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Definitions

The Pólya-Szegö polarization tensor, introduced
in 1951, naturally appears on the famous Eshelby
problem, also referred to as Eshelby theorem.
This problem, formulated by Eshelby in 1957 and
1959, forms the basis to the theory of elasticity
involving the determination of effective elastic
properties of materials with multiple inhomo-
geneities (inclusions, pores, defects, cracks, etc.).
This important result represents one of the major
advances in the continuum mechanics theory of
the twentieth century. In this work, a relation

between Eshelby Mechanics and the modern con-
cept of topological derivative is discussed. The
topological derivative is defined as the first term
(correction) of the asymptotic expansion of a
given shape functional with respect to a small
parameter that measures the size of singular do-
main perturbations, such as holes, cavities, inclu-
sions, source terms, and cracks. Therefore, the
Eshelby problem in general and the polarization
tensor in particular play a crucial role on the
topological asymptotic analysis, leading to a rich
and fascinating theory. On the other hand, the
topological derivative can also be defined as the
singular limit of the classical shape derivative.
The shape gradient can be interpreted as the flux
of the Eshelby energy-momentum tensor, intro-
duced by Eshelby in 1975, across to the moving
boundary. It means that the polarization tensor –
and thus the topological derivative – is related to
the Eshelby tensor through the limit passage with
respect to the small parameter measuring the size
of the singular domain perturbation. Therefore,
the Eshelby tensor together with the Eshelby
problem can be seen as the main theoretical
foundation for the topological derivative concept.

Introduction

In continuum mechanics, the famous problem
formulated by Eshelby (1957, 1959), also called
as Eshelby theorem, refers to the effect produced
by a set of elastic inclusions embedded within
an infinite homogeneous elastic body. Analytical
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solutions to these problems were first derived by
John D. Eshelby in the 1950s. In particular, it
was shown that the associated strain and stress
fields are uniform inside the elastic inclusion. In
addition, these fields were written in an elegant
and compact form in terms of the background so-
lution. The Eshelby problem plays a central role
in the theory of elasticity involving the determi-
nation of effective elastic properties of materials
with multiple inhomogeneities (inclusions, pores,
defects, cracks, etc.). It has been considered one
of the major advances in the continuum mechan-
ics theory of the twentieth century (Kachanov
et al. 2003), representing an important theoret-
ical foundation for many problems in elasticity
theory (Leugering et al. 2012). In this work,
a relation between Eshelby Mechanics and the
relatively new concept of topological derivative
is discussed.

The topological derivative, rigorously intro-
duced for the first time by Sokołowski and Zo-
chowski (1999), measures the sensitivity of a
given shape functional with respect to an in-
finitesimal singular domain perturbation, such
as the insertion of holes, cavities, inclusions,
source terms, or cracks. This concept has proved
to be useful in the treatment of a wide range
of physical and engineering problems such as
topology optimization, inverse problems, image
processing, multiscale material design, fracture
mechanics sensitivity analysis, and damage evo-
lution modeling. For a comprehensive account on
the topological derivative concept and its applica-
tions, see, for instance, the book by Novotny and
Sokołowski (2013). Since the topological deriva-
tive represents the sensitivity with respect to
singular domain perturbations, the Pólya-Szegö
polarization tensor (Pólya and Szegö 1951) plays
a crucial role on the topological asymptotic anal-
ysis, which naturally appears on the Eshelby the-
orem. On the other hand, the topological deriva-
tive can also be defined as the singular limit of
the classical shape derivative as shown in the
book by Novotny and Sokołowski (2013). The
shape gradient can be interpreted as the flux of the
Eshelby energy-momentum tensor, introduced by
Eshelby (1975), across to the moving boundary. It
means that the polarization tensor – and thus the

topological derivative – is related to the Eshelby
tensor through the limit passage with respect to
the small parameter measuring the size of the
singular domain perturbation.

