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Abstract. The framework of asymptotic analysis in singularly perturbed geometrical domains
presented in the first part of this series of review papers can be employed in order to produce the
two terms asymptotic expansions for a class of shape functionals. In the second part of review
the one term expansions of functional are required for the algorithm of shape-topological opti-
mization. Such an approach corresponds to the simple gradient method in shape optimization.
The Newton method of shape optimization can be replaced for the shape-topology optimization
by the two terms expansions of shape functionals. Thus, the obtained approximations are more
precise and the associated numerical method is much more performed and complex compared to
the one term expansion topological derivative algorithm. In particular, the numerical algorithm
associated with the first order topological derivative of shape functionals has been presented
in the second part the review, together with an account on its applications currently found in
the literature, with emphasis on shape and topology optimization. In this third and last part
the second order topological derivative is introduced. The second order algorithm of shape-
topological optimization is used for numerical solution of representative examples for inverse
reconstruction problems. The main feature of the shape-topology optimization algorithm is the
property that the method is non-iterative and thus very robust with respect to noisy data as
well as free of initial guess.

1. Introduction

The topological sensitivity analysis, presented in the first part of this series of review papers,
leads to the asymptotic expansion of a given shape functional with respect to a small parameter
that measures the size of singular domain perturbations, such as holes, inclusions, source-terms
and cracks. This relatively new concept has applications in many different fields such as shape
and topology optimization, inverse problems, imaging processing, multi-scale material design
and mechanical modeling including damage and fracture evolution phenomena. The numerical
algorithm associated with the first order topological derivative has been presented in the second
part of this series of review papers, together with an account on its applications currently found
in the literature, with emphasis on shape and topology optimization.

In this third and last part of review papers, the concept of second order topological derivative
is introduced [20], which are used for solving a class of inverse reconstruction problems written in
the form of overdetermined boundary value problems. The general idea consists in rewrite then as
a topology optimization problem. In particular, a shape functional measuring the misfit between
the boundary measurements and the solution obtained from the model is minimized with respect
to a set of ball-shaped anomalies by using the concept of topological derivatives. It means that
the objective functional is expanded and then truncated up to the second order term, leading
to a quadratic and strictly convex form with respect to the parameters under consideration.
Thus, a trivial optimization step leads to a non-iterative second order reconstruction algorithm.
As a result, the reconstruction process becomes very robust with respect to noisy data and
independent of any initial guess. Finally, these results are used for solving a wide class of inverse
reconstruction problems.

The paper is organized as following. The second order topological derivative concept is in-
troduced in Section 2. The resulting second order method is presented in Section 3, together
with the associated algorithm. In Section 4 a class of inverse reconstruction problems written in
the form of overdetermined boundary value problems is introduced. In particular, Section 4.1
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deals with the inverse conductivity problem. The inverse gravimetry problem is presented in
Section 4.2. A pointwise source reconstruction problem is introduced in Section 4.3. Section 4.4
is dedicated to an obstacle reconstruction problem. In Section 4.5 the inverse electromagnetic
casting problem is discussed. Finally, the paper ends with some concluding remarks and open
problems in Section 5.

2. Preliminaries

Let us consider an open and bounded domain Ω ⊂ Rd, d ≥ 2, with Lipschitz continuous
boundary ∂Ω. The domain Ω is subjected to a perturbation confined in a small arbitrary-shaped
set ωε(x̂) of size ε and center at an arbitrary point x̂ of Ω, such that ωε(x̂) ⊂ Ω. We introduce a
characteristic function x 7→ χ(x), x ∈ Ω, associated to the unperturbed domain, namely χ = 1Ω.
Then, we define a characteristic function associated to the topologically perturbed domain of
the form x 7→ χε(x̂;x), x ∈ Ω. In the case of a hole, for example, χε(x̂) = 1Ω − 1

ωε(x̂)
and the

perturbed domain is given by Ωε(x̂) = Ω\ωε(x̂). Then, we assume that a given shape functional
ψ(χε(x̂)), associated to the topologically perturbed domain, admits the following topological
asymptotic expansion [35]

ψ(χε(x̂)) = ψ(χ) + f1(ε)T (x̂) + f2(ε)T 2(x̂) + o(f2(ε)) , (2.1)

where ψ(χ) is the shape functional associated to the unperturbed domain, f1(ε) and f2(ε)
are positive functions and o(f2(ε)) is the remainder, such that f1(ε) → 0, f2(ε)/f1(ε) → 0
and o(f2(ε))/f2(ε) → 0 when ε → 0, respectively. The functions x̂ 7→ T (x̂) and x̂ 7→ T 2(x̂)
are called first and second order topological derivatives of ψ at x̂. The terms f1(ε)T (x̂) and
f2(ε)T 2(x̂) represent, respectively, first and second order corrections of ψ(χ) to approximate
ψ(χε(x̂)). Therefore, the first order topological derivative T (x̂) can naturally be used as a
steepest-descent direction in an optimization process like in any method based on the gradient
of the cost functional, leading to a family of first order topology optimization algorithms. On
the other hand, the second order topological derivative T 2(x̂) leads to second order topology
optimization algorithms, which are non-iterative and thus very robust with respect to noisy
data, for instance. Since all quantities on the right-hand side of (2.1) are defined in the original
(unperturbed) domain Ω, the resulting algorithms derived from T (x̂) and T 2(x̂) are free of initial
guess.

