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Abstract

The Topological Derivative has been recognized as a powerful tool in obtaining the optimal topol-
ogy of several problems of engineering interest. More specifically, the Topological Derivative gives
the sensitivity of the problem when a small hole is created at each point of the domain under
consideration. In this work the Topological Derivative for the Poisson’s problem is calculated using
two different approaches: the Domain Truncation Method, and a new method based on Shape
Sensitivity Analysis concepts. This comparison shows that this novel approach, which we call
Topological-Shape Sensitivity Method, has led to a simpler and more general methodology than
the former one. To point out the general applicability of this new methodology, the most general
set of boundary conditions for the Poisson’s problem is considered, namely, Dirichlet, Neumann
(both homogeneous and non-homogeneous) and Robin boundary conditions are considered. Fi-
nally, a comparative analysis of these two methodologies will also show that the Topological-Shape
Sensitivity Method has the advantage that it can be easily generalized to solve other classes of
problems.

keywords: Topological Derivative, Shape Sensitivity Analysis, Topological Optimization, Shape

Optimization, Asymptotic Expansion.

1 Introduction

In Schumacher[13], Sokolowski & Żochowski[14, 15] and Garreau et al.[4, 5] the so-called Topological
Derivative concept was introduced. The Topological Derivative gives the sensitivity of a cost function
defined in the domain of definition of a boundary-value problem when a small hole is introduced in
the domain. More specifically, the idea is to make a perturbation on the domain Ω by subtracting a
ball of radius ε, denoted by Bε, centered in a point x̂ ∈ Ω. This originates a new domain Ωε = Ω−Bε.
Therefore, if a cost function j defined in Ω is considered, then the Topological Derivative, here denoted
by DT j, can be defined as

j(Ωε) = j(Ω) + f(ε)DT j + R(f(ε)). (1)

In the expression above, f(ε) is a negative function that depends on the problem under analysis and
that monotonically decreases so that f(ε) → 0 when ε → 0. R(f(ε)) contains all higher order terms
than f(ε), that is, it satisfies

lim
ε→0

R(f(ε))

f(ε)
= 0.

In general, j depends explicitly and implicitly on ε. The implicit dependence arises from the
solution of the boundary value problem defined in Ωε. If this problem is elliptic, conditions in the
whole boundary of Ωε must be imposed. Therefore, when Bε is introduced, boundary conditions must
also be defined on ∂Bε.

To obtain DT j, an asymptotic analysis of the problem above was carried out by Garreau et al.[4]
using the Dirichlet-to-Neumann map. This methodology, called the Domain Truncation Method, can
be used for singular problems such as those with Dirichlet boundary conditions imposed on ∂Bε.
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In Céa et al.[2] a relation between the Topological Derivative and the classical Shape Derivative
is discussed. The authors arrived at the conclusion that these derivatives differ by a factor 2 for the
case of homogeneous Neumann boundary conditions imposed on ∂Bε.

In Sokolowski & Żochowski[14] a method to calculate the Topological Derivative via Shape Sensi-
tivity Analysis was presented. Nevertheless, this method provides correct results only for homogeneous
Neumann boundary conditions imposed on ∂Bε.

More recently, Novotny et al.[10, 11, 12] formally established the relationship between the Topo-
logical Derivative and Shape Sensitivity Analysis. This relationship provides an alternative way to
compute the Topological Derivative using Shape Sensitivity Analysis results. Moreover, this new ap-
proach, which we will refer as the Topological-Shape Sensitivity Method, can be applied to any cost
function and to any type of boundary condition on ∂Bε. Therefore, this method is more general than
others found in the literature (namely those in[2, 4, 5, 14, 15]).

In this work, the Topological Derivative is calculated for Poisson’s problem using the Domain
Truncation Method and the Topological-Shape Sensitivity Method. This will allow us to compare the
two approaches. As a consequence, we will show that our new approach is more generic and that it
provides a straightforward way to calculate the Topological Derivative. Furthermore, a more general
set of boundary conditions on ∂Bε is considered, extending the results obtained by Garreau et al.[4]
and Novotny et al.[12].

2 An Elliptic Boundary Value Problem

Let Ωε ⊂ R
2 be an open bounded domain, whose boundary, denoted by ∂Ωε = ∂Ω∪∂Bε, is sufficiently

smooth. Then, the Poisson’s problem with Dirichlet, Neumann or Robin boundary conditions on ∂Bε

can be stated as














Find uε such that
−∆uε = b in Ωε

uε = ū on ∂Ω
g (α, β, γ) (uε) = 0 on ∂Bε

, (2)

where

g (α, β, γ) (uε) = α (uε − h) + β

(

∂uε

∂n
− h

)

+ γ

(

uε +
∂uε

∂n
− h

)

(3)

and α, β, γ ∈ {0, 1}, with α + β + γ = 1. Using this notation, the three possible types of boundary
conditions that can be imposed on ∂Bε are obtained in the following way

g(α, β, γ)(uε) =







uε − h, if α = 1, β = 0, γ = 0, Dirichlet b. c.
∂uε
∂n − h, if α = 0, β = 1, γ = 0, Neumann b. c.

uε + ∂uε
∂n − h, if α = 0, β = 0, γ = 1, Robin b. c.

.

In the following sections the Topological Derivative will be calculated for the set of boundary
conditions shown in (2). The derivative will be calculated using the Domain Truncation Method and
the Topological-Shape Sensitivity Method. It will be shown that the second approach leads to a simple
and constructive formulation.

