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Abstract. Mathematical analysis and numerical solutions of problems with unknown shapes
or geometrical domains is a challenging and rich research field in modern theory of the calculus
of variations, partial differential equations, differential geometry as well as in numerical analysis.
In this series of three review papers we describe some aspects of numerical solution for problems
with unknown shapes which admit the asymptotic analysis tools to perform the sensitivity of
shape functionals with respect to small defects or imperfections. In classical numerical shape
optimization the boundary variation technique is used for the purposes of the gradient or the
Newton type algorithms. The shape sensitivity analysis is performed with the velocity method.
In general the continuous shape gradient and the symmetric part of the shape Hessian are
discretized. Such an approach leads to local solutions which satisfy the necessary optimality
conditions in a class of domains defined in fact by the initial guess. A more general setting of
shape sensitivity analysis is required for solution of topology optimization problems. A possible
approach can be proposed in the framework of asymptotic analysis for singularly perturbed
geometrical domains. In such a framework the approximations of solutions to boundary value
problems (BVPs) in domains with small defects or imperfections are constructed e.g., by the
methods of matched asymptotic expansions. The approximate solutions are employed in order
to evaluate the shape functionals and as a result the topological derivatives of functionals are
obtained, see e.g., [39]. In particular, the topological derivative is defined as the first term
(correction) of the asymptotic expansion of a given shape functional with respect to a small
parameter that measures the size of singular domain perturbations, such as holes, cavities,
inclusions, defects, source-terms and cracks. This new concept of derivative has applications
in many relevant fields such as shape and topology optimization, inverse problems, imaging
processing, multiscale material design and mechanical modeling including damage and fracture
evolution phenomena. In the first part of this review the topological derivative concept is
presented in details within the framework of the domain decomposition technique.cSuch an
approach is constructive e.g., for the coupled models in multiphysics as well as for contact
problems in elasticity. In the second and third parts we respectively describe the first and
second order numerical methods of shape and topology optimization for elliptic BVPs, together
with a portfolio of applications and numerical examples in all the above mentioned areas.

1. Introduction

The shape and topology optimization is a broad domain of modern research in pure (differen-
tial geometry) and applied mathematics, and in structural mechanics. In applied mathematics
it is a branch of calculus of variations, partial differential equations and numerical methods.
In structural mechanics the optimum design and metamaterials are of particular interest for
shape and topology optimization techniques. Shape and topology optimization is an efficient
mathematical tool for numerical solution of inverse problems introduced for defect identification
or damage modeling.

The problem of shape optimization concerns minimization of a shape functional over a family
of admissible domains. The shape functional depends directly on the geometrical domains Ω and
implicitly by means of solutions u = u(Ω) to the state equation defined in Ω. For example, in
structural mechanics the specific functional depends on solutions to the elasticity BVPs defined
in the domains of integration

Ω 7→ JΩ(u).
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For practical applications we are interested in minimization of the shape functional over a family
of admissible domains. From mathematical point of view there are questions to answer as usually
in the calculus of variations:

(1) The existence of an optimal domain such that

JΩ∗(u∗) ≤ JΩ(u).

(2) The necessary conditions for optimality which can be obtained for differentiable shape
functionals.

(3) The convergence of numerical methods devised for solution of the shape optimization
problem under considerations.

There is a vast literature on the subject, the representative sources are monographs [12, 51, 59]
on the theory and applications in solids and fluids mechanics.

In general we cannot expect the existence of a global solution to shape optimization problems
since shape functionals are nonconvex. Therefore, it makes sense to introduce the generalized
optimal solutions of shape optimization problems e.g. by means of the homogenization tech-
nique. As a result, the optimization procedure leads to optimal microstructures and there are
subdomains of optimal domains filled with metamaterials. The methods are known in structural
mechanics as the homogenization method, or the SIMP method, among others.

In this review we are interested in applications of asymptotic analysis tools and techniques in
singularly perturbed geometrical domains [39] (see also e.g., [34, 36, 37]) to shape and topology
optimization. Regarding the theoretical development of the topological asymptotic analysis, see
for instance [4, 7, 8, 14, 16, 24, 30, 40, 47, 48, 52, 56, 57]. For an account of new developments
in this branch of shape optimization we refer to the book by Novotny & Soko lowski [49].

2. Classical shape optimization and asymptotic analysis related to topological
derivatives

Topological derivatives of shape functionals are introduced for elliptic BVPs quite recently.
Instead of deformations of domains by diffeomorphism [12, 59], the asymptotic analysis in singu-
larly perturbed geometrical domains is considered for the purposes of shape sensitivity analysis
[39]. However, the first approach applies to all types of linear PDEs. In addition, the velocity
method of shape sensitivity analysis is simpler compared to asymptotic analysis, but it has some
drawbacks from the point of view of numerical methods. In general, there is a close relationship
between two types of approaches, the results obtained by the second approach can be also derived
from the velocity method under some regularity assumptions for the elliptic BVPs. In another
words, the knowledge of shape gradients and shape Hessians leads to the topological derivatives
of e.g., the energy functionals under additional regularity assumptions. The asymptotic analysis
is performed in the intact, unperturbed domains and locally requires the appropriate regularity
of solutions. It is worth to say, that the classical shape sensitivity analysis can be performed by
using the asymptotic analysis tools, only.

As a result of asymptotic analysis the function T (x) is identified for x ∈ Ω, such that

J(Ωε) = J(Ω) + f(ε)T (x) + o(f(ε))

for a given shape functional Ω 7→ J(Ω) and a given domain Ω ⊂ Rd, d ≥ 2. Here Ωε = Ω \ ωε,
where ωε ⊂ Ω represents the singular domain perturbation of size ε. Finally, f(ε) is a positive
function such that f(ε) → 0 with ε → 0. Therefore, the variation of the shape functional for
creation of a small singularity around x ∈ Ω is measured by the function x 7→ T (x), which
is called the topological derivative of Ω 7→ J(Ω). In the first part of the review papers the
qualitative results known for the Laplacian and the elasticity system are described. In the
second and the third parts of review we respectively describe the first and the second order
numerical methods of shape and topology optimization for elliptic BVPs with many examples
and numerical results. In order to fix these ideas, let us present a very simple example, namely:

Example 1. The notion of topological derivative extends the conventional definition of derivative
to functionals whose variable is a geometrical domain subjected to singular topology changes. The



3

analogy between T (x) and the corresponding expressions for a conventional derivative should be
noted. To illustrate the application of this concept, let us consider the (very simple) functional

J(Ω) := |Ω| =
∫

Ω
1, (2.1)

with Ω ⊂ R2 subject to the class of topological perturbations given by the nucleation of circular
holes, namely ωε = Bε(x̂) := {‖x − x̂‖ < ε}, for x̂ ∈ Ω. For two-dimensional domains Ω
the functional J(Ω) represents the area of the domain. The expansion with respect to ε can be
obtained trivially in this case as

J(Ωε) = |Ωε| =
∫

Ω
1−

∫
Bε

1 = J(Ω)− πε2, (2.2)

and the topological derivative T (x) and function f(ε) promptly identified, respectively, as

T (x) = −1, f(ε) = πε2. (2.3)

In this particular case, T (x) is independent of x and the rightmost term of the topological
asymptotic expansion is equal to zero.

The particular case of shape optimization problems is minimization of a functional over an
admissible set of characteristic functions [59]. In Example 1 the integral

J(Ω) =

∫
R2

χΩ(x)dx,

where χΩ is the characteristic function of Ω. We provide an example of such a shape optimization
problem in the third part of the review.