The form of the topological asymptotic expansion (2.1) depends on many features of the
problem under consideration, including the spatial dimension, differential operator, nature of
the topological perturbations and their boundary/transmission conditions, etc. In order to fix
these ideas, let us consider the elasticity problem into tree spatial dimensions, whose topological
perturbation is given by the nucleation of an arbitrary shaped inclusion endowed with different
material properties from the background. According to [7], in this case expansion (2.1) takes
the form

ψ(χε(x̂)) = ψ(χ) + ε3T (x̂) + ε4T 2(x̂) + ε5T 3(x̂) + ε6T 4(x̂) + o(ε6) . (2.2)

For spherical or ellipsoidal shaped inclusions, the O(ε4) term vanishes. See also [25] for equivalent
expansion in the scalar case. Into two spatial dimensions the topological asymptotic analysis
may becomes more involved. In fact, depending on the problem under consideration, logarithm
of ε may appear. See for instance Section 4.4. Let us remark however that this is a rich
and fascinating field of research with a wide range of relevant applications and many unsolved
theoretical questions. See Section 5 for an account on some open problems.

3. Second Order Algorithm

A well known phenomenon concerning high order topological asymptotic expansion concerns
the interaction between several topological perturbations. Therefore, let us consider that the
domain Ω is perturbed by the nucleation of N ball-shaped anomalies Bεi(xi) of radii εi and
centers at xi ∈ Ω, with i = 1, · · · , N . We introduce the notations ξ = (x1, · · · , xN ) and
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ε = (ε1, · · · , εN ). We restrict ourselves to the case in which expansion (2.1) takes the following
quadratic form with respect to α

ψ(χε(ξ)) = ψ(χ)− α · d(ξ) +
1

2
H(ξ)α · α+ E(ε) , (3.1)

where α = (α1, ..., αN ), with αi = f1(εi), and E(ε) is the remainder. The vector d ∈ RN and
the Hessian matrix H ∈ RN × RN represent the fist and second order topological derivatives,
respectively. Theirs entries are defined as di and Hij . In addition, the expression on the right-
hand side of (3.1) shall depends on the number N of anomalies, their sizes α and locations ξ.
Thus, from (3.1), we can define the following quantity:

δJ(α, ξ,N) := −α · d(ξ) +
1

2
H(ξ)α · α , (3.2)

Let us assume that the infinity dimensional Hessian matrix H(ξ) is positive definite, so that the
minimization of the function δJ(α, ξ,N) with respect to the variable α yields

〈DαδJ, β〉 = (H(ξ)α− d(ξ)) · β = 0, ∀β , (3.3)

which leads to the following linear system

H(ξ)α = d(ξ) . (3.4)

The quantity α solution of (3.4) becomes a function of the locations ξ, namely α = α(ξ). Let
us now replace the solution of (3.4) into δJ(α, ξ,N) defined by (3.2). Therefore, the optimal
locations ξ? can be trivially obtained from a combinatorial search over the domain Ω, solution
to the following minimization problem

ξ? = argmin
ξ∈X

{
δJ(α(ξ), ξ,N) = −1

2
α(ξ) · d(ξ)

}
, (3.5)

where X is the set of admissible anomalies locations. Finally, the optimal intensities are given
by α? = α(ξ?). In summary, our method is able to find optimal sizes α? of the hidden anomalies
and theirs locations ξ? for a given number N of trials balls.

Figure 1. Nucleation of a set of ball-shaped inclusions Bεi(xi), i = 1, · · · , N .

In order to summarize the calculations presented in this section we introduce now the resulting
second order topology optimization algorithm. It describes the process of obtaining the optimal
parameters α? and ξ? from the computational point of view. The entries of the algorithm are
listed below:

• The quantity N of anomalies;
• The M -points on which the systems (3.4) are solved;
• The vector d and the matrix H, whose entries are given by f(i) := di and A(i, j) := Hij ,

respectively.

The algorithm returns optimal sizes α? and locations ξ?. The above procedure written in
pseudo-code format is shown in Algorithm 1. In the algorithm, Π maps the vector of nodal
indices I = (i1, i2, ..., iN ) into the corresponding vector of nodal coordinates ξ. For further
applications of this algorithm we refer to [11, 12, 21, 33, 36], for instance.
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Algorithm 1: Second Order Algorithm.

input : d, H, M , N ;
output: the optimal solution S?, α?, ξ?;

1 Initialization: S? ←∞; α? ← 0; ξ? ← 0;

2 for i1 ← 1 to M do
3 for i2 ← i1 + 1 to M do

...
4 for iN ← iN−1 + 1 to M do

5 d←


f(i1)
f(i2)

...
f(iN )

; H ←


A(i1, i1) A(i1, i2) · · · A(i1, iN )
A(i2, i1) A(i2, i2) · · · A(i2, iN )

...
...

