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Abstract. In this paper, we deal with the topological asymptotic analysis of an
optimal control problem modeled by a coupled system. The control is a geometrical
object and the cost is given by the misfit between a target function and the state, so-
lution of the Helmholtz-Laplace coupled system. Higher-order topological derivatives
are used to devise a non-iterative algorithm to compute the optimal control for the
problem of interest. Numerical examples are presented in order to demonstrate the
effectiveness of the proposed algorithm.

1. Introduction

Optimal control problems have a very long history and at the early stage it was seen
as the advancement of the calculus of variations introduced by Euler. Classically, the
control used to be considered in a subset of functional spaces, but later mathematicians
started to consider more general control functions. See the references [6, 18, 19, 20,
21, 30] for optimal control problems and derivation of optimality systems. We consider
the control related to the topology of the subdomains of a domain in R

2. To be more
precise, we are dealing with an optimal control problem where the admissible set of
controls contain the topological objects which do not have an algebraic structure which
makes the problem more sophisticated.

Among the methods dealing with optimal control problems where the controls are
geometrical objects, we want to draw the attention of the readers on the level-set
methods [16, 28, 29, 33] and the methods based on asymptotic expansions. In this
paper, we are interested in a method of the second type based on the concept of the
topological derivative. This concept was introduced by Soko lowski and Żochowski [34].
It has been successfully applied to many relevant scientific and engineering problems
such as inverse problems [1, 7, 8, 12, 14, 31], topology optimization [3, 5, 22, 23],
fracture mechanics [38, 39], multi-scale constitutive modeling [4] and image processing
[13]. According to Rocha and Novotny [31], the topological derivative leads to first-
order iterative methods, but in contrast to the level-set methods, they are free of initial
guess. In addition, the notion of second order topological derivative (see [11]) has been
used to devise a class of second order non-iterative methods [7, 8, 13, 24] which, in
turn, are also free of initial guess. It motivates us to analyze this problem using
higher-order topological derivatives. For more details related to asymptotic analysis
of optimal control problems in the case where the control is a geometrical subdomain,
we refer the reader to [17, 35, 40]. For the theoretical developments on the concepts of
topological derivatives, one can see for instance [2, 27, 32].

In this paper, we study an optimal control problem of constructing an optimal ge-
ometrical object embedded in an open and bounded domain Ω ⊆ R

2 with smooth
boundary ∂Ω. We analyze the optimality of the cost evaluated in a subdomain Ωo of
the domain Ω which is relatively compact in Ω. The state corresponding to a particu-
lar control in this optimization problem is considered to be the solution of a coupled
Helmholtz-Laplace system posed in the domain Ω with Robin boundary condition on
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Figure 1. (a) Domain Ω with a set of perturbations ω and (b) Domain
Ω without perturbations.

∂Ω. On the other hand, the control problem to be investigated can be seen as an
inverse problem consisting in the reconstruction of a geometrical object from partial
measurements of the solution to a coupled Helmholtz-Laplace system taken in Ωo. The
associated inverse problem is motivated by the open problem proposed by Isakov [15,
pp. 126, Problem 4.2]. See Remark 9 in Section 6.2.

The Helmholtz Equation appears in the study of acoustic waves. If the medium of
propagation of sound wave is homogeneous, the wave number is a positive real number
representing the property of the material. Similarly, if one studies the propagation of
sound waves in an inhomogeneous medium, the wave number is a function away from
zero. In the latter case, the mathematical analysis inherits the complication from the
nature of the problem. One can see the book by Colton and Kress [10] for details. In
this article, our objective is to study the topological asymptotic behavior of an optimal
control problem. Therefore, for the sake of simplicity, we consider the wave number to
be an indicator function, which gives rise to the fact that the state satisfies a coupled
Helmholtz-Laplace system. This simplification, actually helps up to understand the
deeper difficulties involved in the inverse problem whose forward equation is modeled
by the inhomogeneous Helmholtz Equation with Cauchy data which will appear in our
forthcoming projects.

The paper is organized as follows. The notion of topological derivatives is briefly
recalled in Section 2. The optimal control problem is described in Section 3 where we
also introduce some relevant cost functionals and auxiliary boundary value problems in
order to use the theory of the topological derivatives to solve the problem of interest.
The topological asymptotic expansion of the cost functional is presented in Section
4, which is the main result of this article. A complete proof of the main result is
provided in Section 5, which includes the a priori estimates of the remainders obtained
in Section 4. The computational part of this paper is presented in Section 6 where
the non-iterative algorithm is devised and some numerical experiments showing the
effectiveness of the proposed algorithm are presented.

2. Topological derivatives

The topological derivative is the first term of the asymptotic expansion of a given
shape functional with respect to the small parameter which measures the size of sin-
gular domain perturbations, such as holes, inclusions, source-terms, cracks, etc. To
be familiar with the concepts of topological derivatives, the reader may refer to the
book by Novotny & Soko lowski [27]. However, for the sake of completeness of the
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manuscript, we briefly present below the main definitions and characteristics of the
topological derivatives.