The main idea of numerical methods based on the topological derivatives is the construction
of an auxiliary level set function depending on the topological derivative in actual domain, see
e.g., [5, 6, 20, 21]. In such a method the shape gradient is simply replaced by the topological
derivative. The line search procedure defined by simple rules in terms of the descent direction
given by actual topological derivative is used for modification of the actual shape. The shape is
determined by the level set function. Therefore, within the topological derivative method there is
no need for the complicated Hamilton-Jacoby equation to control the shape evolution. The shape
evolution during the optimization procedure is governed by a simple updating algorithm based on
the actual topological derivative. In numerical examples the proposed procedure converges to the
local solution of the topology-shape optimization problem under considerations. Therefore, this
method enters in the field of experimental mathematics. To our best knowledge the convergence
of level set method is still to be shown, except for some particular cases. In contrast to the first
order method presented in the second part of this review, a novel method based on the second
order topological derivative concept is presented in the third part of the review. The two terms
expansion of the functional is exploited, leading to a quadratic and strictly convex form with
respect to the parameters under consideration. Thus, for the second order method, a trivial
optimization step leads to a non-iterative algorithm, whose optimal solution is obtained in just
one shot, we refer the reader to the third part of review for details and examples.

We speak on the ideas for elliptic problems and the singular perturbations of the principal
part of the elliptic operator. There are also many problems when the lower order terms are only
perturbed, and in such a case asymptotic analysis substantially simplifies.

It is crucial for applications to know the exact form of topological derivatives. Sometimes,
the obtained expressions for topological derivatives depend on the unknown polarization tensor
for the material which is used to build the geometrical domains.

3. Evaluation of topological derivatives

Evaluation of topological derivatives requires the approximation of solutions to elliptic BVPs
with respect to small singular perturbations of geometrical domains. Such approximations are
constructed e.g., in monographs [22, 32], see also [35, 38]. We refer the reader to [30] for the
comparison of the known methods for evaluation of energy change due to the appearance of
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cavities in elastic solids. The methods of evaluation depend on the specific applications, we are
particularly interested in numerical methods:

(1) The direct method of shape calculus combined with the asymptotic expansions of solu-
tions proposed in the first paper on the topic [54]. In this method the Taylor expansion
of shape functionals obtained in the framework of the speed method [59] is used to pass
to the limit with the small perturbation parameter and obtain as a result the topo-
logical derivative of the specific shape functional. The method is improved in [55] and
finally uses the first shape derivatives only. We present an example of the asymptotic
expansions for the Laplacian in Appendix. The method is difficult to use for varia-
tional inequalities. See e.g., [10] for an application of the standard asymptotic analysis
to the Signorini problem performed under the hypothesis of strict complementarity for
unknown solutions.

(2) The direct method of two scale asymptotic analysis [39] performed for elliptic systems and
leading in particular to the self-adjoint extensions of elliptic operators. In this method
the appropriate adjoint state equations can be introduced at the end of the procedure
of evaluation in order to simplify the formulas for the topological derivatives. In other
words first, the two scale asymptotic approximation of solutions with prescribed precision
is constructed, and it is used to derive the approximation of the functional. Finally, the
convenient form of topological derivatives is given for the purposes of numerical methods.
The complete proofs of obtained results are given in [39].

(3) The method using fundamental solutions in truncated domains and the standard two
scale expansions techniques of asymptotic analysis, see e.g., [53]. In a sense, this method
is substantially improved by the addition of the domain decomposition technique with
the Steklov-Poincaré operators, see the last point of this list. We also refer to [4] for the
compound asymptotic analysis combined with a modified adjoint sensitivity method.

(4) The method using the technique of integral equations in electromagnetism proposed e.g.,
in [18] and [3], for instance. We refer to the recent book [2] for modeling the effect of
defects in elasticity using well-established asymptotic formulas with some applications
to imaging.

(5) The domain decomposition technique with the asymptotic expansions of Steklov-Poincaré
operators for small defects [57]. This framework is well adapted to the sensitivity anal-
ysis of coupled models in multiphysics as well as of variational inequalities and contact
problems in elasticity. The method has been used in many numerical examples, see e.g.,
[1, 17].

The evaluation technique depends on the shape functionals under considerations. If there
is a state equation, the evaluation process usually includes the asymptotic expansions of so-
lutions with respect to small parameter ε → 0 which governs the size of singular geometrical
perturbation. We restrict ourselves to the elliptic BVPs like the Laplace or Helmholtz equations
as well as to the systems in linear elasticity or Stokes. The expansion depends on the spatial
dimensions d = 2, 3, since we use the fundamental solutions to the associated elliptic equations.
The most important for applications are the elliptic equations in three spatial dimensions. The
general mathematical theory of solution’s expansions which applies to the elasticity system can
be found e.g., in [39], see also [46] for the polarization tensors associated with the elasticity sys-
tem. The results are given for arbitrary shapes of cavities or holes however the closed formulas
are available only for some shapes [46]. Once the result is known we have some methods which
can be used for the identification of topological derivatives. We are particularly interested in
numerical methods which are used in the framework of topological optimization. Therefore, the
topological derivatives should be given by the robust expressions which are approximated by the
standard finite element methods. The simplest way of evaluation, it seems, is the application
of the domain decomposition technique, in order to determine the topological derivatives for
nonlinear as well as for coupled models in multiphysics [57], see also [53] for an early attempt
to the truncated domain approach without Steklov-Poincaré operators.
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To be more specific we are going to explain in details the asymptotic expansions in two spatial
dimensions in Appendix. The Neumann problem on the hole of arbitrary shape is analysed in
Section 6. Such an analysis is required for the direct methods of asymptotic analysis. To simplify
the derivation we are going also to explain the application of Steklov-Poincaré operators to the
asymptotic analysis of the elliptic BVPs. Without the state equation the problem of evaluation
is simpler, it becomes purely geometrical problem, we refer to [13] for recent results in this
direction.

In order to obtain the form of topological derivatives, the appropriate asymptotic analysis
of associated partial differential equation should be performed. There are some monographs
on the subject, e.g., [22, 32]. We provide simple examples for singularly perturbed geometrical
domains of scalar elliptic problems. The method of matched asymptotic expansions is applied.
The obtained results in this domain are borrowed from the publications, which are due to the long
and fruitful collaboration with the Russian mathematician Serguei A. Nazarov [11, 28, 39, 40,
41, 42, 43, 44, 45, 46]. In particular, the asymptotic analysis of elasticity BVPs for the purposes
of topology optimization can be found e.g., in [39]. See also [9] for further developments within
matched asymptotic expansions for the Laplacian. In general, the form of topological derivative
is given in terms of the adjoint states and of the polarization tensors. This is an additional
difficulty for numerical methods of topology optimization using the topological derivatives.

4. Asymptotic expansions for domain decomposition technique

The most important method of evaluation of topological derivatives for numerical methods
of topology optimization is the domain decomposition technique. In particular, the topologi-
cal derivatives for BVPs of coupled models in multiphysics are obtained in the framework of
domain decomposition technique combined with the asymptotic expansions of Steklov-Poincaré
operators. In control theory, at least for scalar elliptic problems, the Steklov-Poincaré operator
becomes the Dirichlet-to-Neumann map. The domain decomposition method can be considered
for linear elliptic problems as well as for variational inequalities. Numerical applications of such
a method can be found e.g., for shape-topology optimization in the piezo-elasticity [1] or in the
thermo-elasticity [17].