Therefore, the Eshelby tensor together with
the Eshelby problem in general and the polariza-
tion tensor in particular can be seen as the main
theoretical foundation for the topological deriva-
tive concept, leading to a rich and fascinating
theory. In order to show the applicability of these
fundamental results, a simple numerical example
in the context of structural topology optimization
into three spatial dimensions is presented.

The Topological Derivative Concept

Let D � R3 be an open and bounded domain
with a Lipschitz boundary @D , which is subject
to a nonsmooth perturbation confined in a small
region B".bx/ of size " centered at an arbitrary
point bx 2 D . A characteristic function x 7!

�.x/, x 2 R3 is introduced, associated to the
unperturbed domain, namely, � D 1D , such that

jD j D

Z

R3
� ; (1)

where jD j is the Lebesgue measure of D . Then,
a characteristic function associated to the topo-
logically perturbed domain of the form x 7!

�".bxI x/, x 2 R3, is defined. In the case of
a perforation, for example, �".bx/ D 1D �

1
B".bx/

, and the perforated domain is obtained as

D".bx/ D D n B".bx/. Then, it is assumed that
a given shape functional  .�".bx//, associated to
the topologically perturbed domain, admits the
following topological asymptotic expansion

 .�".bx// D  .�/C f ."/DT .bx/

CR.f ."// ; (2)

where  .�/ is the shape functional associated to
the original domain, that is, without perturbation,
f ."/ is a positive function such that f ."/ ! 0

when " ! 0 and R.f ."// D o.f ."// is the re-
mainder. The functionbx 7! DT .bx/ is called the
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topological derivative of  at bx. Therefore, this
derivative can be seen as a first-order correction
of  .�".bx//, so that it can be used as a steepest-
descent direction in an optimization process like
in any method based on the gradient of the cost
functional.

Now, the Topological-Shape Sensitivity
Method is introduced (Novotny and Sokołowski
2013). It relies on the fact that the topological
derivative can be defined as the singular limit
of the classical shape derivative. Therefore, this
approach can be seen as a generalization of the
classical tool in shape optimization, which is
summarized through the following proposition:

Proposition 1 Let  .�".bx// be the shape func-
tional associated to the topologically perturbed
domain, which admits, for " small enough, the
topological asymptotic expansion of the form (2).
It is assumed that the remainder R.f ."// in (2)
has the additional property R0.f ."//! 0, when
" ! 0. Then, the topological derivative can be
written as

DT .bx/ D lim
"!0

1

f 0."/

d

d"
 .�".bx// ; (3)

where d
d"
 .�".bx// is the (shape) derivative of

 .�".bx// with respect to the small positive pa-
rameter ".

Problem Statement: Elasticity System
into Three Spatial Dimensions

Let D be decomposed into two subdomains,
namely, ! � D and D n!. The subdomain˝ WD
Dn! represents an elastic and deformable region,
whereas ! is filled by a very compliant material.
The minimization problem can be defined in the
following way

(

Minimize
˝�D

�J�.u/

subject to j˝j �M ;
(4)

where the shape functional J�.u/ represents the
total potential energy of the system, j˝j is the
Lebesgue’s measure of ˝, and M represents the

required volume at the end of the minimization
process. The volume constraint is trivially im-
posed by using a linear penalization approach.
For more elaborate strategies, see, for instance,
the work by Campeão et al. (2014). In particular,
the constrained optimization problem (4) is re-
placed by the following unconstrained optimiza-
tion problem

Minimize
˝�D

F�.u/ D �J�.u/Cm j˝j ; (5)

where m > 0 is a fixed multiplier used to impose
the volume constraint of elastic material. This
means that the shape functional to be minimized
is the strain energy stored into the structure with a
volume constraint. In addition, the total potential
energy J�.u/ is written as

J�.u/ D
1

2

Z

D
�.u/ � rus �

Z

�N

q � u ; (6)

where the vector function u is the solution of the
following variational problem: Find u 2 U , such
that

Z

D
�.u/ � r�s D

Z

�N

q � � 8� 2 U0 : (7)