. . .
...

A(iN , i1) A(iN , i2) · · · A(iN , iN )

;

6 I ← (i1, i2, ..., iN ); ξ ← Π(I); α← H−1d ; S ← −1

2
d · α;

7 if S < S? then
8 ξ? ← ξ; α? ← α; S? ← S;

9 end if

10 end for

11 end for

12 end for

13 return S?, α?, ξ?;

As can be noted in the Algorithm 1, the optimal solution (ξ?, α?) is obtained through an
combinatorial and exhaustive search over the M -points. Therefore, the complexity C(M,N) of
the algorithm can be evaluated by the formula:

C(M,N) =

(
M
N

)
N3 =

M !

N !(M −N)!
N3. (3.6)

In Fig. 2 the graphics of N × log10(C(M,N)) for M = 100 and M = 400 are presented in blue
and red, respectively.
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Figure 2. Complexity order of Algorithm 1: N × log10(C(M,N)), for M = 100
in blue and M = 400 in red.
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Since Algorithm 1 is the bottleneck of the proposed second order topology optimization
method, we refer to [33] for more sophisticated approaches based on meta-heuristic and multi-
grid versions of Algorithm 1. In addition, the approximation of the solution by a finite number
of balls can be seen as a limitation of our approach. However, the reconstruction obtained
may serve as an initial guess for other well-established and more computationally sophisticated
iterative methods [9, 24, 28, 32, 38].

4. Inverse Reconstruction Problems

In this section the topological derivative concept is applied in the context of a class of inverse
problems in imaging. A wide class of inverse problems can be written in the form of overde-
termined boundary value problems. Such a difficult can be overcome by rewriting the inverse
problem in the form of an optimization problem. The basic idea consists in minimize an objective
functional measuring the misfit between a given data and a numerical solution with respect to
the parameters under consideration. In particular, let us consider a geometrical domain Ω with
its boundary denoted as Γ = ∂Ω. A boundary value problem is defined in Ω, whose solution is
denoted by u∗. We assume that the response of the system on the boundary Γ can be observed.
For example, given a Dirichlet data U on Γ, the associated Dirichlet-to-Neumann map for a
second order elliptic equation is defined as follows [10]

Λω∗ : u∗ = U 7→ Q := ∂nu
∗ on Γ.

where ω∗ is an unknown set of anomalies embedded within Ω and n is the exterior unit normal
vector on Γ. Therefore, given the pair (U,Q) we want to reconstruct the set ω∗ ⊂ Ω. The
mathematical model of the system furnishes the mapping ω 7→ Λω for a family of anomalies ω.
Thus, taking U we can generate the output of the model Λω(U) and compare it with the given
function Q = Λω∗(U). Hence, using the mathematical model we can consider the associated
optimization problem based on the distance minimization between the observation (U,Q) and
the model response (U,Λω(U)) over the family of admissible anomalies ω. This is a numerical
method which uses the shape and topological derivatives of the specific shape functional defined
for the inverse problem [5, 11, 17, 18, 23, 24, 25, 29, 31, 34]. In particular, we are going to
apply the second order topology design Algorithm 1 for solving a class of inverse reconstruction
problem. See also related works [3, 8, 15, 16, 19, 22].

4.1. Inverse Conductivity Problem. The electrical impedance tomography (EIT) problem
consists in determining the distribution of the electrical conductivity of a medium subject to
a set of current fluxes, from measurements of the corresponding electrical potentials on its
boundary. EIT is probably the most studied inverse problem since the fundamental works by
Calderón from the eighties [10]. It has many relevant applications in medicine (detection of
tumors), geophysics (localization of mineral deposits) and engineering (detection of corrosion in
structures). Following the original ideas presented in [21], we are interested in reconstructing a
number of anomalies with different electrical conductivity from the background. In particular,
a shape functional measuring the misfit between the boundary measurements and the electrical
potentials obtained from the model is minimized with respect to a set of ball-shaped anomalies
by using the concept of topological derivatives. Let us consider a domain Ω ⊂ R2 with Lipschitz
continuous boundary ∂Ω, which represents a body endowed with the capability of conducting
electricity. Its electrical conductivity coefficient is denoted by k∗(x) ≥ k0 > 0, with x ∈ Ω and
k0 ∈ R+. If the body Ω is subjected to a given electric flux Q on ∂Ω, then the resulting electric
potential in Ω is observed on a part of the boundary ΓM ⊂ ∂Ω. The objective is to reconstruct the
electrical conductivity k∗ over Ω from the obtained partial boundary measurement U := u∗|ΓM

,

solution of the following over-determined boundary value problem
div[q(u∗)] = 0 in Ω,

q(u∗) = −k∗∇u∗,
q(u∗) · n = Q on ∂Ω,

u∗ = U on ΓM .