4.1. Asymptotic expansions of Steklov-Poincaré operators. We want to apply the do-
main decomposition method for evaluation of topological derivatives. For complex models the
first step od such evaluation is always the local analysis of singular perturbations of geometrical
domains. Thus, e.g., in the linear elasticity in two or three spatial dimensions with the traction
free hole or cavity we consider the ring C(R, ε) like domain and obtain the asymptotic expansion
of the Steklov-Poincaré operators associated to the elasticity problem, defined on its external
boundary ΓR, with respect to the small parameter ε→ 0. The second step of evaluation is the
sensitivity analysis of regular perturbations of bilinear form in the truncated domain ΩR.

We consider the family of perturbations Ωε of the reference domain Ω by small holes or a
small cavities ωε(x̂), with the centre x̂ ∈ Ω. The proposed method consists in the approximation
of singular domain perturbations by the regular perturbation of the bilinear form v → a(Ω; v, v)
in variational formulation of elliptic boundary value problem under considerations. The ap-
proximation means that the small domain ωε is replaced by the correction term to the bilinear
form given by the boundary bilinear form v → εdb(ΓR; v, v). The bilinear form v → b(ΓR; v, v)
can be determined from the asymptotic expansions of Steklov-Poincaré operators defined at the
interface ΓR i.e., from the topological derivative of the energy functional in the domain Ωε \ΩR.
We provide all necessary details in this section with some examples.

Remark 2. In a sense our approach is similar but it is not equivalent, to the so-called self-adjoint
extensions of the elliptic operators [50] as it is used in physics, see e.g., [39, 40, 42, 44] for the
applications to asymptotic approximations which lead to the equivalent formulae for topological
derivatives. In another words, we are able to define another mathematical model in the intact
domain in such a way that the first order asymptotic expansion of the energy functional is the
same if compared to the original model. For the self-adjoint extensions the domain Ωε is replaced
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by the punctured domain Ω \ {x̂} while in our approach the resulting domain is ΩR := Ω \BR(x̂)
for small R > ε > 0. This approximation is sufficient for most of the applications we have in
mind.

In any case we need the polarization tensors or matrices [11, 46] in order to use the topological
derivatives in numerical methods e.g., of shape and topology optimization.

4.2. Signorini problem in two spatial dimensions. We explain the domain decomposition
technique used in the approximation of the quadratic energy functionals for the purposes of
evaluation of topological derivatives [57]. We restrict ourselves to the homogeneous Neumann
boundary conditions on the holes to simplify the presentation.

Let us consider the Signorini problem in the domain Ω ⊂ R2 with the smooth boundary
∂Ω = Γ0 ∪ Γs. The bilinear form

a(u, v) = a(Ω;u, v) =

∫
Ω
∇u · ∇vdx

is coercive and continuous over the Sobolev space

H1
Γ0

(Ω) = {v ∈ H1(Ω) | v = 0 on Γ0}

and the linear form

L(v) = L(Ω; v) =

∫
Ω
fvdx

is continuous on L2(Ω). There is the unique solution to the variational inequality

u ∈ K : a(u, v − u) ≥ L(v − u) ∀v ∈ K,

where the convex and closed set

K = K(Ω) = {v ∈ H1
Γ0

(Ω) | v ≥ 0 on Γs}.

Let us consider the variational inequality over singularly perturbed domain Ωε = Ω \Bε

uε ∈ Kε = K(Ωε) : aε(uε, v − uε) ≥ Lε(v − uε) ∀v ∈ Kε,

with the solution given by the unique minimizer of quadratic functional

I(v) =
1

2
aε(v, v)− Lε(v)

over the convex set Kε := K(Ωε). We use the notation (v, v) → aε(v, v) = a(Ωε; v, v) and
v → Lε(v) = L(Ωε; v) in the singularly perturbed domain Ωε.

We can show that there is an approximation of the quadratic functional

IRε (v) =
1

2
aε(ΩR; v, v)− Lε(ΩR; v)

such that the first order behaviour of the minimizers with respect to the small parameter ε2 →
0 is the same in H1(ΩR) if compared to the original problem. Namely, we can introduce a
continuous, symmetric and nonlocal bilinear form on the circle ΓR = {‖x− x̂‖, R > ε > 0},

H1/2(ΓR)×H1/2(ΓR) 3 (v, v)→ b(ΓR; v, v)

such that

IRε (v) =
1

2
a(Ω; v, v)− L(Ω; v) + ε2b(ΓR; v, v).

Furthermore, if the solution to the perturbed variational inequality admits the expansion in
H1(ΩR),

uε = u+ ε2q + o(ε2)

then the minimizer uRε of v → IRε (v) over the convex cone K(Ω) admits in H1(ΩR) the same
first order expansion

uRε = u+ ε2q + o(ε2)
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Thus, we are able to replace the singular geometrical domain perturbation Bε(x̂) by the regular
perturbation v → ε2b(ΓR; v, v) of the bilinear form v → a(Ω; v, v). The bilinear form is con-
structed using the expansion of the Steklov-Poincaré operator defined on ΓR and resulting from
the expansion of the energy functional in the ring C(R, ε).

In this way the singular domain perturbation Ωε is replaced by a regular perturbation of the
bilinear form, i.e., the bilinear form in Ωε is approximated by the bilinear form in the unperturbed
domain Ω augmented by the correction term defined on the portion ΓR of its boundary

a(Ωε; v, v) ∼= a(Ω; v, v) + ε2b(ΓR; v, v).

To this end the topological derivatives of energy functional in singularly perturbed domain
are used in order to evaluated the first order expansion of the Steklov-Poincaré operators.

4.3. From singular domain perturbations to regular perturbations of bilinear forms.
Now, we are going to present the abstract scheme of asymptotic analysis for solutions of varia-
tional problems posed in singularly perturbed geometrical domains. For the sake of simplicity
let us consider the linear problems.

The weak solution of a linear elliptic problem with symmetric, coercive and continuous bilinear
form posed in the domain Ω ⊂ Rd

u := uΩ ∈ H : a(u, ϕ) = L(ϕ) ∀ϕ ∈ H
is given by a unique minimizer of quadratic functional

I(Ω;ϕ) :=
1

2
a(Ω;ϕ,ϕ)− L(Ω;ϕ) =

1

2
a(ϕ,ϕ)− L(ϕ)

over the Sobolev space H := H(Ω) of functions defined on the domain Ω. For the sake of
simplicity we write also

I(ϕ) :=
1

2
a(ϕ,ϕ)− L(ϕ).

The energy shape functional is defined for the domain Ω,

Ω→ E(Ω) = I(u) =
1

2
a(Ω;u, u)− L(Ω;u)

We consider the singular geometrical perturbation Ωε := Ω \ Bε(x̂) of the reference domain by
a small circle or a ball.

In order to evaluate the topological derivatives of the energy shape functional as well as of some
other shape functionals we are going to use the domain decomposition technique. To this end
the reference domain is divided into two subdomains. The complement in Ω of first subdomain
ΩR is a ball BR(x̂) which includes the singular geometrical perturbation of the reference domain,
say Bε(x̂). The energy functional in perturbed domain

E(Ωε) = E(ΩR) + E(C(R, ε)),

where C(R, ε) is a ring. Now, we would like to introduce a bounded perturbation of bilinear
form

(ϕ,ϕ)→ bε(ΓR;ϕ,ϕ)

such that for ε > 0,

E(C(R, ε)) = bε(ΓR;uε, uε).