3 The Domain Truncation Method

The standard weak formulation corresponding to the boundary-value problem (2) is defined in the
domain Ωε. The inconvenience of this kind of approach is that the domain of integration as well as
the integrands that appear in the variational equation depend on ε. As will be seen, this creates a
complication that the Domain Truncation Method (see Garreau et al.[4]) will avoid. This method
consists of separating problem (2) into two problems where one of them is solved analytically using
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separation of variables. This allows the authors to perform an asymptotic analysis of (2) with respect
to ε.

Let BR and Bε be open balls of radii R and ε, respectively, centered in x̂ ∈ Ω with R > ε. Define
A = BR − Bε as the open ring of inner radius ε and outer radius R. We now define the following
problem on A















Find wε such that:
−∆wε = b in A,

wε = ψ on ∂BR,
g (α, β, γ) (wε) = 0 on ∂Bε.

(4)

We also define the operator T ε : H1/2(∂BR) → H−1/2(∂BR) such that

T ε(ψ) =
∂wε

∂n

∣

∣

∣

∣

∂BR

.

Given the previous definitions, the following problem in ΩR = Ω−BR is stated















Find vε such that:
−∆vε = b in ΩR,
vε = ū on ∂Ω,
∂vε
∂n = T ε(ψ) on ∂BR.

(5)

It is straightforward to show the following equivalence theorem:

Theorem 1 If ψ = uε|∂BR
, then

wε = uε|A and vε = uε|ΩR
.

Therefore uε satisfies
aε(uε, η) = l (η) ∀ η ∈ V, (6)

where V = {η ∈ H1(ΩR) | η|∂Ω = 0},

aε(uε, η) =

∫

ΩR

∇uε · ∇η dΩR −

∫

∂BR

T ε (uε|∂BR
) η d∂BR, (7)

and

l (η) =

∫

ΩR

bη dΩR. (8)

Note that in (6) the domain of integration is independent of ε.
Now let dTR : H1/2(∂BR) → H−1/2(∂BR) represent a function independent of ε which satisfies

lim
ε→0

∥

∥

∥

∥

T ε − T 0 − f(ε) dTR

f(ε)

∥

∥

∥

∥

L(H1/2(∂BR),H−1/2(∂BR))
= 0. (9)

We now define the following bilinear form for each R

daR(ξ, η) := −
〈

dTR(ξ|∂BR
), η|∂BR

〉

L(H1/2(∂BR),H−1/2(∂BR))

= −

∫

∂BR

dTR(ξ|∂BR
) η|∂BR

d∂BR, (10)

where ξ, η ∈ V . Using (10) the following theorem can be proved
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Theorem 2

lim
ε→0

∥

∥

∥

∥

aε − a0 − f(ε) daR

f(ε)

∥

∥

∥

∥

L(V ×V,R)

= 0.

Proof. For all ξ, η ∈ V we have

aε(ξ, η) − a0(ξ, η) − f(ε) daR(ξ, η) = −

∫

∂BR

(T ε − T 0 − f(ε)dTR)(ξ|∂BR
) η d∂BR.

Dividing the expression above by f(ε), using the Cauchy-Schwarz inequality and the trace theorem
we obtain

∣

∣

∣

∣

(aε − a0 − f(ε) daR) (ξ, η)

f(ε)

∣

∣

∣

∣

≤ C

∥

∥

∥

∥

T ε − T 0 − f(ε)dTR

f(ε)

∥

∥

∥

∥

L(H1/2(∂BR),H−1/2(∂BR))
‖ξ‖V ‖η‖V .

Using (9) the proof is completed

Remark: In the previous proof and thereafter, C denotes a positive constant, independent of relevant
parameters and possibly different in each case.

Theorem 3 Let u0 be the solution of the Poisson’s problem defined in the domain Ω, then the following
inequality holds

‖uε − u0‖V ≤ C|f(ε)|.

Proof. From Theorem 2 we have the following:

aε(uε − u0, uε − u0) = aε(uε, uε − u0) − aε(u0, uε − u0)

= a0(u0, uε − u0) − aε(u0, uε − u0)

= −f(ε)daR(u0, uε − u0) − (aε − a0 − f(ε)daR)(u0, uε − u0)

≤ C |f(ε)| ‖uε − u0‖V

where C depends on ‖u0‖V and ‖daR‖L(V ×V,R). The final result is obtained by considering the V -
Ellipticity of the bilinear form aε(·, ·)

For the sake of simplicity, the cost function j (ε) will be defined in a fixed domain. In other words,
j (ε) will only depend implicitly on Ωε through the solution uε of (2). Thus, the cost function j (ε) can
be written as j (ε) := J (uε).

To calculate the derivative of J (uε) with respect to ε we will make use of the Lagrangian Method
which consists in relaxing the constraint of the problem, in this case the state equation (6), using a
Lagrange multiplier λ. We start by defining the Lagrangian as follows

£ε (u, λ) = J (u) + aε (u, λ) − l (λ) ∀ λ ∈ V, (11)

Choosing u = uε, solution of (6), and λ = pε ∈ V as the solution of the adjoint equation

aε (η, pε) = −

〈

∂J (uε)

∂uε
, η

〉

∀ η ∈ V, (12)

it follows that the total derivative of the Lagrangian with respect to ε coincides with its partial
derivative

d

dε
£ε(u, λ)

∣

∣

∣

∣

u=uε,λ=pε

=
∂

∂ε
£ε(u, λ)

∣

∣

∣

∣

∣

u=uε,λ=pε

.

Now, let λ = p0 be the solution of the adjoint equation for ε = 0, that is

a0(η, p0) = −

〈

∂J (u0)

∂u
, η

〉

∀ η ∈ V. (13)

Then, the following theorem holds:
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Theorem 4 Assuming that j(ε) depends only implicitly on Ωε through the solution uε of the boundary
value problem (2) and J ∈ C2(H1(ΩR),R) then

lim
ε→0

j(ε) − j(0) − f(ε) daR(uε, p0)

f(ε)
= 0.

