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Abstract. In this paper, a noniterative reconstruction method for solving the inverse
potential problem is proposed. The forward problem is governed by a modified Helmholtz
equation. The inverse problem consists in the reconstruction of a set of anomalies em-
bedded into a geometrical domain from partial or total boundary measurements of the
associated potential. Since the inverse problem is written in the form of an ill-posed
boundary value problem, the idea is to rewrite it as a topology optimization problem. In
particular, a shape functional measuring the misfit between the solution obtained from
the model and the data taken from the boundary measurements is minimized with respect
to a set of ball-shaped anomalies by using the concept of topological derivatives. It means
that the shape functional is expanded asymptotically and then truncated up to the desired
order term. The resulting truncated expansion is trivially minimized with respect to the
parameters under consideration which leads to a noniterative second order reconstruction
algorithm. As a result, the reconstruction process becomes very robust with respect to
the noisy data and independent of any initial guess. Finally, some numerical experiments
are presented showing the capability of the proposed method in reconstructing multiple
anomalies of different sizes and shapes by taking into account complete or partial boundary
measurements.

1. Introduction

The topological derivative [37] represents the first term of the asymptotic expansion of
a given shape functional with respect to a small parameter which measures the size of
singular domain perturbations, such as holes, inclusions, source-terms and cracks. This
relatively new concept has been successfully applied in many different fields [34], including
shape and topology optimization, inverse problems, image processing, multiscale material
design and mechanical modeling involving damage and fracture evolution phenomena. The
topological derivative can be seen as a particular case of the broader class of asymptotic
methods fully developed in the books by Ammari & Kang [4] and Ammari et al. [2], for
instance.

In particular, the topological derivative has been successfully applied for solving a wide
class of inverse problems. The basic idea consists in minimizing a shape functional measur-
ing the misfit between boundary measurements and the solution obtained from the model
by using the topological derivative. The obtained sensitivity depending on the background
solution gives qualitative information on the shape and topology of hidden defects. Actu-
ally, the topological derivative with respect to the nucleation of a small crack embedded
into a membrane has been applied in the context of fracture detection from boundary
measurements of the associated potential [6]. In addition, topological derivative has also
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been used to determine the location of small cavities in Stokes flow from velocity boundary
measurements [1]. Special attention has been devoted to the topological derivative asso-
ciated with the Helmholtz problem [36], which has been successfully applied for imaging
small acoustic anomalies [5, 14, 18, 22, 23, 30]. See also an experimental validation of the
topological derivative method in the context of elastic-wave imaging [38]. The stability
and resolution analysis for a topological-derivative-based imaging functional has been pre-
sented in [3], showing why it works so well in the context of inverse scattering. See also
the related work [24]. Finally, applications of topological derivatives in the context of time
domain inverse scattering problem can be found in [8, 15, 17], for instance.

More recently, some reconstruction problems have been solved with the help of higher
order topological derivatives [26]. In particular, the shape functional governing the in-
verse problem is expanded asymptotically with respect to a set of ball-shaped anomalies
and then truncated up to some desired order term. The resulting expression is trivially
minimized with respect to the parameters under consideration, leading to a noniterative
second-order reconstruction algorithm. As a result, the stability issues found in most of
the inverse problems has been resolved naturally in the current analysis. In particular, the
reconstruction process becomes very robust with respect to the noisy data and also inde-
pendent of any initial guess. See, for instance [12, 13, 21, 33, 35]. Iterative reconstruction
algorithms based on level-set methods, for instance, are widely used for solving a large class
of inverse reconstruction problems [11, 16, 28]. In contrast to the methods based on the
topological derivative concept, level-set-based methods are dependent on the initial guess
and, in general, the reconstruction process requires a high number of iterations.

Following the original ideas presented in [19, 20], in this paper we are interested in
the open problem [27, pp. 126, Problem 4.2], whose physical motivation comes out from
semiconductors theory. See also the book [31]. In particular, the corresponding forward
problem is governed by a modified Helmholtz equation into two spatial dimensions. The
inverse problem under consideration is about the reconstruction of a set of anomalies
embedded in a geometrical domain with the help of total or partial measurements of the
associated potential on its boundary. More precisely, let Ω ⊂ R2 be an open and bounded
domain with smooth boundary ∂Ω and Γ◦ ⊆ ∂Ω be the part of the boundary where the
measurements of a scalar field of interest are taken. As illustrated in Figure 1(a), there
may be an unknown number (N∗ ∈ Z+) of isolated anomalies ω∗i within the domain Ω, i.e.,
there is a set ω∗ = ∪N∗i=1ω

∗
i , with open connected components ω∗i which satisfy ω∗i ∩ ω∗j = ∅

for i 6= j and ω∗i ∩ ∂Ω = ∅ for each i, j ∈ {1, · · · , N∗}.
We consider the domain Ω as a bounded region representing a fluid medium which

contains a different fluid substance within a subdomain ω∗. For a given flux gN imposed
on ∂Ω, the resulting substance concentration (potential) z in Ω is observed on a part of
the boundary Γ◦ ⊆ ∂Ω. In this set up, the inverse problem consists in finding kω∗ such
that the substance concentration z satisfies the following over-determined boundary value
problem

 −∆z + kω∗z = 0 in Ω,
∂nz = gN on ∂Ω,
z = gD on Γ◦,

(1.1)
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(a) (b)

Figure 1. A domain Ω (a) with a set of anomalies ω∗ and (b) without anomalies.

where gN and gD are the boundary excitation and boundary measurement, respectively.
The parameter kω∗ is defined as

kω∗ =

{
k in Ω \ ω∗,
γik in ω∗i , i = 1, · · · , N∗, (1.2)

with k, γi ∈ R+, where γi is the contrast with respect to the material property of the
background k. Therefore, in comparison to [19, 20], the main novelty of the current article
is the consideration of a contrast on the material properties in place of compact supported
anomalies. This drives us to choose completely different adjoint and auxiliary states whose
analysis leaded us to use the Bessel’s functions of different types. Another vital aspect of
this paper, in comparison to [19, 20], is the collection of partial data on the boundary of the
domain which makes the inverse problem much more difficult and the obtained result far
more relevant from the application point of view but produced the requirement to devise
a completely different computational mechanism.

Now, for an initial guess kω of kω∗ , we consider the substance concentration field u to be
the solution to the boundary value problem{

−∆u+ kωu = 0 in Ω,
∂nu = gN on ∂Ω,

(1.3)

where

kω =

{
k in Ω \ ω,
γik in ωi, i = 1, · · · , N. (1.4)

The quantity kω∗ is unknown and hence z but we assume that z can be measured in
Γ◦. Therefore, we would like to find kω∗ with the help of measurements of z taken in Γ◦.
If we want to look for an appropriate kω∗ , we wish u to agree with z in Γ◦ i.e. we want
u = z|Γ◦ . In addition, it is well known that we can not reconstruct both the support ω∗i
and the associated contrast γi simultaneously. It comes out from the lack of uniqueness
when both parameters are unknown [19, 20]. Therefore, we assume that γi, i = 1, · · · , N∗
are given and then we focus on the reconstruction of their supports ω∗i , i = 1, · · · , N∗ from
total or partial boundary measurements taken on ∂Ω.

Since the inverse problem (1.1) is written in the form an ill-posed and over-determined
boundary value problem, the idea is to rewrite it as a topology optimization problem [32],
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namely

Minimize
ω⊂Ω

Jω(u1, · · · , uM) =
M∑
m=1

∫
Γ◦

(um − zm)2 , (1.5)

where M ∈ Z+ is the number of observations, zm and um are the solutions of the bound-
ary value problems (1.1) and (1.3), respectively, corresponding to the Neumann data gmN
with m = 1, · · · ,M . Notice that, the minimizer of the topology optimization problem
(1.5) produces the best approximation to ω∗, solution of the inverse problem (1.1), in an
appropriate sense.

The outline of this paper is as follows. In Section 2, we present some preliminaries
including the definitions of first-order and higher-order topological derivatives as well as
the series expansions of some Bessel functions that will be used to establish our main re-
sult. Since the inverse problem we are dealing with is rewritten as a topology optimization
problem, we introduce in Section 3 some tools from the asymptotic methods based on the
topological derivative concept, namely, the functionals associated to the unperturbed and
perturbed domains, the ansätz for a scalar field of interest and some auxiliary boundary
value problems. The topological asymptotic expansion of the shape functional is presented
in Section 4, which is the main result of this article. The a priori estimates of the remain-
ders, obtained in Section 4, are presented in Appendix A. The resulting reconstruction
algorithm is described in Section 5. In order to investigate the capability of the proposed
method in reconstructing multiple anomalies of different sizes and shapes, some numerical
experiments are presented in Section 6. We consider complete and partial boundary mea-
surements and test the robustness of the reconstruction algorithm with respect to noisy
data. Finally, the paper ends in Section 7 with some concluding remarks.