In fact we can introduce such a form which is asymptotically exact for the first order expansion
in ΩR of the solutions uε restricted to the truncated domain, namely it holds

uRε = uR + εdqR + o(εd)

in H(ΩR) for R > ε > 0.
In this way we could obtain the first order topological derivatives for shape functionals defined

in ΩR using the expansion of the energy functional in the ring C(R, ε).

Thus, we introduce two subdomains ΩR := Ω \ BR(x̂) and Ωε := Ω \ Bε(x̂) of the reference
domain. Here x̂ ∈ Ω is a given point, R > ε > 0 are two parameters such that ε → 0 and
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Bε(x̂) ⊂ Ω. ΩR ⊂ Ω is the truncated domain, and Ωε is the singularly perturbed domain. Thus,
we associate with the domains the quadratic functionals

I(ΩR;ϕ) :=
1

2
a(ΩR;ϕ,ϕ)− L(ΩR;ϕ)

and

I(Ωε;ϕ) :=
1

2
a(Ωε;ϕ,ϕ)− L(Ωε;ϕ) (4.1)

obtained by restriction of the test functions ϕ ∈ H(Ω) to ΩR (respectively to Ωε). For the sake
of simplicity we denote

IR(ϕ) :=
1

2
a(ΩR;ϕ,ϕ)− L(ΩR;ϕ) =

1

2
aR(ϕ,ϕ)− LR(ϕ)

and

Iε(ϕ) :=
1

2
aε(ϕ,ϕ)− Lε(ϕ)

Our goal is to construct the quadratic functional which produces the restriction uRε to ΩR of
the variational solution uε in the singularly perturbed domain. The variational solution in Ω is
given by

u ∈ H : a(u, ϕ) = L(ϕ) ∀ϕ ∈ H
and the variational problem in perturbed domain is given by

uε ∈ Hε : aε(uε, ϕ) = Lε(ϕ) ∀ϕ ∈ Hε

To this end we introduce the nonlocal Steklov-Poincaré operator Aε on the interior boundary
ΓR of ΩR. The operator is defined by the nonhomogeneous Dirichlet boundary value problem
over the ring

C(R, ε) := BR(x̂) \Bε(x̂)

Thus, we determine the expansion of the Steklov-Poincaré operator

Aε = A+ εdB +Rε
in the space of linear operators and introduce the bilinear form associated with the first term of
the latter expansion

b(h, h) := (B(h), h)ΓR = T (x̂)(h, h)

It can be shown that minimization of the first order approximation of the quadratic functional
(4.3) over the intact domain leads to the first order expansion of the minimizers for the perturbed
domain, which holds however only restricted to the truncation domain (4.4), namely:

Theorem 3. The first order expansion of the solution to the truncated problem posed in the
intact domain reads

uRε = uR + εdqR + o(εd) (4.2)

holds in H1(Ω) for the variational problem obtained by the first order approximation of the
quadratic functional

IRε (ϕ) =
1

2
a(Ω;ϕ,ϕ) +

1

2
εd(B(ϕ), ϕ)ΓR − L(ΩR;ϕ). (4.3)

Corollary 4. In the case of variational equations for the minimization of (4.1) we have the
same result. Indeed, the first order expansion of the minimizers ε→ uε restricted to the truncated
domain ΩR, i.e., for R > ε > 0

uε|ΩR = u|ΩR + εdqR + o(εd) (4.4)

is preserved when using the minimization of (4.3) since e.g., for the second order elliptic bound-
ary value problems

‖uε|ΩR − u
R
ε ‖H1(ΩR) = o(εd)

and uR = u|ΩR .
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From this property we have the possibility to obtain the topological derivatives of shape
functionals defined by integrals in the truncated domain only, which is a new result in the field
of topological derivatives, it seems.

Corollary 5. The topological derivative of the tracking type functional for variational inequali-
ties

J(Ωε) =
1

2

∫
ΩR

(uε − zd)2dx (4.5)

is simply given by the expression

T (x̂) =

∫
ΩR

(uR(x)− zd(x))qR(x)dx =

∫
ΩR

(u(x)− zd(x))q(x)dx, (4.6)

Remark 6. The topological derivative of the tracking type functional (4.5) for variational equa-
tions can be simplified by using the adjoint state equation.

4.4. Regular perturbations of energy functional for the purposes of topological dif-
ferentiability. The domain decomposition method of evaluation of topological derivatives uses
the asymptotic expansions of the energy functional is a small neighborhood of the singular do-
main perturbation created by a hole or a cavity. In our applications, the energy expansions
are equivalent to the expansions of nonlocal Steklov-Poincaré boundary operators. In the trun-
cated domain the perturbations of boundary conditions with the expansion of Steklov-Poincaré
boundary operators lead to the regular perturbations of the bilinear form and allow us to avoid
the self-adjoint extensions of elliptic operators in the punctured domains.

The energy functionals of elliptic BVPs are of great importance for shape and topology opti-
mization. The topological derivatives of the energy shape functionals are given by expressions
which contains the appropriate polarization tensors, see e.g., [49]. The domain decomposition
method requires the asymptotic expansion of the Steklov-Poincaré operator on the interface ΓR
which is obtained from the asymptotic expansion of the energy in the ring Ωε \ ΩR.

Evaluation of topological derivatives of the energy in the ring Ωε\ΩR in two spatial dimensions
is based on the explicit solutions to linear elliptic BVPs in function of small parameter. Thus,
the perturbed domain Ωε is decomposed into two subdomains, a ring and its complement in Ωε.
Exact solutions of BVP in the ring C(R, ε) = {0 < ε < ‖x‖ < R ⊂ Ω} give rise to the asymptotic
expansion for the energy of the Steklov-Poincaré operator defined on ΓR = {‖x‖ = R}. The
operator furnishes nonlocal boundary conditions on ΓR ⊂ ∂ΩR for the BVPs in the truncated
domain ΩR.

4.5. Topological derivatives of energy functional for variational inequalities. The vari-
ational inequalities which are considered in calculus of variations and lead to the free BVPs of
elliptic type. The well known examples include the obstacle problems for Laplacian and bi-
laplacian, the frictionless contact problem in linearized elasticity as well as the contact problem
with the Coulomb friction. Shape optimization for variational inequalities is performed in the
framework of nonsmooth optimization [59]. The topological derivatives of shape functionals for
the frictionless contact problems in elasticity are obtained in [57], see also [49]. The Hadamard
differentiability of metric projection onto polyhedric convex sets [33] can be exploited for the
purposes of shape sensitivity analysis of the unilateral problems. The case of polyhedric convex
sets in the Sobolev spaces of Dirichlet type is well understood now from the point of view of
shape and topology optimization [59, 49]. The domain decomposition technique is an efficient
tool for evaluation of topological derivatives in such a case.

4.6. Approximation of energy functionals combined with the domain decomposition
method. The standard topological derivative methodology developed by the authors in many
papers requires knowledge of point-wise values of solutions to partial differential equations or
variational equalities. However, the contact or unilateral problems are studied in the energy
space setting, where point-wise values of weak solutions are not well defined. The authors pro-
posed the new approach based on domain decomposition combined with the expansion of the
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Σ
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ΓR
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Figure 1. Domain Ωε with crack Σ.

Steklov-Poincaré operator with respect to small parameter which governs the size of imperfec-
tions to cope with such technical difficulties. As a result the regular perturbations of bilinear
forms are determined in order to model the imperfections. The appropriate formulas were given
for elasticity operator in 2D and 3D problems.

