

and α is the thermal expansion coefficient. In terms of Young’s modulus E and Poisson ratio ν, there
are

µ =
E

2(1 + ν)
, λ =

νE

(1 + ν)(1− 2ν)
. (2.9)

For plane stress assumption λ and β must be replaced respectively by λ⋆ in (2.7) and β⋆ in (2.8),
where

λ⋆ =
2µλ

λ+ 2µ
=

νE

1− ν2
, β⋆ = 2α(µ + λ⋆). (2.10)

Moreover, the scalar function θ in (2.2) is solution to the following boundary value problem

θ ∈ H(D) :

∫

D
q(θ) · ∇η +

∫

Ω
bδη = 0 ∀η ∈ H1

0 (D) , (2.11)

where bδ is used to denotes a heat source applied in a region Σ ⊆ Ω. For our convenience bδ is extended
to Ω by the small parameter δ0:

bδ =

{
1 in Σ
δ0 in Ω \ Σ . (2.12)

See details of the coupled system in Fig. 5.
The set of admissible temperatures is defined as a cone in the Sobolev space

H(D) :=
{
φ ∈ H1(D) : φ|Γθ

= θ
}
, (2.13)

with Γθ used to denote a part of the boundary ∂D where the temperature θ is prescribed by a given
function θ. The heat flux vector is defined as

q(θ) = −ρK∇θ , (2.14)

where K is a second order tensor representing the thermal conductivity of the medium. In the isotropic
case, the tensor K can be written as

K = kI , (2.15)

being k the thermal conductivity coefficient. Let us also introduce the adjoint problems in order to
simplify further analysis. The mechanical adjoint problem reads:

v ∈ V(D) :

∫

D
σ(v) · (∇ξ)s =

∫

Γ⋆

(e+ ksv) · ξ ∀ξ ∈ V(D) . (2.16)

The thermal adjoint problem is stated as

ϕ ∈ H1
0 (D) :

∫

D
q(ϕ) · ∇η =

∫

D
ρβdiv(v) η ∀η ∈ H1

0 (D) , (2.17)

where v and ϕ denote the adjoint displacement and temperature.
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Figure 5. Thermo-mechanical semi-coupled problem.

Figure 6. Topological perturbation in the structural part.

3. Topology optimization problem formulation

In order to design thermo-mechanical devices, the shape functional J (u) was proposed in eq. (2.1).
The objective is to maximize the displacement u over Γ⋆ in the direction e. Therefore, to obtain
the topological sensitivity of the problem under consideration it is necessary to define two classes of
topological perturbations: (i) in the mechanical state, and (ii) in the thermal state. Both cases are
completely independent.

3.1. Topological perturbation in the structural part. For this case of perturbations, the disc
Bε is introduced at x̂ ∈ D with constitutive properties characterized by a contrast parameters γ given
by (1.11).

By considering the definition of the constitutive properties and contrast parameters presented in
(1.11) (see Fig. 6), the following theorem can be stated:

Theorem 3. The topological derivative of the shape functional (2.1), for a topological perturbation

characterized by the contrast parameters (1.11) is given by:

Tχ(x̂) = −Pγσ(u)(x̂) · (∇p)s(x̂) + ρβ(1 + α1)
1− γ

1 + γα1
θ(x̂)div(v)(x̂)

− Pγq(θ)(x̂) · ∇ϕ(x̂)− (1− γ)bδϕ(x̂) . (3.1)
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Figure 7. Topological perturbation in the heat source.

where the fourth- and second- order polarization tensors respectively denoted by Pγ and Pγ , are defined

as:

Pγ =
1− γ

1 + γα2

(
(1 + α2)I+

1

2
(α1 − α2)

1− γ

1 + γα1
I⊗ I

)
, (3.2)

Pγ = 2
1− γ

1 + γ
I . (3.3)

since the constants α1 and α2 are:

α1 =
µ+ λ

µ
and α2 =

3µ+ λ

µ+ λ
. (3.4)

Proof is given in Appendix.

3.2. Topological perturbation in the heat source. The aim of this case is to design the support
of the heat sources acting in the structural part of the device Ω. To this end, the disc Bε is introduced
at x̂ ∈ Ω, with a heat source characterized by the contrast parameter γb, see Fig. 7. Therefore, the
heat source for the perturbed configuration for problem (2.11) is given by (1.11).