2. Preliminaries

Since the inverse problem (1.1) is rewritten as the topology optimization problem (1.5),
we seek to solve the optimization problem by using the concept of topological derivative
which has been successfully applied to solve a number of inverse problems. In fact, the
concept of topological derivative has been used to devise different numerical schemes for
solving the EIT [9, 21, 26], gravimetry [12, 13], among others anomalies detection problems
[19, 35]. Therefore, for the sake of completeness of the manuscript, we briefly present in
Section 2.1 the main definitions of topological derivatives. Next, in Section 2.2, we intro-
duce series expansions of some Bessel functions that will be used in further calculations.

2.1. Topological derivatives. The topological derivative measures the sensitivity of a
given shape functional with respect to infinitesimal singular domain perturbations such as
the insertion of holes, inclusions or cracks. Mathematically, the topological derivative is the
first term of the asymptotic expansion of such shape functional with respect to the small
parameter which measures the size of the introduced perturbation. In order to clarify the
concept of topological derivative, we present below its mathematical definition which can
be found in the book by Novotny & Soko lowski [34].

In general, an open and bounded domain Ω ⊂ Rd, d ≥ 2, is perturbed by introducing
nonsmooth features confined in a small region ωε (ξ) of size ε > 0 centred at ξ ∈ Ω such

that ωε (ξ) ⊂ Ω. We define a characteristic function having support in the unperturbed
domain Ω of the form χ = 1Ω. Similarly, we introduce a characteristic function χε (ξ)
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associated to the topologically perturbed domain. For example, in the case of holes as
the perturbation ωε (ξ), we can write χε (ξ) = 1Ω − 1ωε(ξ) and the singularly perturbed

domain can be represented by Ωε (ξ) = Ω\ωε (ξ). Further, one assumes that a given shape
functional ψ (χε (ξ)) associated to the topologically perturbed domain Ωε (ξ) admits the
following topological asymptotic expansion

ψ (χε (ξ)) = ψ (χ) + f (ε)DTψ (ξ) + o (f (ε)) , (2.1)

where ψ (χ) is the shape functional associated to the reference (unperturbed) domain Ω
and f (ε) is a positive function depending upon the size ε of the topological perturbation
such that f (ε) → 0 when ε ↓ 0. The function ξ 7→ DTψ (ξ) is called the first order
topological derivative of the shape functional ψ at ξ. Mathematically, we can express it as

DTψ (ξ) := lim
ε→0

ψ (χε (ξ))− ψ (χ)

f (ε)
. (2.2)

Similarly, the second order topological derivative of the shape functional ψ at ξ can be
obtained by expanding the remainder term o (f (ε)) in (2.1). More precisely, we will get
the topological asymptotic expansion

ψ (χε (ξ)) = ψ (χ) + f (ε)DTψ (ξ) + f2 (ε)D2
Tψ (ξ) + o (f2 (ε)) , (2.3)

where f2 (ε) is such that

lim
ε→0

f2 (ε)

f (ε)
= 0. (2.4)

Thus, the second order topological derivative can be defined as

D2
Tψ (ξ) := lim

ε→0

ψ (χε (ξ))− ψ (χ)− f (ε)DTψ (ξ)

f2 (ε)
. (2.5)

Furthermore, one can define higher order topological derivatives by arguing analogously.

2.2. Series expansions for Bessel functions. In this section, we introduce the asymp-
totic expansion of some modified Bessel functions to be used next.

We denote the modified Bessel functions of the first kind and order n by In with n ∈ Z.
As x→ 0+, we have the following asymptotic expansions:

I0(x) = 1 +
1

4
x2 + Ĩ0(x), Ĩ0(x) = O(x4) (2.6)

and

I1(x) =
1

2
x+

1

16
x3 + Ĩ1(x), Ĩ1(x) = O(x5). (2.7)

The modified Bessel functions of the second kind and order n are denoted by Kn with
n ∈ Z. As x→ 0+, we have the following asymptotic expansions:

K0(x) = (ln 2− ζ)− lnx− 1

4
x2 lnx+

1

4
(1 + ln 2− ζ)x2 + K̃0(x), K̃0(x) = O(x4) (2.8)

and

K1(x) =
1

x
+

1

2
x lnx+

1

2

(
ζ − ln 2− 1

2

)
x+

1

16
x3 lnx+

1

16

(
ζ − ln 2− 5

4

)
x3 + K̃1(x),

(2.9)
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K̃1(x) = O(x5). In (2.8) and (2.9), ζ is the Euler constant. The above series expansions
were obtained from [29, s. 17.7, pp. 276-277].

3. Topology optimization setting

The inverse problem (1.1) has been written in the form of a topology optimization
problem (1.5). It is well known that a quite general approach for dealing with such class
of problems is based on the concept of topological derivative, which consists in expanding
the shape functional Jω

(
u1, · · · , uM

)
with respect to the parameters depend upon a set

of small inclusions. Since the topological derivative does not depend on the initial guess
of the unknown topology ω∗, we start with the unperturbed domain by setting ω = ∅, see
Figure 1(b). More precisely, we consider

J0(u1
0, · · · , uM0 ) =

M∑
m=1

∫
Γ◦

(um0 − zm)2 , (3.1)

where um0 be the solution of the unperturbed boundary value problem{
−∆um0 + kum0 = 0 in Ω,

∂nu
m
0 = gmN on ∂Ω,

(3.2)

In this paper, we are considering the topology optimization problem (1.5) for the ball-
shaped anomalies and hence we define the topologically perturbed counter-part of (3.2) by
introducing N ∈ Z+ number of small circular inclusions Bεi (xi) with center at xi ∈ Ω and
radius εi for i = 1, · · · , N . The set of inclusions can be denoted as

Bε (ξ) =
N⋃
i=1

Bεi (xi) , (3.3)

where ξ = (x1, . . . , xN) and ε = (ε1, . . . , εN). Moreover, we assume that Bε ∩ ∂Ω = ∅
and Bεi (xi) ∩ Bεj (xj) = ∅ for each i 6= j and i, j ∈ {1, · · · , N}. The shape functional
associated with the topologically perturbed domain is written as

Jε(u1
ε, · · · , uMε ) =

M∑
m=1

∫
Γ◦

(umε − zm)2 (3.4)

with umε be the solution of the perturbed boundary value problem{
−∆umε + kεu

m
ε = 0 in Ω,

∂nu
m
ε = gmN on ∂Ω,

(3.5)

where the parameter kε is defined as

kε =

{
k in Ω \ ∪Ni=1Bεi (xi),
γik in Bεi (xi) .

(3.6)

In order to obtain the topological derivatives of the shape functional Jε at uε, we start
by simplifying the difference between the perturbed shape functional Jε

(
u1
ε, · · · , uMε

)
and



7

its unperturbed counter-part J0

(
u1

0, · · · , uM0
)

defined in (3.4) and (3.1), respectively, as
follows

Jε (uε)− J0 (u0) =
M∑
m=1

∫
Γ◦

[
2 (umε − um0 ) (um0 − zm) + (umε − um0 )2] , (3.7)

where uε =
(
u1
ε, · · · , uMε

)
and u0 =

(
u1

0, · · · , uM0
)
.

For m = 1, · · · ,M , let us consider the following ansätz

umε (x) = um0 (x) + k
N∑
i=1

|Bεi (xi) |(γi − 1)hε,mi (x)

+ k2

N∑
i=1

N∑
j=1

|Bεi (xi) ||Bεj (xj) |(γi − 1)(γj − 1)hε,mij (x) + ũmε (x) , (3.8)

where |Bεi (xi) | is the Lebesgue measure (volume) of the two-dimensional ball Bεi (xi), i.e.,
|Bεi (xi) | = πε2

i . Furthermore, for each i, j = 1, · · · , N and m = 1, · · · ,M , hε,mi , hε,mij and
ũmε are the solutions of −∆hε,mi + khε,mi = − um0

|Bεi (xi) |
χBεi (xi)

in Ω,

∂nh
ε,m
i = 0 on ∂Ω,

(3.9)

 −∆hε,mij + khε,mij = −
hε,mj

|Bεi (xi) |
χBεi (xi)

in Ω,

∂nh
ε,m
ij = 0 on ∂Ω,

(3.10)

and {
−∆ũmε + kεũ

m
ε = Φm

ε in Ω,
∂nũ

m
ε = 0 on ∂Ω,

(3.11)

respectively. In problem (3.11), we have

Φm
ε = −k3

N∑
i=1

N∑
j=1

N∑
l=1

|Bεj (xj) ||Bεl (xl) |(γi − 1)(γj − 1)(γl − 1)hε,mjl χBεi (xi)
. (3.12)

To simplify the notation, let us introduce the quantities

αi = |Bεi (xi) | and βi = (γi − 1), (3.13)

for i = 1, · · · , N , from which we define the vector

α = (α1, · · · , αN). (3.14)

By using (3.13), the expansion (3.8) will have the form

umε (x) = um0 (x) + k
N∑
i=1

αiβih
ε,m
i (x) + k2

N∑
i=1

N∑
j=1

αiαjβiβjh
ε,m
ij (x) + ũmε (x) . (3.15)