(4.1)
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Without loss of generality, we are considering only one boundary measurement U on ΓM . The
extension to several boundary measurements is trivial. Furthermore, we assume that the un-
known electrical conductivity k∗ we are looking for belongs to the following set

Cγ(Ω) :=

{
ϕ ∈ L∞(Ω) : ϕ = k

(
1Ω −

N∑
i=1

(1− γi)1ωi

)}
, (4.2)

where k ∈ R+ is the electrical conductivity of the background. The sets ωi ⊂ Ω, with i =
1, · · · , N , are such that ωi ∩ ωj = ∅, for i 6= j. In addition, 1Ω and 1ωi are used to denote
the characteristics functions of Ω and ωi, respectively. Finally, γi ∈ R+ are the contrasts with
respect to the electrical conductivity of the background k. See sketch in Fig. 3.

Figure 3. The Electrical Impedance Tomography problem.

We assume that the electrical conductivity of the background k and the associated contrasts
γi are known. Therefore, the inverse problem we are dealing with can be written in the form
of a topology optimization problem with respect to the sets ω =

⋃N
i=1 ωi. Let us introduce the

following auxiliary Neumann boundary value problem: Find u, such that
div[q(u)] = 0 in Ω

q(u) = −kω∇u
q(u) · n = Q on ∂Ω∫

∂ΩQ = 0∫
ΓM

u =
∫

ΓM
U,

(4.3)

where Q ∈ H−1/2(∂Ω) and U ∈ H1/2(ΓM ) are the boundary excitation and boundary mea-
surement, respectively, and kω ∈ Cγ(Ω) is constant by parts, characterized by a set ω ⊂ Ω.
Finally, we introduce the following shape functional measuring the misfit between the boundary
measurement U and the solution u = u(ω) of (4.3) evaluated on ΓM , namely

Minimize
ω⊂Ω

Jω(u) =

∫
ΓM

(u(ω)− U)2, (4.4)

which will be solved by using the first and second order topological derivatives concepts. See
related works [1, 2, 4, 6, 25, 37].

We consider ω = ∅ as initial guess, so that kω |ω=∅ = k in (4.3). The domain Ω is perturbed
by the nucleation of N ball-shaped inclusions of radii εi and centers at xi ∈ Ω, endowed with
contrasts γi, i = 1, · · · , N . From these elements, α = (ε2

1, · · · , ε2
N ) and E(ε) = o(|α|2) in (3.1).

In addition, the entries of the vector d(ξ) ∈ RN is defined as

di = 2

∫
ΓM

ρi(u− U)(gi + ũi), (4.5)

while the entries of the matrix H(ξ) ∈ RN ×RN is given by

Hii = 4

∫
ΓM

(u− U)(ρihi + ρig̃i + ˜̃ui) + 2

∫
ΓM

(ρigi + ũi)
2, (4.6)
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Hij = 2

∫
ΓM

(u− U)(ρjθ
j
i + ρiθ

i
j + uji + uij)

+ 2

∫
ΓM

(ρigi + ũi)(ρjgj + ũj), j 6= i. (4.7)

Some terms in the above equations still requires explanation. The coefficient ρi is defined as

ρi =
1− γi
1 + γi

, (4.8)

and the functions gi(x), hi(x), g̃i(x) and θji (x) are respectively given by

gi(x) =
1

‖x− xi‖2
∇u(xi) · (x− xi), (4.9)

hi(x) =
1

2

1

‖x− xi‖4
∇2u(xi)(x− xi)2, (4.10)

g̃i(x) =
1

‖x− xi‖2
∇ũi(xi) · (x− xi), (4.11)

θji (x) =
1

‖x− xj‖2
A(xj)∇u(xi) · (x− xj). (4.12)

where the second order tensor A(x) is written as

A(x) =
1

‖x− xi‖2

[
I − 2

(x− xi)⊗ (x− xi)
‖x− xi‖2

]
. (4.13)

Finally, the auxiliary function ũi is solution to: Find ũi, such that
div[q(ũi)] = 0, in Ω,

q(ũi) = −k∇ũi, in Ω,
q(ũi) · n = −ρiq(gi) · n, on ∂Ω∫

ΓM
ũi = −ρi

∫
ΓM

gi,

(4.14)

while the auxiliary function ˜̃ui solves: Find ˜̃ui, such that
div[q(˜̃ui)] = 0 in Ω,

q
(
˜̃ui
)

= −k∇˜̃ui in Ω,

q(˜̃ui) · n = −ρiq(hi + g̃i) · n, on ∂Ω∫
ΓM

˜̃ui = −ρi
∫

ΓM
hi + g̃i,

(4.15)

and the auxiliary function uji is solution to: Find uji , such that
div[q(uji )] = 0 in Ω,

q
(
uji
)

= −k∇uji in Ω,

q(uji ) · n = −ρjq(θji ) · n, on ∂Ω∫
ΓM

uji = −ρj
∫

ΓM
θji .

(4.16)

The derivation of the above equations can be found in [21], for instance.
Now, we have all elements to apply Algorithm 1 for solving the proposed conductivity re-

construction problem (4.4). In fact, let us present a numerical example. We consider a disk
of unit radius. Its boundary is subdivided into 16 disjoint pieces. Each pair of such a pieces
is used for injecting and draining the current. Therefore, the excitation Q is given by a pair
Qin = 1 of injection and Qout = −1 of draining. The remainder part of the boundary remains
insulated. The associated potential U is measured only on these disjoint pieces, representing
ΓM . The target consists of three ball-shaped anomalies, which is corrupted with 10% of White
Gaussian Noise, as shown in Fig. 4(a). The obtained reconstruction with 64 partial boundary
measurements is shown in Fig. 4(b).