Proof. We start with the following Taylor series expansion of j(ε)

j(ε) = J(u0) + ∂uJ(u0)(uε − u0) + ∂2
uJ(u0 + θ(uε − u0))(uε − u0, uε − u0) + aε(uε, λ) − l(λ),

∀λ ∈ V and some θ ∈ (0, 1). Since j(0) = J(u0) + a0(u0, λ) − l(λ) and using (11) we have

j(ε) = j(0) − a0(u0, λ) + aε(uε, λ) + ∂uJ(u0)(uε − u0) + ∂2
uJ(u0 + θ(uε − u0))(uε − u0, uε − u0).

Since λ is arbitrary, we can choose λ = p0 (see 13) and obtain

j(ε) = j(0) − a0(u0, p0) + aε(uε, p0) − a0(uε, p0) + a0(u0, p0)

+∂2
uJ(u0 + θ(uε − u0))(uε − u0, uε − u0).

We rewrite the expression above as follows

j(ε) − j(0) − f(ε)daR(uε, p0) = (aε − a0 − f(ε)daR)(uε, p0)

+∂2
uJ(u0 + θ(uε − u0))(uε − u0, uε − u0).

Dividing this expression by f(ε) we obtain
∣

∣

∣

∣

j(ε) − j(0) − f(ε)daR(uε, p0)

f(ε)

∣

∣

∣

∣

≤

∣

∣

∣

∣

(aε − a0 − f(ε)daR)(uε, p0)

f(ε)

∣

∣

∣

∣

+ C
‖uε − u0‖

2
V

|f(ε)|
.

Taking the limit ε→ 0, and using Theorems 2 and 3, the final result is obtained.

Remark: Since

lim
R→0

a0(ξ, η) =

∫

Ω
∇ξ · ∇η dΩ and lim

R→0

〈

∂J (u0)

∂u
, η

〉

=

〈

∂J (u)

∂u
, η

〉

the adjoint equation associated to the domain Ω is obtained by taking the limit R → 0 in (13). The
solution to this problem will be denoted p.

Remark: The case ε = 0 corresponds to Ω0 = Ω. To simplify the notation, u will be used instead of
u0 to denote the solution of (2) when ε = 0.

Given the previous results, the Topological Derivative can be defined as follows.

Definition: The Topological Derivative at x̂ ∈ Ω is defined as follows

DT j = DT j(u, p) = lim
R→0

daR(u0, p0)

= − lim
R→0

∫

∂BR

dTR(u0|∂BR
) p0|∂BR

d∂BR, (14)

where u and p are the solutions of the state and adjoint equations, respectively, both defined in the
original domain Ω.

Finally, in order to verify (9), it is enough to choose f(ε) and dTR such that

lim
ε→0

∥

∥

∥

∥

(T ε − T 0)(ψ) − f(ε) dTR(ψ)

f(ε)

∥

∥

∥

∥

H−1/2(∂BR)

= 0 ∀ψ ∈ H1/2(∂BR). (15)

The computation the Topological Derivative via the Domain Truncation Method can be summa-
rized in the following steps:
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1. Perform an asymptotic analysis of wε (solution of problem (4)).

2. Calculate (T ε − T 0)(ψ) and find the dominant term of its asymptotic development.

3. For each type of boundary condition on ∂Bε:

• Define the functions f(ε) and dTR(ψ) that satisfy (15).

• Using ψ = uε|∂BR
calculate the Topological Derivative given by (14).

In the next subsections we will perform each of the steps above.

3.1 Calculation of the asymptotic development of wε

The solution wε of (4) can be written as follows

wε =

∞
∑

n=0

(ϕn(r) cosnθ + ϕ̂n(r) sinnθ) .

Imposing the boundary conditions

α̃wε + β̃
∂wε

∂n
= h on ∂Bε

and

wε = ψ =
∞
∑

n=0

(

Rnψn cosnθ+Rnψ̂n sinnθ
)

on ∂BR,

where α̃ = α+ γ and β̃ = β + γ, the Fourier coefficients must satisfy







ϕ′′
0 + 1

rϕ
′
0 = −b

ϕ0(R) = ψ0

α̃ϕ0(ε) − β̃ϕ′
0(ε) = h

,







ϕ′′
n + 1

rϕ
′
n − n2

r2 ϕn = 0
ϕn(R) = Rnψn

α̃ϕn(ε) − β̃ϕ′
n(ε) = 0

,











ϕ̂′′
n + 1

r ϕ̂
′
n − n2

r2 ϕ̂n = 0

ϕ̂n(R) = Rnψ̂n

α̃ϕ̂n(ε) − β̃ϕ̂′
n(ε) = 0

.

The final expression for wε is given as follows

wε = −
b

4
r2 +

(

α̃ b
4(R2 − ε2) + α̃ψ0 − h+ β̃ b

2ε

α̃(lnR− ln ε) + β̃/ε

)

ln r

+
lnR

(

h+ α̃ b
4ε

2 − β̃ b
2ε
)

− (α̃ ln ε− β̃/ε)(ψ0 + b
4R

2)

α̃(lnR− ln ε) + β̃/ε

+

∞
∑

n=1

(εα̃+ nβ̃)rn − ε2n(εα̃− nβ̃)r−n

( εα̃+ nβ̃) − (ε/R)2n ( εα̃− nβ̃)

(

ψn cosnθ + ψ̂n sinnθ
)

.