When a topological perturbation is only considered in the heat source, see (1.11), the following
theorem can be written:

Theorem 4. The topological derivative of the shape functional (2.1), for a topological perturbation

characterized by the contrast parameter (1.11) is given by:

Tχb
(x̂) = −(1− γb)bδϕ(x̂) . (3.5)

Proof is given in the Appendix.

3.3. Topology optimization procedure. The optimization procedure is based on representing the
structural domain and the support of the heat source in a bi-material fashion. The material distribution
in D, Ω and Σ will be identified by the characteristics functions χ and χb. The inclusions of weak (or
less conductive) material (γ < 1) are used to mimic the holes. Based on this approach, the properties
of the domains D, Ω and Σ, and its characteristics functions χ and χb, are correlated with the contrast
parameters γ and γb (see Figure 8). Note that the heat source only can be applied on the structural
part of the device (Σ ⊆ Ω). This condition can be written as Supp(χb) ⊆ Supp(χ).

A general optimization problem with a volume constraint on the structural part can be stated as:
Find the domains Ω ∈ D and Σ ∈ Ω (characterized by the functions χ and χb, respectively) such that,

{
Minimize

χ,χb

Ψ(χ, χb) := J (u),

Subjected to c(χ) :=
∫
D(χ− V ∗)dx = 0,

(3.6)
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Figure 8. Bi-material distribution in the domains D, Ω and Σ.

where V ∗ is the required volume of the structural part at the end of the optimization process.
An efficient approach to solve problem (3.6) is the use of the method proposed in [2]. The procedure

relies on the level-set domain representation [19] and the approximation of the topological optimality
conditions by a fixed point iteration. The topological derivative is used as a feasible descent direction
to minimize the cost function J (u). For completeness, in the following, some remarks about the
algorithm are detailed. For further details we refer to the work in [2, 3, 15].

• The definition of the domains lies on the level set functions ψ and ψb. The design variables
are no longer the characteristics functions χ and χb. In fact, they are parametrized by the
level-set ψ and ψb as

χ(x) =

{
1 if ψ(x) < 0,

0 if ψ(x) > 0,
and χb(x) =

{
1 if ψb(x) < 0,

0 if ψb(x) > 0.
(3.7)

• In order to satisfy the constraint c(χ) = 0 an augmented Lagrangian method is used, as in
[4, 15]. Thereby, a Lagrange multiplier λ appears as a new unknown, and a penalty parameter
ρ must be provided. The optimization problem (3.6) becomes the following saddle point
problem,

Maximize
λ

Minimize
χ,χb

Ψ(ψ,ψb) + λc(ψ) +
1

2
ρc(ψ)2 . (3.8)

• An extended topological derivatives are defined as,

g(x) :=

{
−Tχ(x)−max(0, λ + ρc(ψ)) if ψ(x) < 0,

Tχ(x) + max(0, λ+ ρc(ψ)) if ψ(x) > 0.
(3.9)

gb(x) :=

{
−Tχb

(x) if ψb(x) < 0,

Tχb
(x) if ψb(x) > 0.

(3.10)

• The optimality condition, see [2], is based on seeking ψ(x) parallel to g(x) and ψb(x) parallel
to gb(x). Thus, sharp interpolation schemes are used. These schemes can be written for an
iteration n+ 1 as

ψn+1 =
1

sin θn
[sin((1− κn)θn)ψn + sin(κnθn)

gn

||gn||L2

], (3.11)

ψn+1
b =

1

sin θnb
[sin((1− κnb )θ

n
b )ψ

n
b + sin(κnb θ

n
b )

gnb
||gnb ||L2

], (3.12)

where κn ∈ [0, 1] and κnb ∈ [0, 1] are a step size determined by a line-search in order to decrease
the value of the cost functional Ψ(χ, χb). To find κn the level-set function ψb is kept fixed. On
the other hand, to find κnb the level-set function ψn is considered. The convergence criteria
are based on the values of θn and θnb , the angles between (ψn, gn) and (ψn

b , g
n
b ) , respectively,

which are obtained as
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θn = acos

[ 〈ψn, gn〉
||ψn||L2 ||gn||L2

]
and θnb = acos

[ 〈ψn
b , g

n
b 〉

||ψn
b ||L2 ||gnb ||L2

]
. (3.13)