In order to simplify further analysis, we write hε,mi as a sum of three functions pεi , qi and

h̃ε,mi in the form

hε,mi = um0 (xi)h
ε
i + h̃ε,mi with hεi = pεi + qεi . (3.16)
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The function pεi is solution of
−∆pεi + kpεi = − 1

|Bεi (xi) |
χBεi (xi)

in BR(xi),

pεi = λεi3 K0(
√
kR) on ∂BR(xi),

(3.17)

with Bεi(xi) ⊂ Ω ⊂ BR(xi), xi ∈ Ω, 0 < εi � R. Moreover, λεi3 denotes a constant
depending on εi to be presented next. Problem (3.17) can be solved analytically and its
solution is

pεi (x) =

{
λεi1 + λεi2 I0(

√
k‖x− xi‖) in Bεi(xi),

λεi3 K0(
√
k‖x− xi‖) in BR(xi) \Bεi(xi),

(3.18)

with

λεi1 = − 1

kπε2
i

, (3.19)

λεi2 =
1

kπε2
i

K1(
√
kεi)

K0(
√
kεi)I1(

√
kεi) +K1(

√
kεi)I0(

√
kεi)

, (3.20)

and

λεi3 = − 1

kπε2
i

I1(
√
kεi)

K0(
√
kεi)I1(

√
kεi) +K1(

√
kεi)I0(

√
kεi)

. (3.21)

We can use the asymptotic expansions (2.6)-(2.9) to rewrite (3.20) and (3.21) as follows

λεi2 =
1

kπε2
i

+ λ+
1

2π
ln εi + λ̃εi2 , λ̃εi2 = O(ε2

i ), (3.22)

with

λ =
1

4π
(2ζ + ln k − 2 ln 2− 1) (3.23)

and

λεi3 = − 1

2π
+ λ̃εi3 , λ̃εi3 = O(ε2

i ). (3.24)

Taking into account the solution pεi of the problem (3.17), we write qεi = λεi3 qi, where qi is
the solution to the homogeneous boundary value problem{

−∆qi + kqi = 0 in Ω,

∂nqi = −∂nK0(
√
k‖x− xi‖) on ∂Ω

(3.25)

and h̃ε,mi solves the boundary value problem −∆h̃ε,mi + kh̃ε,mi = − 1

|Bεi (xi) |
(um0 − um0 (xi))χBεi (xi)

in Ω,

∂nh̃
ε,m
i = 0 on ∂Ω.

(3.26)

From the decomposition (3.16) and the solution of the problem (3.17), we can introduce
the notation

hε,mi :=

{
um0 (xi)h

ε
i |Bεi

+ h̃ε,mi in Bεi(xi),

um0 (xi)h
ε
i |Ω\Bεi

+ h̃ε,mi in Ω \Bεi(xi),
(3.27)

with
hεi |Bεi

:= pεi |Bεi

+ λεi3 qi and hεi |Ω\Bεi

:= pεi |Ω\Bεi

+ λεi3 qi, (3.28)
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where pεi |Bεi

is the solution of the problem (3.17) in Bεi(xi) and pεi |Ω\Bεi

is the solution of

the same problem in Ω \ Bεi(xi). Moreover, we also introduce an adjoint state vm as the
solution of the following auxiliary boundary value problem −∆vm + kvm = 0 in Ω,

∂nv
m = 0 on ∂Ω \ Γ◦,

∂nv
m = um0 − zm on Γ◦.

(3.29)

4. Main theorem

In this section, we state our main result which consists in the closed form of the topo-
logical derivatives appear in the topological asymptotic expansion of the perturbed cost
functional. Let us first introduce the vector d ∈ RN and the matrices G, H ∈ RN×N whose
entries are defined as

di := 2kβi

M∑
m=1

um0 (xi)v
m(xi), (4.1)

Gii := − 1

2π
k2β2

i

M∑
m=1

um0 (xi)v
m(xi), Gij = 0, if i 6= j (4.2)

and

Hii := − 1

π
k2βi

M∑
m=1

um0 (xi)v
m(xi)−

1

π
kβi

M∑
m=1

∇um0 (xi) · ∇vm(xi)

− 1

2π
σk2β2

i

M∑
m=1

um0 (xi)v
m(xi) +

2

π
k2β2

i

M∑
m=1

um0 (xi)v
m(xi)qi(xi)

+
1

2π2
k2β2

i

M∑
m=1

[um0 (xi)]
2 Iii, (4.3)

Hij :=
2

π
k2βiβj

M∑
m=1

um0 (xj)v
m(xi)Kij +

2

π
k2βiβj

M∑
m=1

um0 (xj)v
m(xi)qj(xi)

+
1

2π2
k2βiβj

M∑
m=1

um0 (xi)u
m
0 (xj) Iij, (4.4)

if i 6= j; respectively, for i, j = 1, · · · , N . In (4.3), σ is a constant given by

σ = −1 + 4ζ + ln
k2

16π2
(4.5)

with ζ denoting the Euler constant. Moreover, for i, j = 1, · · · , N , Kij and Iij appearing
in (4.3)-(4.4) are, respectively, a number given by

Kij = K0(
√
k‖xi − xj‖), (4.6)

and an integral defined as

Iij =

∫
Γ◦

[K0(
√
k‖x− xi‖) + qi (x)][K0(

√
k‖x− xj‖) + qj (x)], (4.7)
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where K0(x) denotes the modified Bessel function of the second kind and zero order. We
are now in position to state the main result of this paper.

Theorem 1. Let qi for i = 1, · · · , N and um0 , vm for m = 1, · · · ,M be the functions defined
in (3.25) and (3.2), (3.29), respectively. Additionally, let d, G and H be the vector and
the matrices whose entries are defined in (4.1), (4.2) and (4.3)-(4.4), respectively. Then,
for the vector α introduced in (3.13), we have the following asymptotic expansion for the
topologically perturbed cost functional ψ (χε (ξ)) := Jε (uε) defined in (3.4):

ψ (χε (ξ)) = ψ (χ)− α · d(ξ) +G(ξ)α · diag(α⊗ lnα) +
1

2
H(ξ)α · α + o(|α|2) , (4.8)

where ψ (χ) := J0 (u0) is the topologically unperturbed cost functional from (3.1).

Proof. The reader interested in the proof of this result may refer to Appendix A. �

5. A noniterative reconstruction algorithm

The optimization problem (1.5) to find the approximation ω? to ω∗ is solved by using
a noniterative scheme devised from the topological asymptotic expansion of the shape
functional Jε (uε) given by (4.8). We start by disregarding the terms of order o (|α|2) in
(4.8), which leads us to the truncated expansion written as

δJ (α, ξ,N) := −α · d(ξ) +G(ξ)α · diag(α⊗ lnα) +
1

2
H(ξ)α · α. (5.1)

Since we are looking for the pair (α?, ξ?) which minimizes (5.1) for a given number N of
anomalies, we differentiate δJ (α, ξ,N) with respect to the variable α to obtain the first
order optimality condition given by the following non-linear system

(H(ξ) +G(ξ))α + 2G(ξ)diag(α⊗ logα) = d(ξ), (5.2)

where the entries of the vector d ∈ RN and the matrices G,H ∈ RN×RN are given by (4.1),
(4.2) and (4.3)-(4.4), respectively. The non-linear system (5.2) is solved by using Newton’s
method. Note that, if α is solution of the system (5.2), then it becomes a function of the
locations ξ, that is, α = α (ξ). Let us now replace the solution of (5.2) into δJ (α, ξ,N) to
obtain

δJ (α (ξ) , ξ, N) = −1

2
(d (ξ) +G (ξ)α (ξ)) · α (ξ) . (5.3)

Therefore, the pair of vectors (ξ?, α?) which minimizes (5.1) is given by

ξ? := argmin
ξ∈X

δJ(α(ξ), ξ, N) and α? := α(ξ?), (5.4)

where X denotes a set of admissible anomalies locations.
In summary, for a given number N of trial inclusions, the reconstruction algorithm is

able to find in one step their locations ξ? and sizes α?. We highlight some features of
the proposed algorithm. Firstly, it is noniterative and independent of initial guess, which
makes it very robust with respect to noisy data. On the other hand, the approximation of
any anomaly ω∗ by a ball-shaped inclusion ω? can be seen as a limitation of our approach.
Despite this, our algorithm can be used to get a good initial guess for iterative approaches
such as those based on level-set methods [7, 28], for instance. The algorithm can be found
in pseudo-code format in [33].
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6. Numerical examples

The algorithm described in the previous section is applied to several examples to demon-
strate the effectiveness of our approach. The numerical examples are conducted in scenarios
of complete and partial boundary measurements in order to investigate the capability of
the proposed method in reconstructing multiple anomalies of different sizes and shapes.
We also have tested the robustness of the reconstruction with respect to noisy data.