The proposed domain decomposition method is important for variational inequalities since
the asymptotic analysis for variational inequalities is more involved compared to linear elliptic
BVPs. The variational inequality under consideration results from the minimization problem of
quadratic functional

v 7→ I(v) =
1

2
a(v, v)− L(v) (4.7)

over a convex, closed subset K ⊂ H of the Hilbert space H called the energy space. The function
space H := H(Ω) is a Sobolev space which contains the functions defined over a domain Ω ⊂ Rd,
d = 2, 3.

The singular geometrical perturbation ωε (void) centred at x̂ ∈ Ω of the domain Ω is denoted
by Ωε, the size of perturbation is governed by a small parameter ε→ 0. The quadratic functional
defined on H := H(Ωε) becomes

v 7→ Iε(v) =
1

2
aε(v, v)− Lε(v) (4.8)

with the minimizers uε ∈ K := K(Ωε). The expansion of associated energy functional

ε 7→ E(Ωε) := Iε(uε) =
1

2
aε(uε, uε)− Lε(uε) (4.9)

is considered at ε = 0. Namely, we are looking for its asymptotic expansion

E(Ωε) = E(Ω) + εdT (x̂) + o(εd), (4.10)

where x̂ 7→ T (x̂) is the topological derivative.
It can be shown that there are regular perturbations of bilinear form defined on the energy

space H(Ω),

v 7→ b(v, v)

such that the perturbed quadratic functional defined on the unperturbed function space H(Ω)

v 7→ Iε(v) =
1

2

[
a(v, v) + εdb(v, v)

]
− L(v) (4.11)

furnishes the first order expansion (4.10). In our applications to contact problems in linear
elasticity it turns out that the bilinear form v 7→ b(v, v) is supported on ΓR := {‖x−x̂‖ = R} ⊂ Ω
with R > ε > 0.
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4.7. Energy for elasticity BVPs. In this section we shall consider asymptotic corrections to
the energy functional corresponding to the elasticity system in Rd, where d = 2, 3. The change
of the energy is caused by creating a small ball-like void of variable radius ε in the interior of
the domain Ω, with the homogeneous Neumann boundary condition on its surface. We assume
that this void has its centre at the origin O. In order to eliminate the variability of the domain,
we take ΩR = Ω \ BR, where BR := B(O, R) is an open ball with fixed radius R. In this way
the void Bε := B(O, ε) is surrounded by BR ⊂ Ω. We denote also the ring or spherical shell as
C(R, ε) = BR \Bε and its boundaries as ΓR = ∂BR and Γε := ∂Bε.

Using these notations we define our main tool, namely the Dirichlet-to-Neumann mapping for
linear elasticity which is called the Steklov-Poincaré operator

Aε : H1/2(ΓR;Rd) 7→ H−1/2(ΓR;Rd)

by means of the boundary value problem:

µ∆w + (λ+ µ)∇(divw) = 0, in C(R, ε), (4.12)

w = v on ΓR, σ(u)n = 0 on Γε,

so that

Aε(v) = σ(w)n on ΓR. (4.13)

Here, µ, λ are the Lamé’s coefficients and σ(w) the Cauchy stress tensor, namely

σ(w) = 2µ(∇w)s + λ div(w) I, with (∇w)s =
1

2
(∇w + (∇w)>).

Let uR be the restriction of u to ΩR and γR(ϕ) the trace of ϕ on ΓR, the trace is denoted by
ϕ for the sake of simplicity. We may then define the functional

IRε (ϕε) =
1

2

∫
ΩR

σ(ϕε) · (∇ϕε)s dx−
∫

ΓN

h · ϕε ds+
1

2

∫
ΓR

Aε(ϕε) · ϕε ds (4.14)

and the solution uRε as a minimal argument for

IRε (uRε ) = inf
ϕε∈K⊂Vε

IRε (ϕε), (4.15)

Here lies the essence of the domain decomposition concept: we have replaced the variable domain
ε→ Ωε by a fixed truncated domain ΩR, at the price of introducing variable boundary operator
Aε. Thus, the goal is to find the asymptotic expansion

Aε = A+ εdB +Rε, (4.16)

where the remainder Rε is of order o(εd) in the operator norm in the space

L(H1/2(ΓR;R2), H−1/2(ΓR;R2))

and the operator B is regular enough, namely it is bounded and linear:

B ∈ L(L2(ΓR;R2), L2(ΓR;R2)).

Under this assumption the following propositions hold true.

Proposition 7. Assume that (4.16) holds in the operator norm. Then strong convergence takes
place

uRε → uR (4.17)

in the H1(ΩR)-norm.

Proposition 8. The energy functional has the representation

IRε (uRε ) = IR(uR) + εd〈B(uR), uR〉R + o(εd) , (4.18)

where o(εd)/εd → 0 with ε→ 0 in the same energy norm.
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Here IR(uR) denotes the functional IRε on the intact domain, i.e. ε = 0, with Aε replaced by
A applied to truncation of u.

Generally, the energy correction for the elasticity system has the form

〈B(uR), uR〉R = −cdeu(O),

where cd = vol(B1) with B1 being the unit ball in Rd. The energy-like density function eu(O)
has the form:

eu(O) =
1

2
Pσ(uR) · (∇uR)s(O),

where for d = 2 and plane stress

P =
1

1− ν
(4I− I⊗ I)

and for d = 3

P =
1− ν
7− 5ν

(10I− 1− 5ν

1− 2ν
I⊗ I)

see [49, 56]. Here I is the fourth order identity tensor, and I is the second order identity tensor.
This approach is important for variational inequalities since it allows us to derive the formulas

for topological derivatives which are similar to the expressions obtained for the corresponding
linear BVPs.

4.7.1. Explicit form of the operator B in two spatial dimensions. Let us denote for the plane
stress case

k =
λ+ µ

λ+ 3µ
.

It has been proved in [57] that the following exact formulae hold

u1,1(O) + u2,2(O) =
1

πR3

∫
ΓR

(u1x1 + u2x2) ds,

u1,1(O)− u2,2(O) =
1

πR3

∫
ΓR

[
(1− 9k)(u1x1 − u2x2) +

12k

R2
(u1x

3
1 − u2x

3
2)
]
ds,

u1,2(O) + u2,1(O) =
1

πR3

∫
ΓR

[
(1 + 9k)(u1x2 + u2x1)− 12k

R2
(u1x

3
2 + u2x

3
1)
]
ds.

These expressions are easy to compute numerically, but contain additional integrals of third
powers of xi. Therefore, strains evaluated at O may be expressed as linear combinations of
integrals over circle which have the form∫

ΓR

uixj ds,

∫
ΓR

uix
3
j ds.

The same is true, due to Hooke’s law, for stresses σij(O). They may then be substituted into
expression for the operator B, yielding

〈B(uR), uR〉R = −1

2
c2Pσ(u) · (∇u)s.

These formulas are quite easy to compute numerically.

4.7.2. Explicit form of the operator B in three spatial dimensions. It turns out that similar sit-
uation holds in three spatial dimensions, but obtaining the formulas is more difficult. Assuming
given values of u on ΓR, the solution of elasticity system in BR may be expressed, following
partially the derivation from [31] (pages 285 and later), as

u =

∞∑
n=0

[Un + (R2 − r2)kn(ν)∇(divUn)]. (4.19)
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where kn(ν) = 1/2[(3− 2ν)n− 2(1− ν)] and r = ‖x‖, with ν used to denote the Poisson ratio.
In addition

Un =
1

Rn
[an0dn(x) +

n∑
m=1

(anmc
m
n (x) + bnms

m
n (x))]. (4.20)

The vectors

an0 = (a1
n0, a

2
n0, a

3
n0)>,

anm = (a1
nm, a

2
nm, a

3
nm)>,

bnm = (b1nm, b
2
nm, b

3
nm)>

are constant and the set of functions

{d0; d1, c
1
1, s

1
1; d2, c

1
2, s

1
2, c

2
2, s

2
2; d3, c

1
3, s

1
3, c

2
3, s

2
3, c

3
3, s

3
3; . . .}

constitutes the complete system of orthonormal harmonic polynomials on ΓR, related to Laplace
spherical functions. Specifically,

clk(x) =
P̂ l,ck (x)

‖P̂ l,ck ‖R
, slk(x) =

P̂ l,sk (x)

‖P̂ l,sk ‖R
, dk =

Pk(x)

‖P̂k‖R
.