Note that, in this fixed point scheme, the topological derivative plays the role of the gradient in
the steepest descent algorithm. Regarding to numerical aspects, a standard FEM is used for solving
problems (2.2), (2.11), (2.16) and (2.17). Based on the above description, the main steps of the
algorithm can be summarized as following:

(1) Choose an initial level-set functions (ψ0 and ψ0
b , with Supp(ψ0

b ) ⊆ Supp(ψ0)) by defining the
initial guesses for the design domains;

(2) Define the characteristic functions χ and χb according to (3.7);
(3) Define the constitutive properties and the heat source for the finite elements in each domain

associated with χ and χb according to (1.11) (see Fig. 8);
(4) Obtain the discretized fields u, θ, v and ϕ by solving, respectively, the problems (2.2), (2.11),

(2.16) and (2.17);
(5) Compute the topological derivative fields Tχ and Tχb

from eqs. (3.1) and (3.5) at Gauss point
of the finite element and perform a standard nodal averaging procedure;

(6) Obtain the functions g(x) and gb(x) according to (3.9) and (3.10) by using the nodal values of
the topological derivatives and compute the θ and θb angles with (3.13);

(7) Update the level-set function ψn+1 according to (3.11) and update the characteristic functions
χ and χb according to (3.7);

(8) Check convergence θn+1 ≤ ǫθ where ǫθ is a pre-specified convergence tolerance. If True: Next.
If False: goto 3.

(9) Compute functional Ψ(ψn+1, ψn
b ).

(10) Update the level-set function ψn+1
b according to (3.12) and update the characteristic functions

χb according to (3.7);
(11) Check convergence θn+1

b ≤ ǫθ. If True: Next. If False: goto 3.

(12) Compute functional Ψ(ψn, ψn+1
b ).

(13) Select the pair of level-set functions (ψn+1, ψn
b ) for Ψ

n+1 if Ψ(ψn+1, ψn
b ) ≤ Ψ(ψn, ψn+1

b ). Oth-

erwise, select the pair (ψn, ψn+1
b ).

4. Representative numerical simulations

To illustrate the applicability of expression for the topological derivatives Tχ, Tχb
and the opti-

mization procedure presented in the previous Section, two numerical examples are presented. All
them are solved under 2D elastic plane stress assumptions. In all examples we consider the following
constitutive properties: E = 1GPa (Young’s modulus), ν = 0.3 (Poisson’s ratio), α = 1.0× 10−6 K−1

and k = 1.0W/mK. The contrast parameters are given by ρ0 = 1.0× 10−4, which are used to mimic
the voids, and δ0 = 1.0 × 10−7. In the part of the free boundary where nothing is specified, we con-
sider homogeneous Neumann boundary conditions in both problems (mechanical and thermal). The
direction e is given by a unit vector on Γ⋆. The thermo-mechanical problem (2.2), the steady-state
heat conduction problem (2.11) and the adjoint equations (2.16) and (2.17) are solved by using the
standard finite element method. The initial mesh is generated from a regular grid of size 20 × 12
square elements, where each resulting square is divided into four triangles, leading to 960 elements.
Then, four steps of uniform mesh refinement are performed during the iterative process. In the figures,
black and white are respectively used to represent solid and void faces in the structural part and the
existence (or not) of the heat source in the thermal problem.

4.1. Example 1: Amplifier. The first example is the optimization of a displacement amplifier.
This device is used to amplify the displacements in a given direction generated by thermal effects. In
particular, the design domain considered is presented in Fig. 9, in which only one quadrant of the
complete domain is represented, based on horizontal and vertical symmetry assumptions (the dashed-
dot lines indicate the axes of symmetry). The objective is the maximization of the outward output
displacement in the direction e on Γ⋆ in response to a thermal excitation imposed on Γθ. In this case,
the boundary condition is given by a linear temperature distribution on Γθ, as shown in Fig. 9(b).
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The material properties are optimized in white subdomains, while in the light grey regions of Figs.
9(a) and 9(b) the material properties are fixed. For this example, the desired volume fractions of the
structural part were fixed in 30%, 40% and 60% of the initial domain.

(a) (b)

Figure 9. Example 1. Domain and boundary conditions: (a) mechanical problem and
(b) heat problem (dimensions in mm).