Some terms in the above variational equation
require explanation. The Cauchy stress tensor is
given by

�.u/ D �Crus; with rus D
1

2
.ruCru>/ ;

(8)
where the parameter � is defined as

� D �.x/ WD

�

1 if x 2 ˝ ;

�0 if x 2 ! ;
(9)

with 0 < �0 � 1 used to represent the voids. The
constitutive tensor C is given by

C D
E

1C �

�

IC
�

1 � 2�
I˝ I

�

; (10)

where I and I are the second- and fourth-
order identity tensors, respectively, E the
Young modulus, and � the Poisson ratio, both
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considered constants everywhere. The set U
and the space U0 are respectively defined as:
U WDf' 2 H 1.D IR3/ W 'j�D D ug and

U0WDf' 2 H
1.D IR3/ W 'j�D D 0g. In addition,

@D D � D [� N with �D \�N D ¿, where �D
and �N are Dirichlet and Neumann boundaries,
respectively. Thus, u is a Dirichlet data on �D
and q is a Neumann data on �N , both assumed to
be smooth enough.

The topologically perturbed counterpart of the
problem is now introduced. The idea consists
in nucleating a spherical inclusion, denoted by
B".bx/, of radius " and center at the arbitrary point
bx 2 D , such that B".bx/ � D . In this case
�".bx/ is defined as �".bx/ D 1D � .1� �/1B".bx/

,
where � D �.x/ is the contrast on the material
properties. From these elements, the following
piecewise constant function can be introduced

�" D �".x/ WD

�

1 if x 2 D n B" ;
� if x 2 B" :

(11)

The shape functional associated to the topologi-
cally perturbed problem, denoted by J�".u"/, is
defined as

J�".u"/ D
1

2

Z

D
�".u"/ � rus" �

Z

�N

q � u" ;(12)

where the vector function u" is the solution to
the following variational problem: Find u" 2 U ,
such that
Z

D
�".u"/ � r�

s D

Z

�N

q � �; 8� 2 U0 ; (13)

with the Cauchy stress tensor �".u"/ D �"�.u"/,
where �" is given by (11). In addition, two
transmission conditions on the interface @B"
comes out naturally from the variational
formulation (13), namely, ŒŒu"		 D 0 and
ŒŒ�".u"/		 n D 0, where n is the normal unit vector
field pointing toward the exterior of the inclusion
B". Here, the operator ŒŒ'		 is used to denote the
jump of the function ' on the interface @B", i.e.,
ŒŒ'		 D 'jDnB"

� 'jB" on @B".

Topological Sensitivity Analysis

In this section all arguments concerning the ex-
istence of the topological derivative as well as
the derivation of its closed formula through both
methods introduced in the previous section are
presented.

Existence of the Topological Derivative
The existence of the topological derivative is
ensured by the following result:

Lemma 1 Let u" and u be the solutions of prob-
lems (13) and (7), respectively. Then, the follow-
ing estimate holds true

ku" � ukH1.DIR3/ � C"
3=2 ; (14)

where the constant C is independent of the small
parameter ".

Proof By subtracting (7) from (13) and taking
into account the definition for the contrast �",
given by (11), it follows

Z

DnB"

.�.u"/ � �.u// � r�
s

C

Z

B"

.��.u"/ � �.u// � r�
s D 0 : (15)

After adding and subtracting the term
R

B"
��.u/ �

r�s in the above expression, there is

Z

D
�".u" � u/ � r�s

C.� � 1/

Z

B"

�.u/ � r�s D 0 : (16)

Now, by taking � D u"�u as test function in (16),
the following equality is obtained

Z

D
�".u" � u/ � rs.u" � u/

D

Z

B"

T.u/ � rs.u" � u/ ; (17)

where the notation T.u/ D .1 � �/�.u/ has been
introduced. From the Cauchy-Schwarz inequal-
ity, it follows that
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Z

D
�".u" � u/ � rs.u" � u/ � kT.u/kL2.B"IR3/ kr

s.u" � u/kL2.B"IR3/

� C1"
3=2 ku" � ukH1.DIR3/ : (18)

From the coercivity of the bilinear form on the
left-hand side of (18), there is

c ku" � uk2H1.DIR3/ �
Z

D
�".u" � u/ � rs.u" � u/ ; (19)

which leads to the result with C D C1=c inde-
pendent of the small parameter ". ut

Topological Derivative Evaluation
The topological derivative of the shape func-
tional (6) is now evaluated by using the methods
previously introduced.