For example,

c2
3(x) =

1

R4

√
7

240π
(15x2

1x3 − 15x2
2x3),

If the value of u on ΓR is assumed as given, then, denoting

〈φ, ψ〉R =

∫
ΓR

φψ ds,

we have for n ≥ 0, m = 1..n, i = 1, 2, 3:

ain0 = Rn〈ui, dn(x)〉R, (4.21)

ainm = Rn〈ui, cmn (x)〉R,
binm = Rn〈ui, smn (x)〉R.

Since we are looking for ui,j(O), only the part of u which is linear in x is relevant. It contains
two terms:

û = U1 +R2k3(ν)∇(divU3). (4.22)

For any f(x), ∇div (af) = H(f) ·a, where a is a constant vector and H(f) is the Hessian matrix
of f . Therefore

û =
1

R
[a10d1(x) + a11c

1
1(x) + b11s

1
1(x))]

+R2k3(ν)
1

R3

[
H(d3)(x)a30 +

3∑
m=1

(
H(cm3 )(x)a3m +H(sm3 )(x)b3m

)]
(4.23)

From the above we may single out the coefficients standing at x1, x2, x3 in u1, u2, u3. For
example,

u1,1(O) =
1

R3

√
3

4π
a1

11 +
1

R5
k3(ν)

[
− 3

√
7

4π
a3

309

√
7

24π
a1

31

− 3

√
7

24π
b231 + 30

√
7

240π
a3

32 + 90

√
7

1440π
a1

33 + 90

√
7

1440π
b233

]
,

u1,2(O) =
1

R3

√
3

4π
(b111 + a2

11) +
1

R5
k3(ν)

[
− 3

√
7

24π
a2

31 −
√

7

24π
b131

+ 15

√
7

60π
b332 − 90

√
7

1440π
a2

33 + 90

√
7

1440π
b133

]
.
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Observe that

u1,1(O) + u2,2(O) + u3,3(O) =
1

R3

√
3

4π

(
R〈u1, c

1
1〉R +R〈u2, s

1
1〉R +R〈u3, d1〉R

)
and c1

1 = 1
R2

√
3

4πx1, s1
1 = 1

R2

√
3

4πx2, d1 = 1
R2

√
3

4πx3.

As a result, the operator B may be defined by the formula

〈BuR, uR〉R = −c3Pσ(u) · (∇u)s(O)

but the right-hand side consists of integrals of u multiplied by first and third order polynomials
in xi over ΓR resulting from (4.21). This is a very similar situation as in two spatial dimensions.
Thus, the new expressions for strains make possible to rewrite B in the form possessing the
desired regularity.

5. Perspectives and Open Problems

The topological derivative method in shape and topology optimization introduces the asymp-
totic analysis of elliptic BVPs e.g., into the field of structural optimization in elasticity. The
method requires the local regularity of solutions to elliptic problems. Nowadays, the classi-
cal shape optimization techniques are not restricted to elliptic problems, but can be applied
to evolution problems including linear parabolic and hyperbolic equations. The extension of
topological derivative method to evolution problems is one of challenging issues in the field of
shape optimization. In particular, for the transport equations the notion of topological deriv-
ative is still to be discovered. Let us mention that the transport equations are components
of compressible Navier-Stokes equations. The modern theory of shape optimization for com-
pressible Navier-Stokes equations can be found in the monograph [51]. Another domain which
is promising for the developments of shape optimization is the nonlinear elasticity. The evo-
lution of geometrical domains is used within the growth modeling. The shape and topology
optimization for nonlinear elasticity is still poorly known issue. The topological derivatives can
be also used for optimization of microstructures for the metamaterials design. This could be a
modern application of topological derivatives for producing the new optimal microstructures for
the metamaterials design. There is already some numerical evidence that this approach is well
adapted to the design of metamaterials in elasticity.

In order to state some open problems for the applications of topological sensitivity analysis
to numerical solution of shape optimization and inverse problems we precise the mathematical
framework which combines the analysis of weak solutions to elliptic BVPs with the domain
decomposition method as well as with the asymptotic approximation of solutions in singularly
perturbed geometrical domains.

(1) Differentiability of energy functionals. It is known that the shape derivatives of energy
type functionals can be obtained by the Gamma-limit procedure, see e.g., the derivation
of the elastic energy with respect to the crack length [26, 27], see also [23, 25, 29] for the
related topics.

(2) Sensitivity analysis of variational inequalities. Shape optimization for variational in-
equalities is studied in [59]. The obtained results are based on the Hadamard differen-
tiability of metric projection onto convex sets in Sobolev spaces [19, 33, 58]. The known
results are obtained by using the potential theory in Dirichlet spaces [15] which leads to
the Hadamard differentiablity of metric projection.

(3) Asymptotic analysis of variational inequalities. The asymptotic analysis of variational
inequalities was studied e.g., by Argatov and Sokolowski [10]. The concept of polyhedral
subsets of the Sobolev spaces can be used in order to derive the topological derivatives for
contact problems in solid mechanics. The case of linearized elasticity can be considered.
The open problems are some models of plates and the shells and the Hencky plasticity.
This domain of research is in stagnation for a long time already. The mathematical
result which is required concerns the directional differentiability of the metric projection
onto the convex set defined by the local constraints on the stresses.
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(4) The necessary optimality conditions. The first order necessary optimality conditions are
known in the case of linear state equations [56]. Using the second order topological
derivatives for the purposes of derivation of optimality conditions seems to be an open
problem.

(5) Exact solutions of elasticity with complex Kolosov potentials and Steklov-Poincaré for-
malism in domain decomposition. Using complex potentials of Kolosov the exact solu-
tions of elasticity system in two spatial dimensions are obtained. These results leads to
topological derivatives of arbitrary order. The extension of such results to full range of
models in mechanics is an interesting issue of research which is to be completed in the
literature.

(6) Exact solutions of wave equations. The important field of application concerns electro-
magnetism, which are not standard from the mathematical point of view for the asymp-
totic analysis. The open problems are the field of wave equations in all aspects including
the mathematical asymptotic analysis in singularly perturbed geometrical domains.

(7) Exact solutions of transport equations. The domain decomposition method is known for
the transport problems. The open problems are the field of transport equations in all
aspects including the mathematical asymptotic analysis in singularly perturbed geomet-
rical domains. Finally, the compressible Navier-Stokes equations can be considered from
the point of view of singular domain perturbations.

(8) Open problems for variational inequalities. Beside the energy functionals and the case
of variational inequalities with polyhedric convex sets in ordered Sobolev spaces the
shape and topology optimization is not developed. Namely, for other type variational
inequalities with local constraints on gradients or on stresses the shape and topological
sensitivity analysis is in general an open problem. The case of the Hencky plasticity is
an example with no results, to our best knowledge, neither on shape optimization nor
on topological derivatives.