In Figs. 10 to 13 the obtained results for 30% of volume fraction are shown. In order to analyze
the results from a quantitative point of view we define an effectiveness factor Λ := JΩ(uopt)/JΩ(uini),
where uini and uopt are the displacements of the initial and optimized configurations, respectively.
The behavior of effectiveness factor Λ with respect to the spring stiffness ks for different values of the
thermal source bδ is presented in Fig. 14. Note that the highest value of Λ is achieved for the lowest
value of ks independently of the thermal source magnitude, the volume fraction and the topology.
A physical explanation of this behaviour can be drawn by considering that when the spring stiffness
ks decrease, the amplifier in this point is free to move in the desired direction. The influence of the
thermal source is negligible for high values of the spring stiffness ks. This behaviour can be explained
due to the high spring stiffness, in fact the spring generate a resistance to the movement in this point
that cannot be compensated by the expansion introduced by thermal source.

(a) structural part (b) heat source

Figure 10. Example 1. Obtained topologies for 30% of volume fraction, ks = 1×10−4

[kN/mm] and bδ = 1× 10−6. Structural response η = 5× 10−6.
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(a) structural part (b) heat source

Figure 11. Example 1. Obtained topologies for 30% of volume fraction, ks = 1× 104

[kN/mm] and bδ = 1× 10−6. Structural response η = 5× 102.

(a) structural part (b) heat source

Figure 12. Example 1. Obtained topologies for 30% of volume fraction, ks = 1×10−4

[kN/mm] and bδ = 1× 10−3. Structural response η = 5× 10−6.

(a) structural part (b) heat source

Figure 13. Example 1. Obtained topologies for 30% of volume fraction, ks = 1× 104

[kN/mm] and bδ = 1× 10−3. Structural response η = 5× 102.



13

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

9,00

1,00E-04 1,00E-03 1,00E-02 1,00E-01 1,00E+00 1,00E+01 1,00E+02 1,00E+03 1,00E+04

1,00E-06

1,00E-05

1,00E-04

1,00E-03

1,00E-02

(a) 30% of volume fraction
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(b) 60% of volume fraction

Figure 14. Example 1. Comparison of Λ vs. ks [kN/mm], for different values of
thermal source bδ.

Note that from the results presented previously, when the parameter η tends to zero the main
component of the optimal topology tend to a horizontal bar, see Figs. 10 and 12. On the contrary,
when η increase the main component tend to a vertical bar, see Figs. 11 and 13. These conclusions
are similar to the presented in the motivational example in Section 1.1 and confirm the fundamental
aspect of the structural response parameter η.

4.2. Example 2: Inverter. The second example considers the same domain from the previous exper-
iment, however, the output displacement region Γ⋆ is changed as depicted in Fig. 15. This apparently
simple modification in the design domain actually results in a completely different mechanism, since the
optimizer seeks an output displacement contrary to the natural movement of the thermo-mechanical
device. In addition, all symmetry assumptions remain valid and the boundary condition for thermal
problem is given by a linear temperature distribution on Γθ, as shown in Fig. 15(b). The material
properties are optimized in white subdomains, while in the light grey regions of Figs. 15(a) and 15(b)
the material properties are fixed, as in the previous example.

(a) (b)

Figure 15. Example 2. Domain and boundary conditions: (a) mechanical problem
and (b) heat problem (dimensions in mm).

The obtained results for 40% and 60% of volume fraction are shown in Figs. 16 and 17, for a
selected values of ks and bδ. The variation in the values for the effectiveness factor Λ with respect to
the spring stiffness ks and the thermal source b for the obtained results are presented in Fig. 18. Note
that the negative sign for Λ indicates the inversion of the direction of the displacement. As analysed
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in the previous example, the lowest value of Λ is achieved for the lowest value of ks, independently of
the thermal source magnitude, the volume fraction and the final topology. Also, the influence of the
thermal source value in Λ decreases for high values of the spring stiffness ks.

(a) structural part (b) heat source

Figure 16. Example 2. Obtained topologies for 40% of volume fraction, ks = 1
[kN/mm] and bδ = 1. Structural response η = 5× 10−2.

(a) structural part (b) heat source

Figure 17. Example 2. Obtained topologies for 60% of volume fraction, ks = 1
[kN/mm] and bδ = 1. Structural response η = 5× 10−2.
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(a) 40% of volume fraction
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(b) 60% of volume fraction

Figure 18. Example 2. Comparison Λ vs. ks [kN/mm], for different values of thermal
source bδ.