From an inspection of Fig. 3 we observe that the proposed method is actually very robust with
respect to noisy data. It comes out from the fact that the devised second-order reconstruction
algorithm is non-iterative.
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(a) target (b) result

Figure 4. Target corrupted with 10% of White Gaussian Noise and obtained
result with 64 partial boundary measurements for the EIT problem [21].

4.2. Inverse Gravimetry Problem. The inverse gravimetry problem consists in reconstruct-
ing the mass distribution in a geometrical domain, from measurements of the gravity force
on its boundary [27]. Based on [12], the inverse problem is reformulated as a topology opti-
mization problem, where the support of the mass distribution is the unknown variable. The
Kohn–Vogelius functional, which measures the misfit between the solutions of two auxiliary
problems, one containing information about the boundary measurement and the other one con-
taining information on the boundary excitation, is minimized. The Newtonian potential is used
to complement the unavailable information about the hidden boundary. The resulting topology
optimization algorithm is based on an analytic formula for the variation of the Kohn–Vogelius
functional with respect to a class of mass distributions consisting of a finite number of ball-
shaped trial anomalies.

In particular, let us consider an open and bounded domain Ω ⊂ R3, with Lipschitz boundary
∂Ω. We introduce the boundary ΓM ⊂ ∂Ω where the measurements are taken and Γ = ∂Ω \ΓM
the remainder (hidden) boundary, where there is no any information. We assume that the
unknown density of the medium b∗ belongs to the following set of admissible sources

Cγ(Ω) :=

{
ϕ ∈ L∞(Ω) : ϕ =

N∑
i=1

γi1ωi

}
, (4.17)

where the sets ωi ⊂ Ω, with i = 1, · · · , N , are such that ωi ∩ ωj = ∅, for i 6= j. In addition,
1ωi is used to denote the characteristic function of ωi. Finally, γi ∈ R+ are the contrasts with
respect to the density of the background, which are assumed to be known. From b∗ ∈ Cγ(Ω) we
define the associated potential as [28]

u(x) =

∫
Ω
K(x, y)b∗(y) dy , (4.18)

where the kernel K(x, y) is given by

K(x, y) =
1

4π‖x− y‖
. (4.19)

The pair of boundary measurements (U,Q) are defined as

U := u|ΓM
and Q := −∂nu|ΓM , (4.20)

where n is the outward unit normal vector to Ω.
Therefore, the inverse gravimetry problem we are dealing with reads: given Q ∈ H−1/2(ΓM )

and U ∈ H1/2(ΓM ), find the unknown source b∗ ∈ Cγ(Ω) such that there exists u∗ ∈ H1(Ω)
satisfying the following overdetermined boundary value problem: −∆u∗ = b∗ in Ω ,

u∗

−∂nu∗
=
=

U
Q

}
on ΓM ,

(4.21)
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The inverse problem (4.21) is clearly ill-posed [26]. However, since the contrasts γi, i =
1, · · ·N , in (4.17) are assumed to be known, problem (4.21) can be written in the form of a

topology optimization problem with respect to the sets ω =
⋃N
i=1 ωi. Therefore, we introduce

the following topology optimization problem based on the minimization of the Kohn-Vogelius
criterion [30] with respect to the support ω:

Minimize
ω⊂Ω

Jω(uD, uN ) =

∫
Ω

(uD(ω)− uN (ω))2, (4.22)

which will be solved by using the first and second order topological derivatives concepts. The
auxiliaries functions uD = uD(ω) and uN = uN (ω) are respectively solutions to the following
boundary values problems −∆uD = bω in Ω ,

uD = U on ΓM ,
uD = uT on Γ ,

and

 −∆uN = bω in Ω ,
−∂nuN = Q on ΓM ,

uN = uT on Γ .
(4.23)

where bω ∈ Cγ(Ω) and the Newtonian potential

uT (x) =

∫
Ω
K(x, y)bω(y) dy (4.24)

is used to complement the information on the hidden boundary Γ, with the kernel K(x, y) given
by (4.19). Note that the domain Ω and the part Γ of its boundary ∂Ω do not represent physical
quantities and are introduced to get a meaningful mathematical model. Actually, the inverse
gravimetry problem may e.g. be defined in the whole half space R2 × (−∞, 0), as represented
in Fig. 5. The only constraint on Ω is that it has to be large enough to contain any possible
anomaly, since (4.24) is correct only if this requirement is satisfied. In the following we assume
that any possible anomaly is in Ω.

Figure 5. The inverse gravimetry problem.