6. Appendix

6.1. Asymptotic expansions of solutions and functionals. For the convenience of the
reader the two scale asymptotic analysis of nonhomogeneous boundary value problem is per-
formed for a simple model problem. The small cavity ωε := εω with the centre at the origin
O ∈ ωε ⊂ ω can be considered without loss of generality. In general we denote by the same
symbol ωε(x̂) := x̂+ωε the cavity with the centre at x̂ ∈ Ω. The matched asymptotic expansions
are used in two spatial dimensions for scalar problems with the Laplacian.

6.2. Asymptotic expansions of Steklov-Poincaré operators. We denote the smooth do-
main Ωε := Ω \ ωε for ε → 0 and let us consider the nonhomogeneous Dirichlet problem with

h ∈ H1/2(Γ), 
∆wε = 0 in Ωε ,
wε = h on Γ ,

∂wε
∂n

= 0 on ∂ωε ,

(6.1)

where Γ = ∂Ω is the boundary of the intact domain Ω.
The energy associated with (6.1) is given by the symmetric bilinear form on fractional Sobolev

space H1/2(Γ)

aε(h, h) =

∫
Ωε

‖∇wε‖2dx.

We are interested in the asymptotic expansion of the quadratic functional for ε → 0. To this
end the technique of matched asymptotic expansions [22, 32] is used.

Using the Green’s formula, we derive the equivalent forms of the energy, here the boundary
integrals stand for the duality pairing between the space H1/2(Γ) and its dual H−1/2(Γ),

aε(h, h) =

∫
Γ
wε
∂wε
∂n

ds =

∫
Γ
h
∂wε
∂n

ds (6.2)
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Now, we introduce the two scale asymptotic approximation of solutions. We use the method
of matched asymptotic expansions, and look for two types of expansions, the outer expansion
valid far from the cavity ωε

wε(x) = w0(x) + ε2w1(x) + ε3w2(x) + . . .

and the inner expansion, valid in a small neighborhood of ωε

wε(x) = W0(ξ) + εW1(ξ) + ε2W (ξ) + . . . ,

where the fast variable ξ is defined by

ξ =
x

ε
.

Following [22, 32] we obtain

W0(ξ) ≡ w0(0),

and

W1(ξ) =

2∑
j=1

Yj(ξ)∂w0

∂xj
(0),

where Yj is harmonic in R2 \ω and ω := ω1. In addition Yj satisfies the homogeneous Neumann
boundary conditions on ∂ω and enjoys the following behavior at infinity

Yj(ξ) = ξj +
1

2π‖ξ‖2
2∑

k=1

mω
kjξk +O(‖ξ‖−2), ‖ξ‖ → ∞.

Its regular part is denoted by

Yj0(ξ) :=
1

2π‖ξ‖2
2∑

k=1

mω
kjξk +O(‖ξ‖−2),

and we denote its higher order term O(‖ξ‖−2)

yj0(ξ) := Yj0(ξ)− 1

2π‖ξ‖2
2∑

k=1

mω
kjξk,

Taking into account this expansion, we get

w1(x) =
2∑

j,k=1

∂w0

∂xj
(0)mω

kjG(k)(x).

We denote by G(k) the singular solutions to the problem posed in punctured domain
∆xG(k)(x) = 0 in Ω \ O,
G(k)(x) = 0 on Γ,

G(k)(x) =
xk

2π‖x‖2
+O(1) ‖x‖ → 0.

(6.3)

We put

G(k)(x) =
xk

2π‖x‖2
+ G(k)

0 (x),

where G(k)
0 stands for the regular part. Therefore, far from the cavity ωε, we have

wε(x) = w0(x) + ε2
2∑

j,k=1

∂w0

∂xj
(0)mω

kjG(k)(x) +O(ε2).

Substituting this representation into formula (6.2) we obtain one term expansion

aε(h, h) = a(h, h) + ε2b(h, h) +O(ε3−α).
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Here α ∈ (0, 1) and

b(h, h) =

∫
Γ
h(x)

2∑
j,k=1

∂w0

∂xj
(0)mω

kj

∂G(k)

∂n
(x)ds

If we combine this with the integral equality on the sphere of radius δ > 0∫
Sδ(O)

(
xj

∂

∂n

xk
2π‖x‖2

− xk
2π‖x‖2

∂xj
∂n

)
ds = δjk

we get

b(h, h) = −mω∇w0(0) · ∇w0(0).

Since ∫
Γ
w0(x)∂nG(k)(x)ds = −∂w0

∂xk
(0),

it follows that

b(h, h) = −
(∫

Γ
h(x)∂nG(j)(x)ds

)
mω
jk

(∫
Γ
h(x)∂nG(k)(x)ds

)
ds.

Remark 9. It can be shown that the following supremum taken with respect to H1/2(Γ)-norm
is bounded with respect to ε→ 0,

sup
‖h‖≤1

∣∣aε(h, h)− a(h, h)− ε2b(h, h)
∣∣ ≤ Cαε3−α.

Since the operators associated to bilinear forms (h, h) 7→ aε(h, h) are positive and self-adjoint,
the one term expansion of Steklov-Poincaré operators is obtained for ε→ 0,

Aε = A− ε2B +O(ε3−α)

with the remainder bounded in the operator norm H1/2(Γ) 7→ H−1/2(Γ). The self-adjoint positive
linear operators Aε are uniquely determined by the symmetric and coercive bilinear forms h 7→
aε(h, h). The operator B is determined by h 7→ b(h, h).

6.3. Asymptotic expansion of linear form. Let us now consider the linear form

Lε(h) =

∫
Ωε

f(x)wε(x)dx

We use the method of matched asymptotic expansions and set

wε(w) = w0(x) + ε
2∑
j=1

∂w0

∂xj
(0)Yj0(ξ) + ε2

2∑
j,k=1

∂w0

∂xj
(0)mω

jkG
(k)
0 (x) + . . .

hence

Lε(h) =

∫
Ωε

f(x)w0(x)dx+ ε

∫
Ωε

f(x)
2∑
j=1

∂w0

∂xj
(0)Yj0(ξ)

+ ε2

∫
Ωε

f(x)

2∑
j,k=1

∂w0

∂xj
(0)mω

jkG
(k)
0 (x)dx

Taking into account that ∣∣∣Yj0(ξ)
∣∣∣ ≤ C0

1

‖ξ‖
= C0

ε

‖x‖
in Ωε

it follows that

Lε(h) =

∫
Ω
f(x)w0(x)dx−

∫
ωε

f(x)w0(x)dx+ ε2

∫
Ω
f(x)

2∑
j,k=1

∂w0

∂xj
(0)mω

jkG(k)(x)dx+ . . .
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In order to replace the integrals over Ωε by the integrals over intact domain Ω we use the
estimates

ε

∫
ωε

f(x)
2∑

j,k=1

∂w0

∂xj
(0)mω

jk

εxk
2π‖x‖2

dx ≤ C0ε
2 sup
x∈Ω

|f(x)|
∫ ε

0

1

r
rdr

and ∫
ωε

f(x)
2∑

j,k=1

∂w0

∂xj
(0)mω

jkG
(k)
0 (x) ≤ C0ε

2

Finally,

Lε(h) = L0(h)− ε2f(0)w0(0)|ω|+ ε2

∫
Ω
f(x)

2∑
j,k=1

∂w0

∂xj
(0)mω

jkG(k)(x)dx+ . . .