5. Concluding remarks

In the paper a methodology for the optimal design of a thermo-mechanical device are presented.
For the optimal design procedure was considered as unknown the topology of the structural part of
the device and the support of the applied thermal source. For this case, the topological derivative of
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the tracking-type shape functional for the coupled models of thermo-mechanical type are derived in
two spatial dimensions. By introducing contrasts on the thermal conductivity coefficient, the elastic
modulus and the thermal source, an simple and analytical expressions of the topological derivatives
were obtained to be used in the topological design of thermal-mechanical actuators. The information
provided by Tχ(x̂) and Tχb

(x̂) can be used as a steepest descent direction in an optimal design algo-
rithm. To illustrate this feature, two numerical experiment associated to the topology optimization
of actuators have been presented. These simples examples show the applicability of the proposed
methodology in the context of optimal design of thermal-mechanical devices. Furthermore, we shown
that the proposed methodology is able to design the region where the heat source must be applied in
order to maximize the efficiency of the actuator. Also, a qualitative study of the influence of the spring
stiffness in the optimal design and it’s efficiency was carried out. From this study, can be concluded
that the efficiency of the actuator decreases for high values of the spring stiffness independently of the
heat source value, final volume fraction and topology.
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Appendix A. Existence of the topological derivative

In order to prove the Theorems 3 and 4 we need technical results which are given with proofs.
We recall that the scalar function θε solves the following perturbed variational problem: Find the

temperature field θε ∈ H(Ω), such that
∫

Ω
qε(θε) · ∇η +

∫

Ω
bεη = 0 ∀η ∈ H0(Ω), (A.1)

where
qε(θε) := −γTε K∇θε, bε := γTε bδ, (A.2)

with the contrast on the thermal properties defined as

γTε :=

{
1 in Ω \Bε

γT in Bε
. (A.3)

Proposition 5. Let θ and θε be solutions to (2.11) and (A.1), respectively. Then we have that the

following estimate holds true

‖θε − θ‖H1(Ω) ≤ Cε. (A.4)

Proof. We start by subtracting the variational problem (2.11) from (A.1). After some manipulations
there is:

∫

Ω
qε(θε − θ) · ∇η = (1 − γT )

∫

Bε

q(θ) · ∇η + (1 − γT )

∫

Bε

bδη, (A.5)

where we have used the fact that qε(φ) = q(φ) and bε = bδ in Ω\Bε, and qε(φ) = γT q(φ) and bε = γT bδ
in Bε. By taking η = θε − θ as a test function in the above equation we obtain the following equality

∫

Ω
qε(θε − θ) · ∇(θε − θ) = (1 − γT )

∫

Bε

q(θ) · ∇(θε − θ) + (1 − γT )

∫

Bε

bδ(θε − θ). (A.6)

From the Cauchy-Schwartz inequality it follows that
∫

Ω
qε(θε−θ)·∇(θε−θ) ≤ C1‖q(θ)‖L2(Bε)‖∇(θε−θ)‖L2(Bε)+C2‖b‖L2(Bε)‖θε−θ‖L2(Bε) ≤ εC3‖θε−θ‖H1(Ω),

(A.7)
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where we have used the interior elliptic regularity of function θ and the continuity of the function b
at the point x̂ ∈ Ω. Finally, from the coercivity of the bilinear form on the left-hand side of (A.5),
namely

c‖θε − θ‖2H1(Ω) ≤
∫

Ω
qε(θε − θ) · ∇(θε − θ), (A.8)

we obtain the result with the constant C = C3/c independent of the small parameter ε. �

The vector function uε is the solution to the perturbed coupled system, namely: Find the displace-
ment field uε ∈ V(Ω), such that

∫

Ω
σε(uε) · (∇v)s =

∫

Ω
βεθεdiv(v) ∀v ∈ V(Ω), (A.9)

where

σε(uε) := γMε C(∇uε)s = γMε σ(uε), (A.10)

with the contrast on the elastic properties defined as

γMε :=

{
1 in Ω \Bε

γM in Bε
. (A.11)

Proposition 6. Let u and uε be solutions to (2.2) and (A.9), respectively. Then we have that the

following estimate holds true

‖uε − u‖H1(Ω) ≤ Cε. (A.12)