Direct Approach
Following similar derivations as presented in the
proof of Lemma 1, the difference between the
functionals J�.u/ and J�".u"/, respectively,
defined in (6) and (12), can be written as an inte-
gral concentrated in the topological perturbations
B" as follows

J�".u"/ �J�.u/ D
Z

B"

� � 1

2�
�".u"/ � rus :(20)

In order to know the asymptotic behavior of
the function u" with respect to the small parame-
ter ", the following ansätz is introduced

u" D uC w" C Qu" ; (21)

where u is the solution of the unperturbed prob-
lem (7), w" is the solution to an auxiliary exterior
problem, and Qu" is the remainder. In particular,
the following auxiliary boundary value problem
is considered and formally obtained when "! 0:
Find S".w"/, such that

8

<

:

divS".w"/ D 0 in R3 ;

S".w"/! 0 in 1 ;

ŒŒS".w"/		 n D g on @B" ;
(22)

where S".w"/ D �"Crws" and g D ..� � 1/

S.u/.bx//n, which has been obtained from a Tay-
lor series expansion of �.u.x// around the point
bx, with S.u/ D Crus . The boundary value
problem (22) admits an explicit solution. Since
the stress S".w"/ is uniform inside the inclusion,
the solution of (22) can be written in a following
compact form

S".w"/jB" D T�S.u/.bx/

) �".w"/jB"

D �S".w"/jB"

D T��.u/.bx/ ; (23)

where T� is a fourth-order uniform (constant)
tensor given by

T� D � ..3ˇ � 1/ IC .˛ � ˇ/ I˝ I/ ; (24)

with

˛ D
.1 � �/

3.1 � �/ � .1C �/.1 � �/
and

ˇ D
5.1 � �/

15.1 � �/ � .8 � 10�/.1 � �/
: (25)

Remark 1 As mentioned, the stress tensor field
associated with the solution of the exterior prob-
lem (22) is uniform inside the inclusion B".bx/.
It means that the stress acting within the inclu-
sion embedded into the whole three-dimensional
space R3 can be written in the compact form (23).
Therefore, the above result fits the famous Es-
helby problem. This problem, formulated by Es-
helby (1957, 1959), represents one of the major
advances in the continuum mechanics theory of
the twentieth century (Kachanov et al. 2003). It
plays a central role in the theory of elasticity
involving the determination of effective elastic
properties of materials with multiple inhomo-
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geneities. For more details, see the book by Mura
(1987), for instance.

Now Qu" can be constructed in such a way that
it compensates for the discrepancies introduced
by the higher-order terms in " as well as by the
boundary layer w" on the exterior boundary @D
and on the interface @!. It means that the re-
mainder Qu" must be the solution to the following
boundary value problem: Find Qu", such that

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

div�".Qu"/ D 0 in D ;

�".Qu"/ D �"�.Qu"/ ;
Qu" D g1 on �D ;

�.Qu"/n D g2 on �N ;

ŒŒQu"		
ŒŒ�".Qu"/		 n

D

D

0

g3

�

on @! ;

ŒŒQu"		
ŒŒ�".Qu"/		 n

D

D

0

"h

�

on @B" ;

(26)

where g1 D �w", g2 D ��.w"/n, g3 D
�.1��0/S.w"/n and h D .1��/.r�.u.
//n/n,
with 
 used to denote an intermediate point
between x and bx. The remainder Qu", solution
of (26), enjoys the asymptotic behavior of the
form kQu"kH1.DIR3/ D O."3/. The proof is
analogous to the one obtained in the two spatial
dimensions case (Novotny and Sokołowski 2013,
Ch. 5, pp 155).