The reference geometrical domain is given by a square Ω = (−0.5, 0.5) × (−0.5, 0.5)
which is discretized with three-node finite elements. The mesh is generated from a grid of
160×160 squares. Each square is divided into four triangles which leads to a resulting mesh
comprising 102400 elements and 51521 nodes. The boundary of the geometrical domain
∂Ω is excited by imposing three different Neumann data, namely, g1

N = 1, g2
N = x and

g3
N = y. The associated potential gmD , for m = 1, 2, 3, is measured on the whole boundary

Γ◦ = ∂Ω or on a part of it Γ◦ ( ∂Ω. The material property of the background is assumed
to be uniform and given by k = 1. For a number M of measurements, the objective is to
reconstruct a number N∗ of anomalies with contrast γi = γ, γ ∈ R+, for i = 1, · · · , N∗,
from the help of measurements of the potential gmD taken in Γ◦.

For a fixed unknown number of inclusions N which we are going to find, the solution α
of the non-linear system (5.2) requires the entries of the vector d ∈ RN and the matrices
G,H ∈ RN × RN which, in turn, are dependent on the computation of the functions um0 ,
qi and vm - see equations (4.1)-(4.4). These functions, solutions of the auxiliary boundary
value problems (3.2), (3.25) and (3.29), respectively, are computed over the mentioned
resulting mesh. The combinatorial search is performed on a sub-grid X consisting of
uniformly distributed points extracted from the mesh. For all examples below, we consider
a fixed sub-grid X comprising 181 points such that the optimal solution (ξ?, α?) is defined
in X.

In the case of noisy data, the parameter kω∗ is replaced by kµω∗ = kω∗ (1 + µτ), where τ
is a random variable taking values in the interval (−1, 1) and µ corresponds to the noise
level.

6.1. Complete boundary measurements. In this section, we present three examples
concerning total boundary measurements, i.e., for a boundary excitation (through the Neu-
mann data gmN , m = {1, 2, 3}) imposed on ∂Ω, the corresponding boundary measurement
(through the associated potential gmD ) is taken on the whole boundary Γ◦ = ∂Ω. The first
example analyses the sensitivity of the reconstruction with respect to the contrast. In the
second one, two anomalies of different shapes and sizes are approximated by a number of
trial balls. Finally, in the third example, we investigate the robustness of the reconstruction
method with respect to the noisy data.

6.1.1. Example 1. Sensitivity of the reconstruction with respect to the contrast γ ∈ R+ is
analysed in this example. In this case, we consider a single anomaly to be reconstructed
from one boundary measurement. The target anomaly ω∗ is given by a circular region with
radius ε∗ = 0.05 and center located at the origin i.e., x∗ = (0, 0). The boundary of the
domain is excited by imposing the Neumann data g1

N = 1. The values for the contrast γ
were taken in the form γ = 2s with s ∈ [−7, 7] ⊂ Z \ {0}. The center x∗ of the anomaly ω∗

was successfully found for all values of γ. Concerning to the size ε∗ of the anomaly, one can
state that the higher is the value of the contrast, the more underestimated is the predicted
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radius ε?. See Figure 2 where we have plotted the obtained radius ε? on vertical axis
against the value of γ on horizontal axis. From now on, for any number N∗ of anomalies
we are going to reconstruct, we take the value of the contrast as γi = 2, for i = 1, · · · , N∗.

27 26 25 24 23 22 2 2-1 2-2 2-3 2-4 2-5 2-6 2-7
0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

Figure 2. Example 1: The approximated solution ε? for different values of γ.

6.1.2. Example 2. In this example, we detect the topology as well as the shape of the
anomalies. The target domain contains two anomalies such that one of them is a square-
shaped anomaly while the other is a small circular region, as shown in Figure 3(a). The
reconstruction of two anomalies of different shapes induces us to increase the number of
measurements due to the need for more information to achieve a satisfactory result. In
fact, Figure 3(b) shows us the reconstruction when only one measurement is considered
with the Neumann data g2

N = x. Such a result can be improved by taking into account
all the Neumann data simultaneously, i.e., the reconstruction is performed from the mea-
surements obtained with g1

N = 1, g2
N = x and g3

N = y. In this case, the square-shaped
anomaly is approximated by a ball-shaped geometry which has approximately the same
volume and its center coincides with the centroid of the square. Concerning to the circu-
lar anomaly, the reconstruction process accurately found its exact center and the radius
obtained is approximately equal to the true value. We demonstrate the numerical result
in the Figure 3(c). The results obtained here motivate us to take into account all the
three boundary excitations g1

N , g2
N and g3

N in the forthcoming examples of reconstructing
multiple anomalies.
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(a) target (b) result with M = 1 (c) result with M = 3

Figure 3. Example 2.

6.1.3. Example 3. The robustness of the method with respect to noisy data is investigated
in this example. The target consists of three embedded anomalies of same size, as illustrated
in Figure 4(a)(left). The anomalies are accurately reconstructed in the absence of noise.
This result is demonstrated in Figure 4(a)(right). The parameter kω∗ is now corrupted
with different levels of noise. We illustrate the target domains corresponding to the cases
where kω∗ is corrupted with level of noise equal to µ = 20%, µ = 40% and µ = 50% on the
left side of the Figures 4(b), 4(c) and 4(d), respectively. From the results presented on the
right side of the Figure 5, we can observe that the anomalies are reconstructed successfully
for levels of noise up to 40%. The reconstruction is completely degraded for levels of noise
greater than 40%, as can be seen in Figure 4(d)(right).

6.2. Partial boundary measurements. We present one last example concerning to par-
tial boundary measurements which means we impose boundary excitations gmN (m = 1, 2, 3)
on whole ∂Ω but we collect the boundary measurements of the potential gmD just on a part
of it Γ◦  ∂Ω. In particular, we consider the boundary Γ◦ as the union of eight disjoint
parts which are represented by thick black lines in Figure 5.

6.2.1. Example 4. The target consists of two ball-shaped anomalies of different sizes which
is corrupted with different levels of noise. We illustrate the target domain in the absence of
noise in Figure 5(a)(left). On the left side of the Figures 5(b)-5(d), we present the target
domains corresponding to the cases where the parameter kω∗ is corrupted with level of noise
µ = 20%, µ = 40% and µ = 50%, respectively. Anomalies are successfully reconstructed
in the absence of noise, as can be seen in 5(a)(right). For levels of noise up to 40% the
reconstruction scheme is able to find the exact centers of the anomalies and the obtained
radii are approximately equal to the true values. The reconstruction starts to be degraded
for levels of noise greater than 40%. These results are demonstrated in Figures 5(b)-5(d).
Through this example, we can verify that the proposed method is robustness with respect
to noisy data even in scenarios of partial boundary measurements.
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(a) µ = 0%

(b) µ = 20%

(c) µ = 40%

(d) µ = 50%

Figure 4. Example 3: Target (left) and the respective result (right) for
different levels of noise.



15

(a) µ = 0%

(b) µ = 20%

(c) µ = 40%

(d) µ = 50%

Figure 5. Example 4: Target (left) and the respective result (right) for
different levels of noise.
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7. Conclusions

In the paper we have considered the open problem discussed in the book by Isakov [27,
pp. 126, Problem 4.2]. In particular, a noniterative reconstruction method for solving
the above inverse problem has been proposed. The general idea consists in rewrite the
inverse problem as a topology optimization problem, where a shape functional measuring
the misfit between the boundary measurements and the solution obtained from the model
is expanded with respect to a set of ball-shaped anomalies and then truncated up to
the desired order term. The truncated expansion has been used to devise a noniterative
reconstruction algorithm based on a simple optimization step, which has been proved to
be very robust with respect to noisy data and also independent of any initial guess. On the
other hand, approximating the solution to the inverse problem by a finite number of balls
can be seen as a limitation of our approach. However, the reconstruction obtained may
serve as an initial guess for other well-established and more computationally sophisticated
iterative methods [7, 10, 25, 28, 39].

Appendix A. Proof of the main result

The proof of Theorem 1 is demonstrated in three steps. Firstly, we develop the asymp-
totic expansion of the topologically perturbed cost functional. Next, we prove a priori
estimates related to the auxiliary states h̃ε,mi , hε,mi , hε,mij and ũmε for i, j = 1, · · · , N and
m = 1, · · · ,M . Finally, in the last part of this section, the previously obtained results are
used to estimate the remainders appeared in the first step. These estimates justify our
topological asymptotic expansion (A.30).