Proof. Let us subtract the variational problem (2.2) from (A.9), so that after some manipulations we
have:

∫

Ω
σε(uε − u) · (∇v)s =

∫

Ω
β(θε − θ)div(v) + (1− γM )

∫

Bε

(σ(u) + βθ I) · (∇v)s−

(1− γM )

∫

Bε

β(θε − θ)div(v), (A.13)

where we have used the fact that σε(φ) = σ(φ) and βε = β in Ω \ Bε, and σε(φ) = γMσ(φ) and
βε = γMβ in Bε. By taking v = uε − u as test function in the above equation we obtain the following
equality

∫

Ω
σε(uε − u) · (∇(uε − u))s =

∫

Ω
β(θε − θ)div(uε − u) + (1− γM )

∫

Bε

(σ(u) + βθ I) · (∇(uε − u))s−

(1− γM )

∫

Bε

β(θε − θ)div(uε − u). (A.14)

From the Cauchy-Schwartz inequality it follows that
∫

Ω
σε(uε−u)·(∇(uε−u))s ≤ C1‖θε−θ‖L2(Ω)‖∇(uε−u)‖L2(Ω)+C2‖σ(u)+βθ I‖L2(Bε)‖∇(uε−u)‖L2(Bε)+

C3‖θε − θ‖L2(Bε)‖∇(uε − u)‖L2(Bε) ≤ C4‖θε − θ‖H1(Ω)‖uε − u‖H1(Ω) + εC5‖uε − u‖H1(Ω), (A.15)

where we have used the interior elliptic regularity of function u and the continuity of the function β
at the point x̂ ∈ Ω. From Lemma 5 we have now

∫

Ω
σε(uε − u) · (∇(uε − u))s ≤ C6ε‖uε − u‖H1(Ω). (A.16)

Finally, from the coercivity of the bilinear form on the left-hand side of (A.13), namely

c‖uε − u‖2
H1(Ω) ≤

∫

Ω
σε(uε − u) · (∇(uε − u))s, (A.17)

we obtain the result with the constant C = C6/c independent of the small parameter ε. �
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Finally, the topologically perturbed counterpart of the mechanical adjoint problem (2.16) reads:
Find the adjoint displacement field pε ∈ V(Ω), such that

∫

Ω
σε(pε) · (∇v)s =

∫

Γ⋆

e · v ∀v ∈ V(Ω), (A.18)

while the topologically perturbed counterpart of the thermal adjoint problem (2.17) is given by: Find
the adjoint temperature field ϕε ∈ H0(Ω), such that

∫

Ω
qε(ϕε) · ∇η =

∫

Ω
βdiv(p) η ∀η ∈ H0(Ω). (A.19)

Proposition 7. Let p and pε be solutions to (2.16) and (A.18), respectively. Then we have that the

following estimate holds true

‖pε − p‖H1(Ω) ≤ Cε. (A.20)

Proof. After subtracting the variational problem (2.16) from (A.18) we have:
∫

Ω
σε(pε − p) · (∇v)s = (1− γM )

∫

Bε

σ(p) · (∇v)s, (A.21)

where we have used the fact that σε(φ) = σ(φ) in Ω \ Bε and σε(φ) = γMσ(φ) in Bε. By taking
v = pε − p as test function in the above equation we obtain the following equality

∫

Ω
σε(pε − p) · (∇(pε − p))s = (1 − γM )

∫

Bε

σ(p) · (∇(pε − p))s. (A.22)

From the Cauchy-Schwartz inequality it follows that
∫

Ω
σε(pε − p) · (∇(pε − p))s ≤ C1‖σ(p)‖L2(Bε)‖∇(pε − p)‖L2(Bε) ≤ εC2‖pε − p‖H1(Ω), (A.23)

where we have used the interior elliptic regularity of function p. Finally, from the coercivity of the
bilinear form on the left-hand side of (A.21), namely

c‖pε − p‖2
H1(Ω) ≤

∫

Ω
σε(pε − p) · (∇(pε − p))s, (A.24)

we obtain the result with the constant C = C2/c independent of the small parameter ε. �

Proposition 8. Let ϕ and ϕε be solutions to (2.17) and (A.19), respectively. Then we have that the

following estimate holds true

‖ϕε − ϕ‖H1(Ω) ≤ Cε. (A.25)