3.2 Calculation of (T ε − T 0)(ψ)

T ε(ψ) is computed as follows

T ε(ψ) = −
∂wε

∂r

∣

∣

∣

∣

r=R

=
b

2
R−

1

R

(

α̃ b
4 (R2 − ε2) + α̃ψ0 − h+ β̃ b

2ε

α̃(lnR− ln ε) + β̃/ε

)

−
∞
∑

n=1

nRn−1 (εα̃+ nβ̃) + (ε/R)2n(εα̃− nβ̃)

(εα̃+ nβ̃) − (ε/R)2n (εα̃− nβ̃)

(

ψn cosnθ + ψ̂n sinnθ
)
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and

T 0(ψ) =
b

2
R−

∞
∑

n=1

nRn−1
(

ψn cosnθ + ψ̂n sinnθ
)

.

Finally,

(T ε − T 0)(ψ) = −
1

R

(

α̃ b
4 (R2 − ε2) + α̃ψ0 − h+ β̃ b

2ε

α̃(lnR− ln ε) + β̃/ε

)

−

∞
∑

n=1

2nRn−1
(ε/R)2n(εα̃− nβ̃)

(

ψn cosnθ + ψ̂n sinnθ
)

(εα̃+ nβ̃) − (ε/R)2n (εα̃− nβ̃)
.

3.3 Calculation of f(ε), dTR and DT j(u, p).

For each type of boundary condition on ∂Bε, the functions f(ε) and dTR(ψ) will be constructed
according to (15). The Topological Derivative will be calculated using ψ = uε|∂BR

.

• Neumann boundary condition (β = 1, α = γ = 0):

(T ε − T 0)(ψ) =
h

R
ε−

[

b

2R
−

2

R2
(ψ1 cos θ + ψ̂1 sin θ)

]

ε2

−2
(ε/R)4

1 + (ε/R)2

(

ψ1 cos θ + ψ̂1 sin θ
)

+

∞
∑

n=2

2nRn−1 (ε/R)2n

1 + (ε/R)2n

(

ψn cosnθ+ ψ̂n sinnθ
)

.

If h 6= 0, the choices

f(ε) = −2πε and dTR(ψ) = −
h

2πR
.

assure that (15) holds. Thus, the Topological Derivative is given by

DT j = − lim
R→0

∫

∂BR

(

−
h

2πR

)

p0 d∂BR = h p(x̂). (16)

For h = 0, equation (15) is satisfied by taking

f(ε) = −πε2 and dTR(ψ) =
b

2πR
−

2

πR2
(ψ1 cos θ + ψ̂1 sin θ).

Using the divergence theorem, the final expression for the topological derivative is obtained

DT j = lim
R→0

{

−

∫

∂BR

[

b

2πR
−

2

πR2
(ψ1 cos θ + ψ̂1 sin θ)

]

p0 d∂BR

}

= 2 lim
R→0

(

ψ1

πR2

∫

∂BR

p0 cos θ d∂BR +
ψ̂1

πR2

∫

∂BR

p0 sin θ d∂BR

)

− bp(x̂)

= 2 lim
R→0

1

π2R4

(
∫

BR

∂u

∂x
dBR

∫

BR

∂p0

∂x
dBR

+

∫

BR

∂u

∂y
dBR

∫

BR

∂p0

∂y
dBR

)

− bp(x̂)

= 2∇u(x̂) · ∇p(x̂) − bp(x̂). (17)
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• Robin boundary condition (γ = 1, α = β = 0):

(T ε − T 0)(ψ) = −
1

R

(

b
4(R2 − ε2) + ψ0 − h+ b

2ε

(lnR− ln ε) + 1/ε

)

−

∞
∑

n=1

2nRn−1
(ε/R)2n(ε− n)

(

ψn cosnθ + ψ̂n sinnθ
)

(ε+ n) − (ε/R)2n (ε− n)
.

In this case, equation (15) holds by choosing

f(ε) = −2πε and dTR(ψ) =
bR

8π
+
ψ0 − h

2πR
.

Thus, the Topological Derivative becomes

DT j = lim
R→0

(

−

∫

∂BR

(

bR

8π
+
ψ0 − h

2πR

)

p0 d∂BR

)

= − lim
R→0

(ψ0 − h)

(

1

2πR

∫

∂BR

p0 d∂BR

)

= − (u(x̂) − h) p(x̂). (18)

• Dirichlet boundary condition (α = 1, β = γ = 0):

(T ε − T 0)(ψ) = −
1

R

(

b
4(R2 − ε2) + ψ0 − h

(lnR− ln ε)

)

−2
(ε/R)2

1 − (ε/R)2

(

ψ1 cos θ + ψ̂1 sin θ
)

−

∞
∑

n=2

2nRn−1 (ε/R)2n

1 − (ε/R)2n

(

ψn cosnθ+ ψ̂n sinnθ
)

.

In this case we have to investigate two possible situations: h = h∗ := b
4 (R2−ε2)+ψ0 and h 6= h∗.

For h = h∗ equation (15) is satisfied using

f(ε) = −πε2 and dTR(ψ) =
2

πR2
(ψ1 cos θ + ψ̂1 sin θ).

In this case, the Topological Derivative is given by

DT j = − lim
R→0

∫

∂BR

2

πR2
(ψ1 cos θ + ψ̂1 sin θ)p0 d∂BR

= −2∇u(x̂) · ∇p(x̂). (19)

To satisfy (15) for h 6= h∗ we need

f(ε) =
2π

ln ε
and dTR(ψ) =

(

bR

8π
+
ψ0 − h

2πR

)

.