A.1. Asymptotic development of the shape functional. Let us use (3.15) in (3.7),
to obtain

Jε (uε)− J0 (u0) = 2k
M∑
m=1

N∑
i=1

αiβi

∫
Γ◦

hε,mi (um0 − zm)

+ 2k2

M∑
m=1

N∑
i=1

N∑
j=1

αiαjβiβj

∫
Γ◦

hε,mij (um0 − zm)

+ k2

M∑
m=1

N∑
i=1

N∑
j=1

αiαjβiβj

∫
Γ◦

hε,mi hε,mj +
M∑
m=1

6∑
`=1

Em` (ε) , (A.1)

where

Em1 (ε) = 2

∫
Γ◦

ũmε (um0 − zm) , (A.2)

Em2 (ε) = 2k3

N∑
i=1

N∑
j=1

N∑
l=1

αiαjαlβiβjβl

∫
Γ◦

hε,mi hε,mjl , (A.3)

Em3 (ε) = 2k
N∑
i=1

αiβi

∫
Γ◦

hε,mi ũmε , (A.4)
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Em4 (ε) = k4

N∑
i=1

N∑
j=1

N∑
l=1

N∑
p=1

αiαjαlαpβiβjβlβp

∫
Γ◦

hε,mij hε,mlp , (A.5)

Em5 (ε) = 2k2

N∑
i=1

N∑
j=1

αiαjβiβj

∫
Γ◦

hε,mij ũmε (A.6)

and

Em6 (ε) =

∫
Γ◦

(ũmε )2 . (A.7)

Now, let us introduce the weak formulation of the adjoint problem (3.29) which is to
find vm ∈ H1(Ω) such that∫

Ω

∇vm · ∇η + k

∫
Ω

vmη =

∫
Γ◦

(um0 − zm) η, ∀η ∈ H1(Ω). (A.8)

The weak formulations of the problems (3.9) and (3.10) are to find hε,mi ∈ H1 (Ω) such that∫
Ω

∇hε,mi · ∇η + k

∫
Ω

hε,mi η = − 1

αi

∫
Bεi (xi)

um0 η, ∀η ∈ H1 (Ω) (A.9)

and hε,mij ∈ H1 (Ω) such that∫
Ω

∇hε,mij · ∇η + k

∫
Ω

hε,mij η = − 1

αi

∫
Bεi (xi)

hε,mj η, ∀η ∈ H1 (Ω) , (A.10)

respectively. By taking η = hε,mi in (A.8) and η = vm in (A.9) as test functions, we get∫
Γ◦

hε,mi (um0 − zm) = − 1

αi

∫
Bεi (xi)

um0 v
m. (A.11)

Similarly, if we take η = hε,mij in (A.8) and η = vm in (A.10) as test functions, it gives∫
Γ◦

hε,mij (um0 − zm) = − 1

αi

∫
Bεi (xi)

hε,mj vm. (A.12)

By using (A.11) and (A.12) in (A.1), we get

Jε (uε)− J0 (u0) = −2k
M∑
m=1

N∑
i=1

βi

∫
Bεi (xi)

um0 v
m − 2k2

M∑
m=1

N∑
i=1

N∑
j=1

αjβiβj

∫
Bεi (xi)

hε,mj vm

+ k2

M∑
m=1

N∑
i=1

N∑
j=1

αiαjβiβj

∫
Γ◦

hε,mi hε,mj +
M∑
m=1

6∑
`=1

Em` (ε) . (A.13)
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Taking into account the decomposition (3.27), we get

Jε (uε)− J0 (u0) = −2k
M∑
m=1

N∑
i=1

βi

∫
Bεi (xi)

um0 v
m

−2k2

M∑
m=1

N∑
i=1

αiβ
2
i u

m
0 (xi)

∫
Bεi (xi)

hεi |Bεi

vm−2k2

M∑
m=1

N∑
i=1

N∑
j=1
j 6=i

αjβiβju
m
0 (xj)

∫
Bεi (xi)

hεj |Ω\Bεj

vm

+ k2

M∑
m=1

N∑
i=1

N∑
j=1

αiαjβiβju
m
0 (xi)u

m
0 (xj)

∫
Γ◦

hεi |Ω\Bεi

hεj |Ω\Bεj

+
M∑
m=1

10∑
`=1

Em` (ε) . (A.14)

Here, the four new remainders are defined as

Em7 (ε) = k2

N∑
i=1

N∑
j=1

αiαjβiβj

∫
Γ◦

(
um0 (xi)h

ε
i |Ω\Bεi

h̃ε,mj + um0 (xj)h
ε
j |Ω\Bεj

h̃ε,mi

)
, (A.15)

Em8 (ε) = k2

N∑
i=1

N∑
j=1

αiαjβiβj

∫
Γ◦

h̃ε,mi h̃ε,mj , (A.16)

Em9 (ε) = −2k2

N∑
i=1

αiβ
2
i

∫
Bεi (xi)

h̃ε,mi vm, (A.17)

Em10 (ε) = −2k2

N∑
i=1

N∑
j=1
j 6=i

αjβiβj

∫
Bεi (xi)

h̃ε,mj vm. (A.18)

By using the notations introduced in (3.28) and the analytical form of pεi given by (3.18),
the asymptotic expansion (A.14) takes the form

Jε (uε)− J0 (u0) = −2k
M∑
m=1

N∑
i=1

βi

∫
Bεi (xi)

um0 v
m − 2k2

M∑
m=1

N∑
i=1

α2
iλ

εi
1 β

2
i u

m
0 (xi) v

m (xi)

− 2k2

M∑
m=1

N∑
i=1

αiλ
εi
2 Iεiβ2

i u
m
0 (xi) v

m (xi)− 2k2

M∑
m=1

N∑
i=1

α2
iλ

εi
3 β

2
i u

m
0 (xi) v

m (xi) qi (xi)

− 2k2

M∑
m=1

N∑
i=1

N∑
j=1
j 6=i

αjβiβju
m
0 (xj)

∫
Bεi (xi)

pεj |Ω\Bεj

vm

− 2k2

M∑
m=1

N∑
i=1

N∑
j=1
j 6=i

αiαjλ
εj
3 βiβju

m
0 (xj) v

m (xi) qj (xi)

+ k2

M∑
m=1

N∑
i=1

N∑
j=1

αiαjλ
εi
3 λ

εj
3 βiβju

m
0 (xi)u

m
0 (xj) Iij +

M∑
m=1

15∑
`=1

Em` (ε) , (A.19)
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with

Iεi =

∫
Bεi (xi)

I0(
√
k‖x− xi‖), (A.20)

and Iij given by (4.7). The new remainders are such that

Em11 (ε) = −2k2

N∑
i=1

αiβ
2
i u

m
0 (xi)

∫
Bεi (xi)

hεi |Bεi

(vm − vm (xi)) , (A.21)

Em12 (ε) = −2k2

N∑
i=1

αiλ
εi
3 β

2
i u

m
0 (xi) v

m (xi)

∫
Bεi (xi)

(qi − qi (xi)) , (A.22)

Em13 (ε) = −2k2

N∑
i=1

N∑
j=1
j 6=i

αjλ
εj
3 βiβju

m
0 (xj) qj (xi)

∫
Bεi (xi)

(vm − vm (xi)) , (A.23)

Em14 (ε) = −2k2

N∑
i=1

N∑
j=1
j 6=i

αjλ
εj
3 βiβju

m
0 (xj) v

m (xi)

∫
Bεi (xi)

(qj − qj (xi)) , (A.24)

Em15 (ε) = −2k2

N∑
i=1

N∑
j=1
j 6=i

αjλ
εj
3 βiβju

m
0 (xj)

∫
Bεi (xi)

(qj − qj (xi)) (vm − vm (xi)) . (A.25)

Now, let us obtain an explicit form depending on εi for Iεi . From (A.20), the integral
gives us

Iεi =
2π√
k
εiI1(
√
kεi) = πε2

i +
1

8
kπε4

i + Ĩεi (A.26)

with Ĩεi = O(ε6
i ), where we have used the asymptotic expansion (2.7) of the function

I1(
√
kεi).

We can simplify (A.19) further by noting the following:

(i) In the first and fifth terms on the right-hand side of (A.19), we can consider the
Taylor’s expansions of the functions um0 , vm and pεj |Ω\Bεj

around the point xi, namely,

um0 (x) = um0 (xi) +∇um0 (xi) · (x− xi)

+
1

2
∇2um0 (xi) (x− xi) · (x− xi) +D3um0 (x̂) (x− xi)3 , (A.27)

vm (x) = vm (xi) +∇vm (xi) · (x− xi)

+
1

2
∇2vm (xi) (x− xi) · (x− xi) +D3vm (x̂) (x− xi)3 , (A.28)
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and

pεj |Ω\Bεj

(x) = pεj |Ω\Bεj

(xi) + ∇pεj |Ω\Bεj

(xi) · (x− xi) + D2pεj |Ω\Bεj

(x̂) (x− xi)2 ,

(A.29)

respectively, where x̂ is an intermediate point between x and xi. Moreover, Dnf(x̂)(x−
xi)

n, n ≥ 1, n ∈ N, denotes the last nth term of the Taylor’s expansion of a function
f(x) around xi. Since the function pεj |Ω\Bεj

is written in terms of λ
εj
3 , we also use

the asymptotic expansion (3.24) in further calculations related to the fifth integral.
(ii) In all other terms of (A.19), we simply use the asymptotic expansions of λεi1 , λεi2 ,

λεi3 and Iεi given by (3.19), (3.22), (3.24) and (A.26), respectively.