Proof. After subtracting the variational problem (2.17) from (A.19) there is:
∫

Ω
qε(ϕε − ϕ) · ∇η = (1− γT )

∫

Bε

q(ϕ) · ∇η, (A.26)

where we have used the fact that qε(φ) = q(φ) in Ω \ Bε and qε(φ) = γT q(φ) in Bε. By taking
η = ϕε − ϕ as test function in the above equation we obtain the following equality

∫

Ω
qε(ϕε − ϕ) · ∇(ϕε − ϕ) = (1 − γT )

∫

Bε

q(ϕ) · ∇(ϕε − ϕ). (A.27)

From the Cauchy-Schwartz inequality it follows that
∫

Ω
qε(ϕε − ϕ) · ∇(ϕε − ϕ) ≤ C1‖q(ϕ)‖L2(Bε)‖∇(ϕε − ϕ)‖L2(Bε) ≤ εC2‖ϕε − ϕ‖H1(Ω), (A.28)

where we have used the interior elliptic regularity of function ϕ. Finally, from the coercivity of the
bilinear form on the left-hand side of (A.26), namely

c‖ϕε − ϕ‖2H1(Ω) ≤
∫

Ω
qε(ϕε − ϕ) · ∇(ϕε − ϕ), (A.29)

we obtain the result with the constant C = C2/c independent of the small parameter ε. �
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Appendix B. Proof of Theorem 3

The reader interested in a complete development of the proof of this result may refer to [6]. For
completeness, the main ingredients of the calculation of the topological derivative Tχ(x̂) are presented
in the following. First consider the variation of the shape-functional (2.1) when a topological pertur-
bation is introduced in the domain, given by

δJε(u) := −
∫

Γ⋆

e · (uε − u) , (B.1)

where uε is the solution of the perturbed counterpart of the problem (2.2). After some tedious
calculation, the variation δJε(u) can be written as:

δJε(u) = −1− γ

γ

∫

Bε

ρσ(pε) ·(∇u)s+(1−γ)βρ
∫

Bε

θdiv(pε)−
1− γ

γ

∫

Bε

δq(ϕε) ·∇θ−(1−γ)δ
∫

Bε

bδϕε.

(B.2)
where pε and ϕε are the solutions of the perturbed counterparts of the problems (2.16) and (2.17),
respectively. By applying classical asymptotic analysis technics, see for instance [17], the stress and
flux fields ρσ(pε) and δq(ϕε) inside the ball Bε can be written as:

ρσ(pε) = Pγσ(p)(x̂) and δq(ϕε) = Pγq(ϕ)(x̂) (B.3)

where the tensors Pγ and Pγ are defined in (3.2)-(3.3). Next, the above results must be introduced in
the expression of δJε(u) and the regularity of the fields pε and ϕε inside the ball Bε will be considered.
The proof is completed by integrating theses fields in Bε, dividing the result by πε2 and taking the
limit ε→ 0+.

Appendix C. Proof of Theorem 4

Proof. The reader interested in a complete development of the proof of this result may refer to [6].
For completeness, the main ingredients of the calculation of the topological derivative Tχb

(x̂) are
presented in the following. First consider the variation of the shape-functional (2.1) when a topological
perturbation is introduced in the domain affecting only the thermal source in problem (2.11), given
by

δJε(u) := −
∫

Γ⋆

e · (uε − u) , (C.1)

where uε is the solution of the perturbed counterpart of the problem (2.2). After some tedious
calculation, the variation δJε(u) can be written as:

δJε(u) = −(1− γb)δ

∫

Bε

bδϕε. (C.2)

where ϕε is the solution of the perturbed counterpart of the problem (2.17). Next, the regularity of
the field ϕε inside the ball Bε will be considered. The proof is completed by integrating this field in
Bε, dividing the result by πε2 and taking the limit ε→ 0+. �
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25651-075 Petrópolis - RJ, Brasil.

E-mail address: novotny@lncc.br

(J. Soko lowski) Department of Scientific Computing, Informatic Center, Federal University of Paraiba,
471 Rua dos Escoteiros s/n, Mangabeira, João Pessoa, Paraiba 58058-600, Brazil, and Systems Research
Institute of the Polish Academy of Sciences, 01-447 Warszawa, ul Newelska 6, Poland, and Université de
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