Finally, the Topological Derivative is given by

DT j = − lim
R→0

∫

∂BR

(

bR

8π
+
ψ0 − h

2πR

)

p0 d∂BR = −(u(x̂) − h)p(x̂). (20)
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Remark : The exceptional case h = h∗ appears in the Saint-Venant theory of torsion of elastic
shafts. Indeed,

∫

∂Bε

∂wε

∂n
d∂Bε = bπε2 ⇔

b

4

(

R2 − ε2
)

+ ψ0 − h = 0. (21)

This equivalence is obtained from the asymptotic development of wε, computing the normal
derivative of wε on ∂Bε, and calculating the integral over ∂Bε.

In this section, the Topological Derivative of a cost functional that does not depend explicitly on
the domain Ω, with a constraint given by a Poisson problem, was calculated using the Domain Trun-
cation Method. All possible boundary conditions on the hole ∂Bε were considered. The Topological
Derivative for the case of Neumann boundary conditions on ∂Bε is given by (16) for the case h 6= 0,
and (17) otherwise. For Robin boundary conditions, the topological derivative is given by (18), and
finally, for Dirichlet boundary conditions on ∂Bε, the Topological Derivative is given by (19) if h = h?

and (20) otherwise. These results extend the ones obtained by Garreau et al.[4].

4 The Topological-Shape Sensitivity Method

In the work of Novotny et al.[12] the Topological Derivative of the total potential energy functional
was calculated using a new approach, which we called Topological-Shape Sensitivity Method. Since
that functional depends explicitly on the domain, the results from [12] can not be directly compared to
the results in the previous section of this work. Therefore, and for the sake of completeness, the main
results from [12] will be reproduced here with the intent of using them to calculate the Topological
Derivative of the functional being treated in this work.

The main idea behind the Topological-Shape Sensitivity Method is to start from a problem in
which the hole Bε already exists. The ball Bε is submitted to a small perturbation δε, originating
a new domain Ωε+δε = Ω − Bε+δε with boundary ∂Ωε+δε = ∂Ω ∪ ∂Bε+δε. Then, the Topological
Derivative is redefined as follows

D∗
T j := lim

ε→0

{

lim
δε→0

j (Ωε+δε) − j(Ωε)

f (ε+ δε) − f (ε)

}

. (22)

It is still necessary to show that both definitions for the Topological Derivative are equivalent, which
is asserted in the following theorem.

Theorem 5 Definitions (14) and (22) for the Topological Derivative are equivalent, i.e.

D∗
T j = DT j.

Proof. Using (1) we have that

j(Ωε) = j(Ω) + f(ε)DT j + R (f(ε)) (23)

and
j(Ωε+δε) = j(Ω) + f(ε+ δε)DT j + R (f(ε+ δε)) . (24)

After subtracting (23) from (24), and dividing the result by f (ε+ δε)−f (ε), the following is obtained

j(Ωε+δε) − j(Ωε)

f(ε+ δε) − f(ε)
= DT j +

R (f (ε+ δε)) −R (f (ε))

f (ε+ δε) − f (ε)
.

Taking the limit as shown in (22) of the expression above gives

D∗
T j = lim

ε→0

{

lim
δε→0

j (Ωε+δε) − j(Ωε)

f (ε+ δε) − f (ε)

}

= DT j + lim
ε→0

{

lim
δε→0

R (f (ε+ δε)) −R (f (ε))

f (ε+ δε) − f (ε)

}

. (25)
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Applying L’Hopital’s rule, we conclude that the last term of (25) is zero
Using classical concepts in Shape Sensitivity Analysis (see for instance Murat & Simon[9], Section

IV-4.2, pp. IV.23, and Zolésio[18], Theorem 1.1, pp. 1090), the perturbation Ωε → Ωε+δε can be
represented by a smooth and invertible mapping χ(·, τ ) : R

2 → R
2, which depends on the parameter

τ , as follows
χ (·, τ) : x 7→ xτ ∀x ∈ Ωε.

We now define the perturbed domain Ωτ as well as its boundary ∂Ωτ as

Ωτ :=
{

xτ ∈ R
2 | ∃x ∈ Ωε, xτ = χ (x, τ) , xτ |τ=0 = x, Ωτ |τ=0 = Ωε

}

,

∂Ωτ :=
{

xτ ∈ R
2 | ∃x ∈ ∂Ωε, xτ = χ (x, τ ) , xτ |τ=0 = x, ∂Ωτ |τ=0 = ∂Ωε

}

.

For sufficiently small τ , the mapping χ(·, τ ) can be written as

xτ = χ(x, τ ) = x + τV (x) , (26)

where V (x) is the velocity of change of form (see for instance Zolésio[18]).
Considering that only the ball Bε is submitted to the perturbation δε, we identify Ωε+δε = Ωτ and

∂Ωε+δε = ∂Ωτ . We choose the following for the velocity on the boundary ∂Ωε = ∂Ω ∪ ∂Bε

{

V = Vnn on ∂Bε

V = 0 on ∂Ω
, (27)

where Vn is a negative constant (Vn < 0).
With the previous definition for V, the following holds on the boundary ∂Bε

xτ = x + τVnn ∀x ∈ ∂Bε,

so it is possible to associate the perturbation δε with the parameter τ in the following way

δε = ‖τVnn‖ = τ |Vn| . (28)

It is now possible to relate the Topological Derivative and Shape Sensitivity Analysis with the
following theorem.

Theorem 6 The Topological Derivative can be calculated as follows

D∗
T j = lim

ε→0

1

f ′ (ε) |Vn|

dj (Ωτ )

dτ

∣

∣

∣

∣

τ=0

,

where f (ε) is a function chosen such that 0 < |D∗
T j| <∞.