Finally, after taking into account the above mentioned observations, (A.19) takes the
form

Jε (uε)−J0 (u0) = −2k
M∑
m=1

N∑
i=1

αiβiu
m
0 (xi) v

m (xi)−
1

2π
k2

M∑
m=1

N∑
i=1

α2
i lnαi β

2
i u

m
0 (xi) v

m (xi)

− 1

2π
k2

M∑
m=1

N∑
i=1

α2
iβiu

m
0 (xi) v

m (xi)−
1

2π
k

M∑
m=1

N∑
i=1

α2
iβi∇um0 (xi) · ∇vm (xi)

− 1

4π
σk2

M∑
m=1

N∑
i=1

α2
iβ

2
i u

m
0 (xi) v

m (xi) +
1

π
k2

M∑
m=1

N∑
i=1

α2
iβ

2
i u

m
0 (xi) v

m (xi) qi (xi)

+
1

π
k2

M∑
m=1

N∑
i=1

N∑
j=1
j 6=i

αiαjβiβju
m
0 (xj) v

m (xi)Kij+
1

π
k2

M∑
m=1

N∑
i=1

N∑
j=1
j 6=i

αiαjβiβju
m
0 (xj) v

m (xi) qj (xi)

+
1

4π2
k2

M∑
m=1

N∑
i=1

N∑
j=1

αiαjβiβju
m
0 (xi)u

m
0 (xj) Iij + E(ε) +R(ε), (A.30)

where σ is a constant independent of εi given by (4.5) and Kij is given by (4.6). Moreover,
we have

E(ε) =
M∑
m=1

23∑
`=1

Em` (ε) and R(ε) =
M∑
m=1

14∑
k=1

Rm
k (ε) . (A.31)

The new remainders are such that

Em16 (ε) = −2k
N∑
i=1

βi

∫
Bεi (xi)

[∇um0 (xi) · (x− xi)]
[
D3vm (x̂) (x− xi)3] , (A.32)

Em17 (ε) = −2k
N∑
i=1

βi

∫
Bεi (xi)

[
D2um0 (xi) (x− xi)2] [D2vm (xi) (x− xi)2] , (A.33)

Em18 (ε) = −2k
N∑
i=1

βi

∫
Bεi (xi)

[∇vm (xi) · (x− xi)]
[
D3um0 (x̂) (x− xi)3] , (A.34)
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Em19 (ε) = −2k
N∑
i=1

βi

∫
Bεi (xi)

[
D3um0 (x̂) (x− xi)3] [D3vm (x̂) (x− xi)3] , (A.35)

Em20 (ε) = −2k2

N∑
i=1

N∑
j=1
j 6=i

αjβiβju
m
0 (xj) p

ε
j |Ω\Bεj

(xi)

∫
Bεi (xi)

D2vm (x̂) (x− xi)2 , (A.36)

Em21 (ε) = −2k2

N∑
i=1

N∑
j=1
j 6=i

αjβiβju
m
0 (xj) v

m (xi)

∫
Bεi (xi)

D2pεj |Ω\Bεj

(x̂) (x− xi)2 , (A.37)

Em22 (ε) = −2k2

N∑
i=1

N∑
j=1
j 6=i

αjβiβju
m
0 (xj)

∫
Bεi (xi)

[∇pεj |Ω\Bεj

(xi) · (x− xi)][∇vm(xi) · (x− xi)],(A.38)

Em23 (ε) = −2k2

N∑
i=1

N∑
j=1
j 6=i

αjβiβju
m
0 (xj)

∫
Bεi (xi)

[D2pεj |Ω\Bεj

(x̂) (x− xi)2][D2vm (x̂) (x− xi)2].(A.39)

Additionally, the use of the asymptotic expansions of λεi1 , λεi2 , λεi3 and Iεi in (A.19) produces
residual terms, namely,

Rm
1 (ε) = −2k

N∑
i=1

Ĩεiβ2
i u

m
0 (xi) v

m (xi) = O(|ε|6), (A.40)

Rm
2 (ε) = −1

4
k3π2λ

N∑
i=1

ε6
iβ

2
i u

m
0 (xi) v

m (xi) = O(|ε|6), (A.41)

Rm
3 (ε) = −2k2πλ

N∑
i=1

ε2
i Ĩεiβ2

i u
m
0 (xi) v

m (xi) = O(|ε|8), (A.42)

Rm
4 (ε) = −1

8
k3π

N∑
i=1

ε6
i ln εi β

2
i u

m
0 (xi) v

m (xi) = o(|ε|5), (A.43)

Rm
5 (ε) = −k2

N∑
i=1

ε2
i ln εi Ĩεiβ2

i u
m
0 (xi) v

m (xi) = o(|ε|7), (A.44)

Rm
6 (ε) = −2k2π2

N∑
i=1

ε4
i λ̃

εi
2 β

2
i u

m
0 (xi) v

m (xi) = O(|ε|6), (A.45)

Rm
7 (ε) = −1

4
k3π2

N∑
i=1

ε6
i λ̃

εi
2 β

2
i u

m
0 (xi) v

m (xi) = O(|ε|8), (A.46)
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Rm
8 (ε) = −2k2π

N∑
i=1

ε2
i λ̃

εi
2 Ĩεiβ2

i u
m
0 (xi) v

m (xi) = O(|ε|10), (A.47)

Rm
9 (ε) = −2k2π2

N∑
i=1

ε4
i λ̃

εi
3 β

2
i u

m
0 (xi) v

m (xi) qi (xi) = O(|ε|6), (A.48)

Rm
10 (ε) = −2k2π2

N∑
i=1

N∑
j=1
j 6=i

ε2
i ε

2
j λ̃

εj
3 βiβju

m
0 (xj) v

m (xi)Kij = O(|ε|6), (A.49)

Rm
11 (ε) = −2k2π2

N∑
i=1

N∑
j=1
j 6=i

ε2
i ε

2
j λ̃

εj
3 βiβju

m
0 (xj) v

m (xi) qj (xi) = O(|ε|6), (A.50)

Rm
12 (ε) = −1

2
k2π

N∑
i=1

N∑
j=1

ε2
i ε

2
j λ̃

εj
3 βiβju

m
0 (xi)u

m
0 (xj) Iij = O(|ε|6), (A.51)

Rm
13 (ε) = −1

2
k2π

N∑
i=1

N∑
j=1

ε2
i ε

2
j λ̃

εi
3 βiβju

m
0 (xi)u

m
0 (xj) Iij = O(|ε|6), (A.52)

Rm
14 (ε) = k2π2

N∑
i=1

N∑
j=1

ε2
i ε

2
j λ̃

εi
3 λ̃

εj
3 βiβju

m
0 (xi)u

m
0 (xj) Iij = O(|ε|8), (A.53)

with |ε| = ε1 + · · ·+ εN , where the estimates above were obtained taking into account that

λ̃εi2 = O(ε2
i ), λ̃

εi
3 = O(ε2

i ) and Ĩεi = O(ε6
i ). From (A.40)-(A.53), we conclude that

R(ε) =
M∑
m=1

14∑
k=1

Rm
k (ε) = o(|ε|5). (A.54)

A.2. Preliminary lemmas. In order to simplify the presentation, we denote all the con-
stants independent of ε, i and m as C for i = 1, · · · , N and m = 1, · · · ,M , whose value
changes according to the place it is used.

Lemma 2. For i = 1, · · · , N and m = 1, · · · ,M , let h̃ε,mi be the weak solution of the

variational problem to find h̃ε,mi ∈ H1 (Ω) such that∫
Ω

∇h̃ε,mi · ∇η + k

∫
Ω

h̃ε,mi η = − 1

|Bεi (xi) |

∫
Bεi (xi)

(um0 − um0 (xi))η, ∀η ∈ H1 (Ω) . (A.55)

Then, there exists a positive constant C independent of ε such that

‖h̃ε,mi ‖H1(Ω) ≤ Cεδii , ∀i = 1, · · · , N and m = 1, · · · ,M, (A.56)

for any 0 < δi < 1.
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Proof. By taking η = h̃ε,mi as a test function in (A.55), we have∫
Ω

|∇h̃ε,mi |2 + k

∫
Ω

|h̃ε,mi |2 = − 1

|Bεi (xi) |

∫
Bεi (xi)

(um0 − um0 (xi))h̃
ε,m
i . (A.57)

From the Cauchy-Schwarz inequality and the interior elliptic regularity of the function um0 ,
there exists a positive constant C independent of ε, i and m such that∫

Ω

|∇h̃ε,mi |2 + k

∫
Ω

|h̃ε,mi |2 ≤ Cε−2
i ‖um0 − um0 (xi)‖L2(Bεi )

‖h̃ε,mi ‖L2(Bεi )

≤ Cε−2
i ‖x− xi‖L2(Bεi )

‖h̃ε,mi ‖L2(Bεi )

≤ C‖h̃ε,mi ‖L2(Bεi )
. (A.58)

Notice that, Hölder inequality and the Sobolev embedding theorem can be used to derive

‖h̃ε,mi ‖L2(Bεi )
≤ Cε

1/q
i ‖h̃

ε,m
i ‖L2p(Bεi )

≤ Cεδii ‖h̃
ε,m
i ‖H1(Ω), (A.59)

for any 1 < q < ∞ with 1/p + 1/q = 1. Let us denote δi = 1/q which implies 0 < δi < 1.
Using (A.59) in (A.58), we get∫

Ω

|∇h̃ε,mi |2 + k

∫
Ω

|h̃ε,mi |2 ≤ Cεδii ‖h̃
ε,m
i ‖H1(Ω). (A.60)

Hence the fact. �

Corollary 3. For i, j = 1, · · · , N and m = 1, · · · ,M , let h̃ε,mi be the weak solution of
(A.55). Then, there exists a positive constant C independent of ε such that

‖h̃ε,mi ‖L2(Bεj ) ≤ Cεδii ε
δj
j , ∀i, j = 1, · · · , N and m = 1, · · · ,M, (A.61)

for any 0 < δi, δj < 1.