From the above results, the variation of the
energy shape functionals, given by (20), can be
developed in power of " as follows

J�".u"/ �J�.u/ D �
4

3
�"3

1 � �

2�
�

��.u/.bx/C T��.u/.bx/
�

� rus.bx/C o."3/ ;

(27)

By defining the function f ."/ D 4
3
�"3 and after

applying the topological derivative concept (2),
there is

DTJ�.bx/ D �P��.u/.bx/ � rus.bx/ ; (28)

where P� is a fourth-order isotropic tensor ob-
tained from Bonnet and Delgado (2013), namely,

P� D
1 � �

2
Œ3ˇIC .˛ � ˇ/ I˝ I	 : (29)

See also Ammari et al. (2008).

Remark 2 As can be seen from Eq. (27), the
polarization tensor comes out naturally from the
famous Eshelby problem. In fact, the tensor T�
given by (24) represents one term contribution to
the polarization tensor coming from the solution
to the exterior problem (22).

Alternative Approach
In order to evaluate the topological derivative by
using the Topological-Shape Sensitivity Method
summarized through Proposition 1, the Eshelby
energy-momentum tensor (Eshelby 1975) is in-
troduced, namely,

˙" D
1

2
.�".u"/ � rus"/I � ru>" �".u"/ ; (30)

together with a shape change velocity field V

over D

V D
˚

V 2 C 20 .D IR
3/ W Vj@!D0; Vj@B" Dn

�

;

(31)

representing a uniform expansion of the inclusion
B", where n D .x �bx/=", with x 2 @B". There-
fore, from these elements the following result can
be stated.

Proposition 2 Let J�".u"/ be the shape func-
tional defined by (12). Then, the derivative of
J�".u"/ with respect to the small parameter "
is given by

PJ�".u"/ D
d

d"
J�".u"/ D

Z

D
˙" � rV ; (32)

where V is the shape change velocity field de-
fined through (31) and ˙" is the Eshelby energy-
momentum tensor given by (30).

Remark 3 Note that ˙" in (32) is the energy-
momentum tensor introduced by Eshelby (1975).
This tensor appears in the analysis of defects in
three-dimensional elasticity, and it plays a central
role in the continuum mechanics theory involving
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inhomogeneities (inclusions, pores, cracks, etc.)
in solids. Since the distributed shape gradient of
the total potential energy is given by the prod-
uct of ˙" and rV , it follows that ˙" can be
interpreted in terms of the configurational forces
(Gurtin 2000) acting in the elastic body with a
small defect inside.
The shape derivative of the functional (12) can
also be expressed in an alternative form as shown
below:

Proposition 3 Let J�".u"/ be the shape func-
tional defined by (12). Then, the derivative of
J�".u"/ with respect to the small parameter "
is given by

PJ�".u"/ D
Z

@D
˙"n � V �

Z

@B"

ŒŒ˙"		 n � V

�

Z

@!

ŒŒ˙"		 n � V ; (33)

with V defined through (31) and ˙" given
by (30).

Corollary 1 By making use of the divergence
theorem at the right-hand side of (32), it follows

PJ�".u"/D
Z

@D
˙"n � V �

Z

@B"

ŒŒ˙"		 n � V

�

Z

@!

ŒŒ˙"		 n � V �

Z

D
div˙" � V:

(34)

Since Eqs. (34) and (33) remain valid for all ve-
locity fields V , the last term of the above equation
must satisfy

Z

D
div˙" � V D0; 8V 2 V ) div˙"D0 :

(35)

Remark 4 Note that div˙" D F in D , with
F D 0 in this particular case, can be referred
to as the balance of configurational forces or
simply configurational balance in configurational
mechanics theory (Gurtin 2000).