Proof. Using definition (22) we have

D∗
T j = lim

ε→0

{

lim
δε→0

j (Ωε+δε) − j(Ωε)
f(ε+δε)−f(ε)

δε δε

}

= lim
ε→0

1

f ′ (ε)
lim
δε→0

j (Ωε+δε) − j(Ωε)

δε

= lim
ε→0

1

f ′ (ε)
lim
τ→0

j (Ωτ ) − j(Ωτ |τ=0)

τ |Vn|
= lim

ε→0

1

f ′ (ε) |Vn|

dj (Ωτ )

dτ

∣

∣

∣

∣

τ=0

Corollary 7 From Theorem 5 and 6, the following holds

DT j = D∗
T j = lim

ε→0

1

f ′ (ε) |Vn|

dj (Ωτ )

dτ

∣

∣

∣

∣

τ=0

.
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Theorem 6 provides a more general definition of the Topological Derivative than the one given in
Section 3 (equation (14)). In fact, using this new definition, it is possible to consider cost functions
that depend explicitly on the domain, as shown in [12]. This is not the case with the definition
provided by (14). Moreover, theorem 6 provides a constructive formula for the Topological Derivative
based on the shape derivative of the cost functional. Consequently, it is possible to use classical results
in Shape Sensitivity Analysis (Céa[1], Haug et al.[6], Haug & Céa[7], Murat & Simon[9], Sokolowski
& Zolésio[16], Zolésio[18]) to calculate the Topological Derivative. For this reason, we call this new
method for computing the Topological Derivative, Topological-Shape Sensitivity Method.

4.1 Calculation of the Topological Derivative

The corresponding variational form of (2) is given as follows

{

Find uε ∈ Uε, such that
âε (uε, ηε) = lε (ηε) ∀ ηε ∈ Vε

, (29)

where

âε (uε, ηε) =

∫

Ωε

∇uε · ∇ηε dΩε + γ

∫

∂Bε

uεηε d∂Bε, (30)

lε (ηε) =

∫

Ωε

bηε dΩε + (β + γ)

∫

∂Bε

hηε d∂Bε. (31)

The set of admissible functions Uε and the set of admissible variations Vε are given by

Uε :=
{

uε ∈ H1 (Ωε) | uε = ū on ∂Ω and α(uε − h) = 0 on ∂Bε

}

and
Vε :=

{

ηε ∈ H1 (Ωε) | ηε = 0 on ∂Ω and αηε = 0 on ∂Bε

}

,

where α ∈ {0, 1}. The notation above should be interpreted as follows: when α = 1, uε = h and
ηε = 0 on ∂Bε, and when α = 0, uε and ηε are not specified on ∂Bε.

The boundary value problem (29) written in the reference configuration, must also be satisfied for
all perturbations τ , which can be written in the perturbed configuration Ωτ as follows

{

Find uτ ∈ Uτ , such that
âτ (uτ ,ητ ) = lτ (ητ ) ∀ητ ∈ Vτ

, (32)

where âτ (uτ ,ητ ) and lτ (ητ ) are given by

âτ (uτ ,ητ ) =

∫

Ωτ

∇τuτ · ∇τητ dΩτ + γ

∫

∂Bετ

uτητ d∂Bετ , (33)

lτ (ητ ) =

∫

Ωτ

bητ dΩτ + (β + γ)

∫

∂Bετ

hητ d∂Bετ , (34)

and ετ = ε+ τ |Vn| and ∇τ (·) denotes ∇τ (·) := ∂
∂xτ

(·) .
To calculate the Topological Derivative using Theorem 6 it is necessary to calculate the sensitivity

of the cost function j (Ωτ ) := Jτ (uτ ) as follows

dj (Ωτ )

dτ

∣

∣

∣

∣

τ=0

=
d

dτ
Jτ (uτ )

∣

∣

∣

∣

τ=0

= lim
τ→0

Jτ (uτ ) − J0 (u0)

τ
. (35)
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This derivative can be evaluated using the Lagrangian Method: let uτ and pτ be the solutions of
the state and adjoint equations respectively, then

d

dτ
Jτ (uτ ) =

∂

∂τ
£τ (uτ , pτ )

=
∂

∂τ
Jτ (uτ ) +

∂

∂τ
âτ (uτ , pτ ) −

∂

∂τ
lτ (pτ ) . (36)

If the cost function is defined in a fixed domain, then Jτ (uτ ) = J (uτ ). As a consequence, the partial
derivative with respect to τ is zero, and (36) yields

d

dτ
J (uτ ) =

∂

∂τ
£τ (uτ , pτ ) =

∂

∂τ
âτ (uτ , pτ ) −

∂

∂τ
lτ (pτ ) . (37)

It is important to note that the methodology proposed here is not limited to a cost function that
depends only implicitly on Ωτ . Indeed, a more general cost function was considered in [12].