Proof. Similar to (A.59), from Hölder inequality and the Sobolev embedding theorem, we
get

‖h̃ε,mi ‖L2(Bεj ) ≤ Cε
δj
j ‖h̃

ε,m
i ‖H1(Ω) ≤ Cε

δj
j ε

δi
i , (A.62)

for any 0 < δi, δj < 1. We obtain the last inequality by using Lemma 2. Hence the fact. �

Lemma 4. For i, j = 1, · · · , N and m = 1, · · · ,M , let hε,mi be written as (3.16). Then,
there exists a positive constant C independent of ε such that

‖hε,mi ‖L2(Bεj ) ≤ C(εj| ln εi|+ εj + εδii ε
δj
j ), (A.63)

for any 0 < δi, δj < 1 with i, j = 1, · · · , N and m = 1, · · · ,M .

Proof. From the decomposition (3.16) and the triangular inequality, we have

‖hε,mi ‖L2(Bεj ) ≤ C
(
‖pεi‖L2(Bεj ) + ‖qεi ‖L2(Bεj ) + ‖h̃ε,mi ‖L2(Bεj )

)
. (A.64)

Since the problem satisfied by pεi can be solved explicitly and its solution is given by (3.18),
we can establish the following estimate

‖pεi‖L2(Bεj ) ≤ Cεj| ln εi|. (A.65)
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The function qεi is such that qεi = λεi3 qi with λεi3 given by (3.24). From (3.24) and the
interior elliptic regularity of the function qi, we obtain

‖qεi ‖L2(Bεj ) ≤ Cεj. (A.66)

From the estimates (A.65)-(A.66) and Corollary 3, we get

‖hε,mi ‖L2(Bεj ) ≤ C(εj| ln εi|+ εj + εδii ε
δj
j ) (A.67)

which leads to the required estimate (A.63) for any 0 < δi, δj < 1 with i, j = 1, · · · , N and
m = 1, · · · ,M . �

Lemma 5. For i = 1, · · · , N and m = 1, · · · ,M , let hε,mi be the weak solution of the
variational problem (A.9). Then, there exists a positive constant C independent of ε such
that

‖hε,mi ‖H1(Ω) ≤ C(
√
| ln εi|+ 1 + ε

δi−1/2
i ), (A.68)

for any 0 < δi < 1 with i = 1, · · · , N and m = 1, · · · ,M .

Proof. By taking η = hε,mi as a test function in (A.9), we have∫
Ω

|∇hε,mi |2 + k

∫
Ω

|hε,mi |2 = − 1

|Bεi (xi) |

∫
Bεi (xi)

um0 h
ε,m
i . (A.69)

From the Cauchy-Schwarz inequality together with the interior elliptic regularity of the
function um0 and Lemma 4, we obtain∫

Ω

|∇hε,mi |2 + k

∫
Ω

|hε,mi |2 ≤ Cε−2
i ‖um0 ‖L2(Bεi )

‖hε,mi ‖L2(Bεi )

≤ Cε−1
i ‖h

ε,m
i ‖L2(Bεi )

≤ C(| ln εi|+ 1 + ε2δi−1
i ). (A.70)

Hence the fact. �

Lemma 6. For i, j = 1, · · · , N and m = 1, · · · ,M , let hε,mij be the weak solution of the
variational problem (A.10). Then, there exists a positive constant C independent of ε such
that

‖hε,mij ‖H1(Ω) ≤ Cεδi−1
i (| ln εj|+ 1 + εδi−1

i ε
δj
j ), (A.71)

for any 0 < δi, δj < 1 with i, j = 1, · · · , N and m = 1, · · · ,M .

Proof. By taking η = hε,mij as test a function in (A.10), we have∫
Ω

|∇hε,mij |2 + k

∫
Ω

|hε,mij |2 = − 1

|Bεi (xi) |

∫
Bεi (xi)

hε,mj hε,mij . (A.72)

From the Cauchy-Schwarz inequality and Lemma 4, we obtain∫
Ω

|∇hε,mij |2 + k

∫
Ω

|hε,mij |2 ≤ Cε−2
i ‖h

ε,m
j ‖L2(Bεi )

‖hε,mij ‖L2(Bεi )

≤ Cε−1
i (| ln εj|+ 1 + εδi−1

i ε
δj
j )‖hε,mij ‖L2(Bεi )

. (A.73)

Notice that, Hölder inequality and the Sobolev embedding theorem can be used to derive

‖hε,mij ‖L2(Bεi )
≤ Cε

1/q
i ‖h

ε,m
ij ‖L2p(Bεi )

≤ Cεδii ‖h
ε,m
ij ‖H1(Ω), (A.74)
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for any 1 < q < ∞ with 1/p + 1/q = 1. Like earlier, let us denote δi = 1/q which implies
0 < δi < 1. Using (A.74) into (A.73), we get∫

Ω

|∇hε,mij |2 + k

∫
Ω

|hε,mij |2 ≤ Cεδi−1
i (| ln εj|+ 1 + εδi−1

i ε
δj
j )‖hε,mij ‖H1(Ω). (A.75)

Hence the fact. �

Lemma 7. For m = 1, · · · ,M , let ũmε be the weak solution of the variational problem to
find ũmε ∈ H1 (Ω) such that∫

Ω

∇ũmε · ∇η + kε

∫
Ω

ũmε η =

∫
Ω

Φm
ε η, ∀η ∈ H1 (Ω) , (A.76)

where Φm
ε is given by (3.12). Then, there exists a positive constant C independent of ε

such that

‖ũmε ‖H1(Ω) ≤ C

N∑
i,j,l=1

ε2δl
l εδi+1

i (ε2
j | ln εj|+ ε2

j + εδi−1
i ε

δj+2
j ), (A.77)

for any 0 < δi, δj, δl < 1 with i, j, l = 1, · · · , N and m = 1, · · · ,M .

Proof. By taking η = ũmε as a test function in (A.76), we have∫
Ω

|∇ũmε |2 + kε

∫
Ω

|ũmε |2 =

∫
Ω

Φm
ε ũ

m
ε . (A.78)

From the Cauchy-Scharwz inequality, we obtain∫
Ω

|∇ũmε |2 + kε

∫
Ω

|ũmε |2 ≤ C
N∑
l=1

‖ũmε ‖L2(Bεl
)

N∑
i=1

N∑
j=1

ε2
i ε

2
j‖h

ε,m
ij ‖L2(Bεl

)

≤ C
N∑

i,j,l=1

ε2δl
l ε2

i ε
2
j‖h

ε,m
ij ‖H1(Ω)‖ũmε ‖H1(Ω)

≤ C
N∑

i,j,l=1

ε2δl
l εδi+1

i (ε2
j | ln εj|+ ε2

j + εδi−1
i ε

δj+2
j )‖ũmε ‖H1(Ω),

(A.79)

where we have used the Hölder inequality and the Sobolev embedding theorem with Lemma
6. Hence the fact. �

A.3. A priori estimates of the remainders. We shall prove that Em` (ε) = o (|ε|4) for
` = 1, . . . , 23, where |ε| := ε1 + · · · + εN . For simplicity, we use the symbol C to denote
any constant independent of ε. The estimate for the remainders are obtained in two steps.
We start by using the Cauchy-Schwarz inequality, then

• for the remainders Em` (ε), ` = 1, . . . , 8, we use the trace theorem and the appropri-
ate lemmas of Section A.2;
• for the remainders Em` (ε), ` = 9, 10, we use Corollary 3 together with the interior

elliptic regularity of the function vm;
• for the remainders Em` (ε), ` = 11, . . . , 15, we use the interior elliptic regularity of

the functions vm and qi together with the fact ‖x− xi‖nL2(Bεi )
= O(|ε|n+1), n ∈ Z+,

and the estimate λεi3 = O(1);
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• for the remainders Em` (ε), ` = 16, . . . , 19, we simply use the fact ‖x− xi‖nL2(Bεi )
=

O(|ε|n+1), where n ∈ Z+;
• for the remainders Em` (ε), ` = 20, . . . , 23, we use the fact ‖x−xi‖nL2(Bεi )

= O(|ε|n+1),

n ∈ Z+, observing that pεj |Ω\Bεj

is given by (3.18) with λ
εj
3 = O(1).