Corollary 2 Since ˙" is a free-divergence ten-
sor field, and in view of the velocity field defined

through (31), namely, V D 0 on @!, V D 0 on
@D , and V D n on @B", the above result (34)
reduces to

d

d"
 .�"/ D PJ�".u"/ D �

Z

@B"

ŒŒ˙"		 n � n :

(36)

Remark 5 As can be seen in (36), the shape gra-
dient of the functional J�".u"/ takes the form of
a boundary integral concentrated on the moving
boundary @B", depending on the normal compo-
nent of the velocity field V . This latter result fits
into the so-called Hadamard structure theorem of
shape optimization, proved by Sokołowski and
Zolésio (1992) and Delfour and Zolésio (2001),
for instance.

By taking into account the ansätz (21) together
with the explicit solution (23), the integral in (36)
yields

Z

@B"

ŒŒ˙"		 n�nD4�"
2
P��.u/.bx/�rus.bx/Co."2/;

(37)
with the polarization tensor P� given by (29).
Then, by applying the result of Proposition 1 in
the above expression, it follows

DTJ�.bx/ D � lim
"!0

1

f 0."/
.4�"2

P��.u/.bx/ � rus.bx/C o."2//; (38)

Now, by choosing f ."/ D 4
3
�"3 as before,

the main term in the above expansion can be
extracted, leading to the final formula for the
topological derivative, namely,

DTJ�.bx/ D �P��.u/.bx/ � rus.bx/ ; (39)

which corroborates with the one previously de-
rived (28).

A Numerical Example

In order to illustrate the applicability of the ob-
tained results, a numerical example in the context
of structural topology optimization into three
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a b

Relation Between Eshelbyan Mechanics and Topological Derivative Concept, Fig. 1 Numerical example. (a)
Geometry and boundary conditions. (b) Final result

spatial dimensions is presented. The topology is
identified by the elastic material distribution, and
the complaint material is used to represent the
voids. The topological derivative is evaluated,
and an inclusion is nucleated at the regions where
it is negative. This procedure is repeated until
the topological derivative becomes positive ev-
erywhere. For more elaborated topology design
algorithm, see Amstutz and Andrä (2006).

The topological derivative of the shape func-
tional F�.u/, defined by (5), yields

DTF�.u/ D �DTJ�.x/CmDT j˝j .x/ ;

(40)
where DTJ�.x/ is given by (39) and
DT j˝j .x/ is trivially obtained as

DT j˝j .x/ D

�

�1; if x 2 ˝ ;

C1; if x 2 ! :
(41)

In addition, the displacement vector field u is
evaluated by solving problem (7) numerically.

The hold all domain D consists of a simply
supported cube subject to a vertical load Nq applied
on its top, as shown in Fig. 1a. For more details
concerning the problem setting, see (Novotny and
Sokołowski 2013, Ch. 8, pp 213). The parameter
m is chosen in such way that the required final
volume M D 0:02 jD j is attained. The cube is

discretized by using four-node tetrahedron finite
elements, and 5% of material is removed at each
iteration. The obtained result is shown in Fig. 1b.

Conclusion

In this work a connection between Eshelby Me-
chanics and the topological derivative concept
has been investigated. It is well-known that the
Pólya-Szegö polarization tensor, which naturally
appears on the Eshelby theorem, plays a crucial
role on the topological asymptotic analysis. In
addition, the topological derivative can also be
defined as the singular limit of the classical shape
derivative. The associated shape gradient is writ-
ten in terms of the flux of the Eshelby energy-
momentum tensor across to the moving bound-
ary. It means that the polarization tensor is related
to the Eshelby tensor through the limit passage
with respect to the small parameter measuring the
size of the singular domain perturbation. There-
fore, the Eshelby tensor together with the Eshelby
problem in general and the polarization tensor in
particular can be seen as the main ingredients
for the topological derivative concept. Finally,
a simple numerical example has been presented
showing the applicability of the obtained results.
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