The derivatives in the referential configuration Ωτ |τ=0 = Ωε are obtained using Reynolds’ transport
theorem as follows

∂

∂τ
âτ (uτ , pτ )

∣

∣

∣

∣

τ=0

=

∫

Ωε

[

∂

∂τ
(∇τuτ · ∇τpτ )

∣

∣

∣

∣

τ=0

+ ∇uε · ∇pε divV

]

dΩε

+γ

∫

∂Bε

uεpε divΓV d∂Bε

= −

∫

Ωε

[(

∇VT +∇V
)

∇uε · ∇pε −∇uε · ∇pε divV
]

dΩε

+γ

∫

∂Bε

uεpε divΓV d∂Bε, (38)

where divΓV = (I− n⊗ n) · ∇V and

∂

∂τ
lτ (pτ )

∣

∣

∣

∣

τ=0

=

∫

Ωε

bpε divV dΩε + (β + γ)

∫

∂Bε

hpε divΓV d∂Bε. (39)

Substituting (38) and (39) in (37) and rearranging terms gives

dJ

dτ

∣

∣

∣

∣

τ=0

= −

∫

Ωε

Σ · ∇V dΩε − β

∫

∂Bε

hpε divΓV d∂Bε

+γ

∫

∂Bε

pε (uε − h) divΓ V d∂Bε, (40)

where
Σ =(∇uε ⊗∇pε) + (∇pε ⊗∇uε) + (bpε −∇uε · ∇pε) I

can be interpreted as a generalization of the Energy-Momentum Tensor of Eshelby (see, for instance,
Eshelby[3] and Taroco et al.[17]). Since the state and adjoint equations are satisfied, divΣ = 0, and
the following tensorial relation holds

Σ · ∇V = div
(

ΣTV
)

. (41)

Using the previous relation, (40) becomes an integral only defined on the boundary ∂Ωε,

dJ

dτ

∣

∣

∣

∣

τ=0

= −

∫

∂Ωε

Σn ·V d∂Ωε − β

∫

∂Bε

hpε divΓV d∂Bε

+γ

∫

∂Bε

pε (uε − h) divΓV d∂Bε.
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Using definition (27) and ετ = ε+ τ |Vn|, it is easy to show that divΓV = 1
ε |Vn|. Therefore,

dJ

dτ

∣

∣

∣

∣

τ=0

= −Vn

∫

∂Bε

{

Σn · n +
sign (Vn)

ε
[βhpε − γpε (uε − h)]

}

d∂Bε. (42)

Substituting (42) in the result of Theorem 6 and from sign (Vn) = −1, one has that

DT j = lim
ε→0

1

f ′ (ε)

∫

∂Bε

{

Σn · n−
1

ε
[βhpε − γpε (uε − h)]

}

d∂Bε. (43)

Using

Σn · n = 2

(

∂uε

∂n

∂pε

∂n

)

+ bpε −∇uε · ∇pε,

the expression (43) can be written as follows

DT j = lim
ε→0

1

f ′ (ε)

∫

∂Bε

{

∂uε

∂n

∂pε

∂n
−
∂uε

∂t

∂pε

∂t
+ bpε −

1

ε
[βhpε − γpε (uε − h)]

}

d∂Bε. (44)

The final expression of the Topological Derivative using the Topological-Shape Sensitivity Method is
obtained by evaluating the limit above. Without performing the limiting process, it is still possible to
draw some conclusions about the behavior of the different terms. For example, for the case b = 0, the
following can be inferred:

• For β = 1 and α = γ = 0, the solution uε is regular. Thus, it is expected that the dominant
term is given by hp for h 6= 0, and ∇u · ∇p for h = 0.

• In the same way, for γ = 1 and α = β = 0 the dominant term is given by −p (u− h).

• For α = 1, β = γ = 0 and h = h∗ (note that the solution is regular in this case), the term
−∇u · ∇p is the dominant one. On the other hand, for h 6= h∗ (for instance, h = 0) the solution
is singular and its normal derivative must be related to the solution uε through a singular function
depending on ε. Thus, in this last case, the dominant term is given by −up.

From the previous analysis, it was possible to recover the results obtained with the Truncation
Method (equations (16), (17),(18),(19),(20)) without performing an asymptotic expansion of the so-
lution uε. In fact, the computation of the Topological Derivative using the Topological-Shape Sensi-
tivity Method can be performed using an adequate numerical procedure. As a consequence, this new
methodology can be applied to a more general class of problems.

4.2 Calculation of the limit when ε→ 0

The solution of (4) with ψ = uε|∂BR
at ∂Bε is given by

uε|∂Bε
= −

b

4
ε2 + ln ε

(

α̃ b
4(R2 − ε2) + α̃ψ0 − h̃+ β̃ b

2ε

α̃(lnR− ln ε) + β̃/ε

)

+
lnR

(

h̃+ α̃ b
4ε

2 − β̃ b
2ε
)

−
(

α̃ ln ε− β̃/ε
)

(

ψ0 + b
4R

2
)

α̃(lnR− ln ε) + β̃/ε

+

∞
∑

n=1

2nβ̃εn
(

ψn cosnθ + ψ̂n sinnθ
)

(

εα̃+ nβ̃
)

− (ε/R)2n
(

εα̃− nβ̃
) (45)
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and the normal and tangential derivatives of uε on ∂Bε are given respectively by

∂uε

∂n

∣

∣

∣

∣

∂Bε

=
b

2
ε−

1

ε

(

α̃ b
4(R2 − ε2) + α̃ψ0 − h̃+ β̃ b

2ε

α̃(lnR− ln ε) + β̃/ε

)

−
∞
∑

n=1

2nα̃εn
(

ψn cosnθ + ψ̂n sinnθ
)

(

εα̃+ nβ̃
)

− (ε/R)2n
(

εα̃− nβ̃
) , (46)

∂uε

∂t

∣

∣

∣

∣

∂Bε

=

∞
∑

n=1

2n2β̃εn−1
(

ψ̂n cosnθ − ψn sinnθ
)

(

εα̃+ nβ̃
)

− (ε/R)2n
(

εα̃− nβ̃
) . (47)

With these results, it is now possible to evaluate the limit in (44) to obtain the final expression for
the Topological Derivative for different types of boundary conditions on ∂Bε

• Neumann boundary condition (β = 1, α = γ = 0): In this case, (44) is given by

DT j = lim
ε→0

1

f ′ (ε)