We consider ω = ∅ as initial guess, so that bω |ω=∅ = 0. The domain Ω is perturbed by the
nucleation of N ball-shaped anomalies of radii εi and centers at xi ∈ Ω, endowed with contrasts
γi, i = 1, · · · , N . From these elements, α = (|Bε1(x1)|, · · · , |BεN (xN )|) and E(ε) ≡ 0 in (3.1),
namely, there is no remainder in this case. In addition, the entries of vector d(ξ) ∈ RN and
matrix H(ξ) ∈ RN ×RN are respectively defined as

di = 2γi

∫
Ω

(uD − uN )hi and Hij = γiγj

∫
Ω
hihj . (4.25)

Finally, the auxiliaries function hi(x) are solutions to the following boundary values problems
depending on xi  −∆hi = 0 in Ω ,

−∂nhi = gi on ΓM ,
hi = 0 on Γ ,

(4.26)
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where gi = ∂nwi on ΓM with wi(x) = K(x, xi) + vi(x) and vi solution to −∆vi = 0 in Ω ,
vi = −K(x, xi) on ΓM ,
vi = 0 on Γ ,

(4.27)

which is well defined provided that xi 6∈ ∂Ω. The derivation of the above equations follows the
same steps as presented in [11], for instance. From the above elements, we are now in position
to apply Algorithm 1 for solving the proposed source reconstruction problem (4.22).

Let us conclude this section with a numerical experiment in three spatial dimensions. In the
example we take the cube Ω = (0, 1) × (0, 1) × (0, 1). The partial boundary measurements are
taken on the side of the cube ΓM = {x = 1} ∩ Ω. We are going to reconstruct three balls
with centers (0.7, 0.7, 0.4), (0.6, 0.3, 0.3), (0.5, 0.4, 0.8) and radii 0.17, 0.2, 0.15 respectively. The
intensities γi = 1, for i = 1, · · · , 3. We use synthetic measurements without noise in the data.
Since in the set of ball-shaped anomalies there is no remainder in the expansion (3.1), we observe
that Algorithm 1 reconstructs the positions and sizes of the three balls exactly. The result is
shown in Fig. 6.

Figure 6. True anomalies (first row) and corresponding reconstructions (second
row) for the gravimetry inverse problem [12].

4.3. Pointwise Source Reconstruction Problem. We consider a benchmark example con-
cerning an inverse potential problem into two spatial dimensions. Let Ω ⊂ R2 be an open and
bounded domain with Lipschitz boundary ∂Ω. The inverse problem we are dealing with consists
in determining the unknown pointwise source b∗ ∈ Cδ(Ω) from the Cauchy data U and Q in the
following elliptic boundary value problem: −∆u∗ = b∗ in Ω,

u∗

−∂nu∗
=
=

U
Q

}
on ∂Ω.

(4.28)
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where the set Cδ(Ω) is defined as

Cδ(Ω) =

{
ϕ : Ω 7→ R | ϕ(x) =

N∑
i=1

αiδ(x− xi)

}
, (4.29)

where αi ∈ R \ {−∞,+∞} and xi ∈ Ω, with i = 1, · · · , N . Therefore, the unknown source
b∗ ∈ Cδ(Ω) can be represented as follows:

b∗(x) =
N∗∑
i=1

α∗i δ(x− x∗i ). (4.30)

Thus, solving the above inverse potential problem in Cδ(Ω) means to find N∗, α∗i and x∗i , which
denote the number, intensities and locations of the unknown pointwise sources, respectively. Let
us introduce the following functional based on the Kohn-Vogelius criterion [30]:

Minimize
b∈Cδ(Ω)

J (uD, uN ) =

∫
Ω

(uD(ω)− uN (ω))2, (4.31)

where the functions uD and uN are solutions to the following auxiliaries problems{
−∆uD = b in Ω,

uD = U on ∂Ω.
and

 −∆uN = b+ c in Ω,
−∂nuN = Q on ∂Ω,∫

Ω u
N =

∫
Ω u

D,
(4.32)

where b ∈ Cδ(Ω) is a given source, representing an initial guess. In addition, the compatibility
constant c is given by

c =
1

|Ω|

(∫
∂Ω
Q−

∫
Ω
b

)
, (4.33)

where |Ω| is the Lebesgue measure of the set Ω.
Let us now perturb the source b by introducing a number N of pointwise sources with arbitrary

locations xi ∈ Ω and intensities αi, with i = 1, · · · , N . The perturbed source bδ ∈ Cδ(Ω) is
defined as follows

bδ(x) = b(x) +
N∑
i=1

αiδ(x− xi). (4.34)

For this class of perturbations, the vector d(ξ) ∈ RN and matrix H(ξ) ∈ RN ×RN in (3.4) can
be obtained explicitly, whose entries are given by

di =

∫
Ω
hi(u

D − uN ) and Hij =

∫
Ω
hihj , (4.35)

where the auxiliaries function hi are solutions to −∆hi = |Ω|−1 in Ω,
−∂nhi = ∂nvi on ∂Ω,∫

Ω hi = 0,
with

{
−∆vi = δi in Ω,

vi = 0 on ∂Ω,
(4.36)

with δi(x) := δ(x−xi). The derivations of the above formulas can be found in [33], for instance.
Now, we have all elements to apply Algorithm 1 for solving the proposed pointwise source

reconstruction problem. In fact, let us consider that Ω = (−0.5, 0.5) × (−0.5, 0.5). The target
consists of three pointwise sources as shown in Fig. 7(a), where the radius of each ball represents
the associated intensities. Here, we impose U = 0 and observe Q on ∂Ω. The initial guess
b ∈ Cδ(Ω) is identically zero, that is b = 0 in Ω. The obtained result is shown in Fig. 7(b),
where the locations and intensities are perfectly reconstructed.
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(a) target (b) result

Figure 7. Target and obtained result for the pointwise source reconstruction
problem [33].