6.4. Energy functional of nonhomogeneous Dirichlet problem in peturbed domain.
The energy functional

JΩε(uε) =
1

2

∫
Ωε

‖∇uε‖2dx−
∫

Ωε

fuεdx =
1

2

∫
Γ
uε
∂uε
∂n

ds− 1

2

∫
Ωε

fuεdx

depends on solutions to the boundary value problem
−∆uε = f in Ωε ,

uε = hε on Γ ,
∂uε
∂n

= 0 on ∂ωε .

(6.4)

with the associated Green’s formula∫
Ωε

‖∇uε‖2dx =

∫
Γ
hε
∂uε
∂n

ds+

∫
Ωε

fuεdx

Here, we assume that the Dirichlet boundary datum also depends on the small parameter

hε = h0 + ε2h1 + o(ε2) in H1/2(Γ)

and that there is a source term inside of the perturbated domain Ωε.
The approximation of solutions takes the form

uε(x) = v0(x) + ε2v1(x) + ε
2∑
j=1

∂v0

∂xj
(0)Yj0(ξ) + ε2

2∑
j,k=1

∂v0

∂xj
(0)mω

jkG
(k)
0 (x) + . . .

where {
−∆v0 = f in Ω ,

v0 = h0 on Γ ,
and

{
−∆v1 = 0 in Ω ,

v1 = h1 on Γ .

The approximation of the normal derivatives

∂uε
∂n

(x) =
∂v0

∂n
(x) + ε2∂v1

∂n
(x) + ε

2∑
j=1

∂v0

∂xj
(0)

∂Yj0
∂ν

(ξ) + ε2
2∑

j,k=1

∂v0

∂xj
(0)mω

jk

∂G(k)
0

∂n
(x) + . . .

where
∂

∂n
= n · ∇x,

∂

∂ν
= n · ∇ξ and ξ = x/ε. We recall that the higher order term of Yj0(ξ)

satisfies ∣∣∣yj0(ξ)
∣∣∣ ≤ C0

1

‖ξ‖2
= C0

ε2

‖x‖2
for ξ =

x

ε
∈ R2 \ ω or for x ∈ Ωε.

Thus, in the approximation of uε(x) the terms of order O(ε3)

ε

2∑
j=1

∂v0

∂xj
(0)yj0(ξ)
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can be neglected. Therefore, from the formula

uε(x) = v0(x) + ε2v1(x) + ε
2∑
j=1

∂v0

∂xj
(0)yj0(ξ) + ε2

2∑
j,k=1

∂v0

∂xj
(0)mω

jkG(k)(x) + . . .

we deduce

∂uε
∂n

(x) =
∂v0

∂n
(x) + ε2∂v1

∂n
(x) + ε2

2∑
j,k=1

∂v0

∂xj
(0)mω

jk

∂G(k)

∂n
(x) + . . .

and it follows that

uε(x)
∂uε
∂n

(x) = v0(x)
∂v0

∂n
(x)

+ ε2

v1(x)
∂v0

∂n
(x) + v0(x)

∂v1

∂n
(x) + v0(x)

2∑
j,k=1

∂v0

∂xj
(0)mω

jkG(k)(x)

+ . . .

since the second order term

∂v0

∂n
(x)

2∑
j,k=1

∂v0

∂xj
(0)mω

jkG(k)(x)

vanishes taking into account that G(k)(x) = 0 on the boundary Γ. We return to the shape
functional

JΩε(uε) =
1

2

∫
Γ
uε(x)

∂uε
∂n

(x)ds− 1

2

∫
Ωε

fuεdx

and find the approximations for the integrals,

1

2

∫
Γ
uε(x)

∂uε
∂n

(x)ds =
1

2

∫
Γ
v0(x)

∂v0

∂n
(x)ds

+
ε2

2

∫
Γ

(
v1(x)

∂v0

∂n
(x) + v0(x)

∂v1

∂n
(x)

)
ds

+
ε2

2

∫
Γ
v0(x)

2∑
j,k=1

∂v0

∂xj
(0)mω

jk

∂G(k)

∂n
(x)ds+ . . .

and

−1

2

∫
Ωε

fuεdx = −1

2

∫
Ωε

fv0dx−
ε2

2

∫
Ωε

fv1dx−
ε2

2

∫
Ωε

f

2∑
j,k=1

∂v0

∂xj
(0)mω

jkG(k)(x) + . . . ,

which can be written as

− 1

2

∫
Ωε

fuεdx = −1

2

∫
Ω
fv0dx+

1

2

∫
ωε

fv0dx−
ε2

2

∫
Ω
fv1dx+

ε2

2

∫
ωε

fv1dx

− ε2

2

∫
Ω
f

2∑
j,k=1

∂v0

∂xj
(0)mω

jkG(k)(x)dx+
ε2

2

∫
ωε

f
2∑

j,k=1

∂v0

∂xj
(0)mω

jkG(k)(x)dx+ . . .

or as follows

− 1

2

∫
Ωε

fuεdx = −1

2

∫
Ω
fv0dx+

ε2

2
f(0)v0(0)|ω| − ε2

2

∫
Ω
fv1dx

− ε2

2

∫
Ω
f

2∑
j,k=1

∂v0

∂xj
(0)mω

jkG(k)(x)dx+O(ε3)
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Where we take into account that using the Taylor formula
1

2

∫
ωε
fv0dx is replaced by

ε2

2
f(0)v0(0)|ω|,

in the same way it follows that
ε2

2

∫
ωε
fv1dx is O(ε4); finally, the latter integral over ωε is of the

type O

(∫ ε
0

1

r
r

)
. As a result

JΩε(uε) =
1

2

∫
Γ
v0(x)

∂v0

∂n
(x)ds− 1

2

∫
Ω
fv0dx

+
ε2

2

∫
Γ

(
v1(x)

∂v0

∂n
(x) + v0(x)

∂v1

∂n
(x)

)
ds+

ε2

2

∫
Γ
v0(x)

2∑
j,k=1

∂v0

∂xj
(0)mω

jk

∂G(k)

∂n
(x)ds

− ε2

2

∫
Ω
f

2∑
j,k=1

∂v0

∂xj
(0)mω

jkG(k)(x)dx+
ε2

2
f(0)v0(0)|ω| − ε2

2

∫
Ω
fv1dx.

We denote by Bδ(O) the ball at origin of radius δ, with its boundary Sδ := Sδ(O). By the

Green’s formula in the domain Ωδ = Ω \Bδ(O), with the boundary ∂Ωδ = Γ ∪ Sδ, for δ → 0,∫
Ωδ

(v0∆G(k) − G(k)∆v0)dx =

∫
∂Ωδ

(
v0
∂G(k)

∂n
− G(k)∂v0

∂n

)
ds.

Since ∆v0 = −f , we find∫
Ωδ

G(k)fdx =

∫
Γ
v0
∂G(k)

∂n
ds+

∫
Sδ

(
v0
∂G(k)

∂n
− G(k)∂v0

∂n

)
ds.

Passage to the limit δ → 0 leads to∫
Ωδ

G(k)fdx−
∫

Γ
v0
∂G(k)

∂n
ds =

∂v0

∂xk
(0)

Finally, we arrive at the expression

JΩε(uε) = JΩ(v0) +
ε2

2
f(0)v0(0)|ω| − ε2

2

2∑
j,k=1

∂v0

∂xj
(0)mω

jk

∂v0

∂xk
(0)

+
ε2

2

∫
Γ

(
v1(x)

∂v0

∂n
(x) + v0(x)

∂v1

∂n
(x)

)
ds− ε2

2

∫
Ω
f(x)v1(x)dx+O(ε3).
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