∫

∂Bε

(

∂uε

∂n

∂pε

∂n
−
∂uε

∂t

∂pε

∂t
+ bpε −

1

ε
hpε

)

d∂Bε. (48)

Considering the case h 6= 0 and substituting (45), (46) and (47) in (48) we require that f ′ (ε) =
−2π ⇒ f (ε) = −2πε. Therefore,

DT j = hp (x̂) . (49)

The case h = 0 requires that f ′ (ε) = −2πε ⇒ f (ε) = −πε2 and the Topological Derivative is
given by

DT j = 2∇u (x̂) · ∇p (x̂) − bp (x̂) . (50)

• Robin boundary condition (γ = 1, α = β = 0): In this case, we have

DT j = lim
ε→0

1

f ′ (ε)

∫

∂Bε

(

∂uε

∂n

∂pε

∂n
−
∂uε

∂t

∂pε

∂t
+ bpε +

1

ε
pε (uε − h)

)

d∂Bε. (51)

Substituting (45), (46) and (47) in (51) requires that f ′ (ε) = −2π ⇒ f (ε) = −2πε which finally
gives

DT j = − (u (x̂) − h) p (x̂) . (52)

• Dirichlet boundary condition (α = 1, β = γ = 0): Finally, the case of a Dirichlet boundary
condition on the hole ∂Bε gives

DT j = lim
ε→0

1

f ′ (ε)

∫

∂Bε

(

∂uε

∂n

∂pε

∂n
−
∂uε

∂t

∂pε

∂t
+ bpε

)

d∂Bε. (53)

Taking into account that ∂uε
∂t

∣

∣

∂Bε
= 0 and pε = 0 on ∂Bε (since pε ∈ Vε), equation (53) reduces

to

DT j = lim
ε→0

1

f ′ (ε)

∫

∂Bε

(

∂uε

∂n

∂pε

∂n

)

d∂Bε. (54)

Further, if h 6= h∗, from (46) we conclude that the solution uε is singular. Therefore

f ′ (ε) = −
2π

ε ln (ε)2
⇒ f (ε) =

2π

ln (ε)
.

Using this last result and substituting (46) in (54) we finally obtain

DT j = − (u (x̂) − h) p (x̂) . (55)
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Table 1: Topological Derivatives for the Poisson’s problem in 2D domains.

Boundary Conditions f (ε) DT j

β = 1, α = γ = 0 and h 6= 0 −2πε hp

β = 1, α = γ = 0 and h = 0 −πε2 2∇u · ∇p− bp

γ = 1, α = β = 0 −2πε − (u− h) p

α = 1, β = γ = 0 and h = h∗ −πε2 −2∇u · ∇p

α = 1, β = γ = 0 and h 6= h∗ 2π
log(ε) − (u− h) p

Remark: For the exceptional case h = h∗ (see equation 21), the expression of the Topological
Derivative given by (54) also holds. Hence, from (46) we have f ′ (ε) = −2πε ⇒ f (ε) = −πε2

and the Topological Derivative is given by

DT j = −2∇u (x̂) · ∇p (x̂) . (56)

In summary, the Topological Derivative for the Poisson problem with a cost function that depends
implicitly on Ω is given by (49) or (50) for the Neumann boundary condition, by (52) for the case of
Robin boundary conditions and by (56) or (55) for Dirichlet boundary conditions on ∂Bε. Obviously,
these results which were obtained with the Topological-Shape Sensitivity Method are exactly the same
as those computed with the Domain Truncation Method as a result of Theorem 5. However, we believe
the new method introduced in this work provides a simpler and more constructive mean to calculate
the Topological Derivative.

5 Summary of Results

The final expression of the Topological Derivative for a Poisson problem with different types of bound-
ary conditions on ∂Bε are shown in Table 1. The cost function depends implicitly on the domain and
u and p are the direct and adjoint solutions of the problem associated to the original domain Ω.

6 Conclusions

The Topological Derivative was calculated for the Poisson problem using the Domain Truncation
Method and a new method called Topological-Shape Sensitivity Method. A general set of boundary
conditions on the holes was considered: Dirichlet, Neumann (both homogeneous and non-homogeneous),
Robin and the exceptional case associated to the Saint-Venant theory of torsion of an elastic shaft.
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It was shown that the new methodology leads to a more general and constructive technique for the
calculation of the Topological Derivative.

The Domain Truncation Method is limited to cost functions that depend implicitly on Ω through
the solution u (see Theorem 4). It appears that this technique can not be easily extended to treat
more general cost functions. In particular, the functional given by the total potential energy cannot be
treated using this method. On the other hand, the Topological-Shape Sensitivity Method can be used
for any cost function and boundary conditions. In fact, in Novotny et al.[12] the total potential energy
functional was adopted and the Topological Derivative was obtained in a straightforward manner.

It is also important to mention that the Topological-Shape Sensitivity Method provides a construc-
tive expression for the Topological Derivative and therefore, it makes it possible to consider problems
where the limit in (44) can not be obtained analytically. In these cases, numerical techniques can be
used to evaluate the limit. We are currently investigating this type of approach.
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[1] J. Céa. Problems of Shape Optimal Design. In Haug & Céa[7].
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MIG, Université Paul Sabatier Toulouse 3, France, 1998.

[5] S. Garreau, Ph. Guillaume & M. Masmoudi. The Topological Asymptotic for PDE Systems: The
Elasticity Case, SIAM J. Control Optim. 39 (2001), 1756-1778.

[6] E. J. Haug, K. K. Choi & V. Komkov. Design Sensitivity Analysis of Structural Systems. Academic
Press, 1986.
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