4.4. Obstacles Reconstruction Problem. Let D ⊂ R2 be an open and bounded domain
with smooth boundary ΓM . We introduce a subset Ω of D such that Ω = D \ ω0, with ω0 b D.
The boundary of Ω is split into two disjoints parts ΓM and Γ0, where Γ0 is used to denote the
boundary of the hole ω0. Let us consider the domain Ω∗ = Ω \ ω∗, where ω∗ b Ω represents
a number N∗ ∈ N of unknown holes (obstacles) within Ω∗. The boundary of Ω∗ is split into
three disjoints subsets ΓM , Γ0 and ∂ω∗, where ∂ω∗ is used to denote the boundaries of the N∗

obstacles ω∗. See sketch in Fig. 8. The inverse problem we are dealing with consists in finding
ω∗ such that the following over-determined boundary value problem is satisfied:

∆u∗ = 0 in Ω∗,
u∗ = 0 on Γ0,
u∗ = 0 on ∂ω∗,
u∗

−∂nu∗
=
=

U
Q

}
on ΓM ,

(4.37)

where U and Q are the Cauchy data on ΓM . We assume that the flux Q is imposed while the
potential U is measured.

0

Figure 8. The inverse obstacles problem.

Since the inverse problem (4.37) is written in the form of an ill-posed and over-determined
boundary value problem, the idea is to rewrite it as a topology optimization problem, namely

Minimize
Ω⊂D

JΩ(u) =

∫
ΓM

(u− U)2. (4.38)

Some terms in the above minimization problem require explanation. The shape functional JΩ(u)
measures the misfit between the boundary measurement U and the trace on ΓM of the solution
u = u(Ω) to the following auxiliary boundary value problem depending on the boundary data
Q  ∆u = 0 in Ω,

u = 0 on Γ0,
−∂nu = Q on ΓM .

(4.39)

The topological derivative concept is used for solving problem (4.38), which has been specif-
ically designed to deal with such a topology optimization problem. In particular, the domain
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Ω is perturbed by the nucleation of N ball-shaped holes of radii εi and centers at xi ∈ Ω, with
i = 1, · · · , N . In this case, α = α(ε), whose entries αi(εi) have to satisfy the constraint

u(xi)− αi(εi)
(

1

2π
ln εi + gi(xi)

)
−

N∑
j=1
j 6=i

αj(εj)

(
1

2π
ln ‖xi − xj‖+ gj(xi)

)
= 0, (4.40)

with each gj solution to the following auxiliary boundary value problem ∆gj = 0 in Ω,
∂ngj = ∂nφj on ΓM ,
gj = φj on Γ0,

(4.41)

where φj is the fundamental solution for the Laplacian into two spatial dimensions, namely

φj(x) =
1

2π
ln ‖x− xj‖, ∀x ∈ Ω. (4.42)

Finally, the entries of vector d(ξ) ∈ RN and matrix H(ξ) ∈ RN × RN in (3.4) are respectively
defined as

di =

∫
ΓM

(u− U)Gi and Hij =

∫
ΓM

GiGj , (4.43)

where the auxiliaries functions Gj are solutions to −∆Gj = δj in Ω,
∂nGj = 0 on Γm,
Gj = 0 on Γ0,

(4.44)

with δj := δ(x − xj) used to denote the Dirac delta distribution. The derivations of the above
formulas can be found in [36], for instance.

Remark 1. Note that gj(x) = gj(x;xj), because φj(x) = φj(x;xj) depends on the point xj where
the hole is nucleated. It means that function gj(x) depends on xj. Therefore, the complexity
order associated with the computation of all gj may become very high. However, we will show
through some numerical experiments that this term is crucial for solving the topology optimization
problem (4.38) or equivalently the inverse problem (4.37), can be seen as the main theoretical
contribution from [36].

In order to fix these ideas, let us present a simple example. We consider the domain Ω given by
a circle centered at (0, 0) and with unit radius. In addition, Ω has a hole ω0 centered at (−0.5, 0)
and with radius 0.3. The target domain Ω∗ has three hidden circular obstacles represented by
black circles, as shown in Fig. 9(a). An uniform flux Q = 1 is applied on ΓM , where the
associated potential U is measured. The resulting reconstruction obtained from Algorithm 1 are
represented by black circles as shown in Fig. 9(b).