Proceeding in this way, we obtain

|Em1 (ε) | ≤ C‖ũmε ‖H1(Ω)‖um0 − zm‖H1(Ω) ≤ C‖ũmε ‖H1(Ω) = o
(
|ε|4
)
, (A.80)

for any 2/5 < δ < 1, where we have used Lemma 7;

|Em2 (ε) | ≤ C|ε|6
N∑
i=1

‖hε,mi ‖H1(Ω)

N∑
j=1

N∑
l=1

‖hε,mjl ‖H1(Ω) = o
(
|ε|4
)
, (A.81)

for any 1/8 < δ < 1, where we have used Lemmas 5 and 6;

|Em3 (ε) | ≤ C|ε|2‖ũmε ‖H1(Ω)

N∑
i=1

‖hε,mi ‖H1(Ω) = o
(
|ε|4
)
, (A.82)

for any 1/12 < δ < 1, where we have used Lemmas 5 and 7;

|Em4 (ε) | ≤ C|ε|8
N∑
i=1

N∑
j=1

‖hε,mij ‖H1(Ω)

N∑
l=1

N∑
p=1

‖hε,mlp ‖H1(Ω) = o
(
|ε|4
)
, (A.83)

for any 0 < δ < 1, where we have used Lemma 6;

|Em5 (ε) | ≤ C|ε|4‖ũmε ‖H1(Ω)

N∑
i=1

N∑
j=1

‖hε,mij ‖H1(Ω) = o
(
|ε|4
)
, (A.84)

for any 0 < δ < 1, where we have used Lemmas 6 and 7;

|Em6 (ε) | ≤ C‖ũmε ‖H1(Ω)‖ũmε ‖H1(Ω) = o
(
|ε|4
)
, (A.85)

for any 0 < δ < 1, where we have used Lemma 7;

|Em7 (ε) | ≤ C|ε|4
N∑
i=1

N∑
j=1

[
‖hεi‖H−1/2(∂Ω)‖h̃

ε,m
j ‖H1/2(∂Ω) + ‖hεj‖H−1/2(∂Ω)‖h̃

ε,m
i ‖H1/2(∂Ω)

]

≤ C|ε|4
N∑
i=1

N∑
j=1

[
‖hεi‖L2(Ω)‖h̃ε,mj ‖H1(Ω) + ‖hεj‖L2(Ω)‖h̃ε,mi ‖H1(Ω)

]
= o(|ε4|),

(A.86)

for any 0 < δ < 1, where we have used Lemma 2 and the explicit form of hεi , given by
(3.28), in order to establish ‖hεi‖L2(Ω) = O(1);

|Em8 (ε) | ≤ C|ε|4
N∑
i=1

‖h̃ε,mi ‖H1(Ω)

N∑
j=1

‖h̃ε,mj ‖H1(Ω) = o
(
|ε|4
)
, (A.87)
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for any 0 < δ < 1, where we have used Lemma 2;

|Em9 (ε) | ≤ C|ε|2
N∑
i=1

‖h̃ε,mi ‖L2(Bεi )
‖vm‖L2(Bεi )

≤ C|ε|3
N∑
i=1

‖h̃ε,mi ‖L2(Bεi )
= o

(
|ε|4
)
, (A.88)

for any 1/2 < δ < 1;

|Em10 (ε) | ≤ C|ε|2
N∑
i=1

N∑
j=1
j 6=i

‖h̃ε,mj ‖L2(Bεi )
‖vm‖L2(Bεi )

≤ C|ε|3
N∑
i=1

N∑
j=1
j 6=i

‖h̃ε,mj ‖L2(Bεi )
= o

(
|ε|4
)
,

(A.89)
for any 1/2 < δ < 1;

|Em11 (ε) | ≤ C|ε|2
N∑
i=1

‖hεi |Bεi

‖L2(Bεi )
‖vm − vm (xi) ‖L2(Bεi )

≤ C|ε|2
N∑
i=1

‖hεi |Bεi

‖L2(Bεi )
‖x− xi‖L2(Bεi )

≤ C|ε|4
N∑
i=1

‖hεi |Bεi

‖L2(Bεi )
= o

(
|ε|5
)
, (A.90)

where we have used the explicit form of hεi |Bεi

given by (3.28) to obtain ‖hεi |Bεi

‖L2(Bεi )
=

O(εi| ln εi|);

|Em12 (ε) | ≤ C|ε|2
N∑
i=1

‖qi − qi (xi) ‖L2(Bεi )
‖1‖L2(Bεi )

≤ C|ε|3
N∑
i=1

‖x− xi‖L2(Bεi )
= O

(
|ε|5
)

;

(A.91)

|Em13 (ε) | ≤ C|ε|2
N∑
i=1

‖vm − vm (xi) ‖L2(Bεi )
‖1‖L2(Bεi )

≤ C|ε|3
N∑
i=1

‖x− xi‖L2(Bεi )
= O

(
|ε|5
)

;

(A.92)

|Em14 (ε) | ≤ C|ε|2
N∑
i=1

N∑
j=1
j 6=i

‖qj−qj (xi) ‖L2(Bεi )
‖1‖L2(Bεi )

≤ C|ε|3
N∑
i=1

‖x−xi‖L2(Bεi )
= O

(
|ε|5
)

;

(A.93)

|Em15 (ε) | ≤ C|ε|2
N∑
i=1

N∑
j=1
j 6=i

‖qj − qj (xi) ‖L2(Bεi )
‖vm − vm (xi) ‖L2(Bεi )

≤ C|ε|2
N∑
i=1

‖x− xi‖L2(Bεi )
‖x− xi‖L2(Bεi )

= O
(
|ε|6
)

; (A.94)

|Em16 (ε) | ≤ C
N∑
i=1

‖x− xi‖L2(Bεi )
‖x− xi‖3

L2(Bεi )
= O(|ε|6); (A.95)
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|Em17 (ε) | ≤ C
N∑
i=1

‖x− xi‖2
L2(Bεi )

‖x− xi‖2
L2(Bεi )

= O(|ε|6); (A.96)

|Em18 (ε) | ≤ C
N∑
i=1

‖x− xi‖L2(Bεi )
‖x− xi‖3

L2(Bεi )
= O(|ε|6); (A.97)

|Em19 (ε) | ≤ C

N∑
i=1

‖x− xi‖3
L2(Bεi )

‖x− xi‖3
L2(Bεi )

= O(|ε|8); (A.98)

|Em20 (ε) | ≤ C|ε|2
N∑
i=1

‖x− xi‖2
L2(Bεi )

‖1‖L2(Bεi )
= O(|ε|6); (A.99)

|Em21 (ε) | ≤ C|ε|2
N∑
i=1

‖x− xi‖2
L2(Bεi )

‖1‖L2(Bεi )
= O(|ε|6); (A.100)

|Em22 (ε) | ≤ C|ε|2
N∑
i=1

‖x− xi‖L2(Bεi )
‖x− xi‖L2(Bεi )

= O(|ε|6); (A.101)

|Em23 (ε) | ≤ C|ε|2
N∑
i=1

‖x− xi‖2
L2(Bεi )

‖x− xi‖2
L2(Bεi )

= O(|ε|8). (A.102)

From (A.80)-(A.102), we conclude that

E(ε) =
M∑
m=1

23∑
`=1

Em` (ε) = o
(
|ε|4
)
. (A.103)
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Appliquées, 103:557–574, 2015.

[31] A. Kirsch. An introduction to the mathematical theory of inverse problems, volume 120 of Applied
Mathematical Sciences. Springer-Verlag, New York, 1996.

[32] V. A. Kovtunenko and K. Kunisch. High precision identification of an object: optimality-conditions-
based concept of imaging. SIAM Journal on Control and Optimization, 52(1):773–796, 2014.

[33] T. J. Machado, J. S. Angelo, and A. A. Novotny. A new one-shot pointwise source reconstruction
method. Mathematical Methods in the Applied Sciences, 40(15):1367–1381, 2017.



30

[34] A. A. Novotny and J. Soko lowski. Topological derivatives in shape optimization. Interaction of Me-
chanics and Mathematics. Springer-Verlag, Berlin, Heidelberg, 2013.

[35] S. S. Rocha and A. A. Novotny. Obstacles reconstruction from partial boundary measurements based
on the topological derivative concept. Structural and Multidisciplinary Optimization, 55(6):2131–2141,
2017.

[36] B. Samet, S. Amstutz, and M. Masmoudi. The topological asymptotic for the Helmholtz equation.
SIAM Journal on Control and Optimization, 42(5):1523–1544, 2003.
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