(a) target (b) result

Figure 9. Target and associated result for the inverse obstacle problem [36].
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4.5. Electromagnetic Casting Problem. The inverse electromagnetic casting problem con-
sists in looking for a suitable set of electric wires such that the electromagnetic field induced
by an alternating current passing through them makes a given mass of liquid metal assumes a
shape according to the electromagnetic field. An interesting and difficult problem consists in de-
termining the topology of such inductors such that the liquid metal acquires a predefined shape.
In the paper [13] a new method for the topology design of inductors in inverse electromagnetic
casting problem has been proposed. See also [14]. It relies on the topological derivative con-
cept. The basic ideas consists in write the inverse electromagnetic casting problem in the form
of a topology optimization problem, where the associated shape functional is minimized with
respect to a set of ball shaped inductors. Based on the obtained theoretical result, a topology
design algorithm of inductors has been devised. In those papers, several numerical examples are
presented showing that the proposed technique is effective to design suitable inductors.

5. Perspectives and Open Problems

In this third and last part of the series of review papers on the topological derivative concept
a second order method has been presented, together with a set of applications in the context
of inverse reconstruction problems. The general idea consists in rewrite the inverse problem as
a topology optimization problem, where a shape functional measuring the misfit between the
boundary measurements and the solution obtained from the model is expanded with respect
to a set of ball-shaped anomalies. The resulting expansion is then truncated up to the second
order term, leading to a quadratic and strictly convex form with respect to the parameters under
consideration. Therefore, the truncated expansion has been used to devise a novel non-iterative
reconstruction algorithm based on a simple optimization step. As a result, the reconstruction
process becomes very robust with respect to noisy data and also independent of any initial guess.
Finally, these ideas are used for solving a wide class of inverse reconstruction problems. Since the
proposed method can approximate accurately the unknown set of hidden anomalies by several
balls, it can be used for supplying a good initial guess for more complex iterative approaches
such as the ones based on level-sets methods [32], for instance. We would like to stress however
that the methodology here presented is quite recent. Therefore, it is still not clear on how to
use the second order topological derivative concept. In particular, for future developments on
this branch of shape-topological second order method we highlight:

(1) There is no stability and resolution analysis for the second order topological derivative
based imaging functional. To demonstrate these properties in general, or at least for
some particular inverse reconstruction problems, would be an important contribution to
the field.

(2) Replace the Newton Method based on the second order topological derivative by a family
of Quasi-Newton Methods seems to be an interesting and innovative research topic,
deserving investigation.

(3) The bottleneck of the reconstruction Algorithm 1 relies on its complexity given by for-
mula (3.6) for a high number of trial balls N , with M � N . Some insight on how to
deal with such a complexity issue can be found in [33]. However, it can be seen as an
interesting and still open problem.

(4) The extension of the second order topological derivative to the context of defects de-
tection in elasticity or elastodynamics can also be investigated by using the matching
asymptotic method presented in the first part of this series of review papers. However,
the technical difficulties that should arise have to be considered.

(5) Applications of the second order method to other class of problems, including all those
presented in the second part of this series of review papers, can also be seen as a very
interesting and sometimes difficult research topic. In fact, it requires the development of
new asymptotic formulas. In addition, many of these mentioned problems have no unique
solution, so that the infinity dimensional Hessian matrix could degenerate. Therefore,
new regularization strategies would be required to get well-posedness.
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[29] L. Jackowska-Strumi l lo, J. Soko lowski, A. Żochowski, and A. Henrot. On numerical solution of shape inverse
problems. Computational Optimization and Applications, 23(2):231–255, 2002.

[30] R. Kohn and M. Vogelius. Determining conductivity by boundary measurements. Comm. Pure Appl. Math.,
37(3):289–298, 1984.

[31] A. Laurain, M. Hintermüller, M. Freiberger, and H. Scharfetter. Topological sensitivity analysis in fluores-
cence optical tomography. Inverse Problems, 29(2):025003,30, 2013.

[32] A. Leitão and J. Baumeister. Topics in Inverse Problems. IMPA Mathematical Publications, Rio de Janeiro,
2005.

[33] T. J. Machado, J. S. Angelo, and A. A. Novotny. A new one-shot pointwise source reconstruction method.
Mathematical Methods in the Applied Sciences, 40(15):1367–1381, 2017.

[34] M. Masmoudi, J. Pommier, and B. Samet. The topological asymptotic expansion for the Maxwell equations
and some applications. Inverse Problems, 21(2):547–564, 2005.

[35] A. A. Novotny and J. Soko lowski. Topological derivatives in shape optimization. Interaction of Mechanics and
Mathematics. Springer-Verlag, Berlin, Heidelberg, 2013.

[36] S. S. Rocha and A. A. Novotny. Obstacles reconstruction from partial boundary measurements based on the
topological derivative concept. Structural and Multidisciplinary Optimization, 55(6):2131–2141, 2017.

[37] M. Silva, M. Matalon, and D.A. Tortorelli. Higher order topological derivatives in elasticity. International
Journal of Solids and Structures, 47(22–23):3053–3066, 2010.

[38] P. Tricarico. Global gravity inversion of bodies with arbitrary shape. Geophysical Journal International,
195(1):260–275, 2013.
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