In general, an open and bounded domain Ω ⊂ R
d, d ≥ 2, is perturbed by introducing

nonsmooth features confined in a small region ωε (ξ) of size ε > 0 centred at ξ ∈ Ω such

that ωε (ξ) ⊂ Ω. We define a characteristic function having support in the unperturbed
domain Ω of the form χ = 1Ω. Similarly, we introduce a characteristic function χε (ξ)
associated to the topologically perturbed domain. For example, in the case of holes as
the perturbation ωε (ξ), we can write χε (ξ) = 1Ω−1ωε(ξ)

and the singularly perturbed

domain can be represented by Ωε (ξ) = Ω \ ωε (ξ). Further, one assumes that a given
shape functional ψ (χε (ξ)) associated to the topologically perturbed domain Ωε (ξ)
admits the following topological asymptotic expansion

ψ (χε (ξ)) = ψ (χ) + f (ε)DTψ (ξ) + o (f (ε)) , (2.1)

where ψ (χ) is the shape functional associated to the reference (unperturbed) domain Ω
and f (ε) is a positive function depending upon the size ε of the topological perturbation
such that f (ε) → 0 when ε ↓ 0. The function ξ 7→ DTψ (ξ) is called the first order
topological derivative of the shape functional ψ at ξ. Mathematically, we can express
it as

DTψ (ξ) := lim
ε→0

ψ (χε (ξ)) − ψ (χ)

f (ε)
. (2.2)

Similarly, the second order topological derivative of the shape functional ψ at ξ can be
obtained by expanding the remainder term o (f (ε)) in (2.1). More precisely, we will
get the topological asymptotic expansion

ψ (χε (ξ)) = ψ (χ) + f (ε)DTψ (ξ) + f2 (ε)D2
Tψ (ξ) + o (f2 (ε)) , (2.3)

where f2 (ε) is such that

lim
ε→0

f2 (ε)

f (ε)
= 0. (2.4)

Thus, the second order topological derivative can be defined as

D2
Tψ (ξ) := lim

ε→0

ψ (χε (ξ)) − ψ (χ) − f (ε)DTψ (ξ)

f2 (ε)
. (2.5)

Furthermore, one can define higher order topological derivatives by arguing analo-
gously.

3. Problem formulation

The optimal control problem, whose state is a solution of the Helmholtz-Laplace
coupled system, is formulated below. Some tools related to the theory of topological
derivatives are introduced in order to compute the solution of the problem of interest.

In this article, for a given positive number k > 0, positive integer M ∈ Z
+ and

desired target zm, for m = 1, · · · ,M , we consider the optimal control problem

Minimize
ω⊂A

Jω

(
u1, · · · , uM

)
=

M∑

m=1

∫

Ωo

(um − zm) (um − zm), (3.1)

where A is an admissible set of all relatively compact ball shaped subdomains of the
domain Ω. Moreover, (um − zm) represents the complex conjugate of (um − zm). No-
tice that the state um = (um1 , u

m
2 ) is the solution of the following coupled boundary
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value problem 



∆um1 + k2um1 = 0 in ω,
∆um2 = 0 in Ω \ ω,
um1 = um2 on ∂ω,

∂νu
m
1 = ∂νu

m
2 on ∂ω,

∂nu
m
2 + ikum2 = gm on ∂Ω,

(3.2)

for a given Robin data gm ∈ H−1/2(∂Ω) with m = 1, · · · ,M . Here i is the imaginary
number, i.e., i =

√
−1. Moreover, ν and n are the outward unit normals to the bound-

aries ∂ω and ∂Ω, respectively. The reader interested in the mathematical aspects of
such a boundary value problems may refer to the book by Nazarov and Plamenevsky
[26], for instance. Concerning the numerical issues related to the coupled system (3.2),
see [25]. Our objective is not to discuss the existence/uniqueness of the optimal con-
trol for the problem (3.1) using standard arguments. Instead, we are interested in
constructing the optimal control using the concept of topological derivatives which,
depending upon the desired target, ensures the existence of the optimal control. We
also demonstrate the effectiveness of the method through few numerical results.

In principle, when we analyze an optimization problem using topological derivatives,
we consider the unperturbed and the perturbed cost functionals to observe the rate of
change of their behaviour with respect to the introduced perturbation. In particular,
we introduce the unperturbed cost functional by taking ω = ∅ (see Figure 1(b)) from
A as

J0

(
u10, · · · , uM0

)
=

M∑

m=1

∫

Ωo

(um0 − zm) (um0 − zm) (3.3)

where, for m = 1, · · · ,M , um0 is the solution of the boundary value problem
{

∆um0 = 0 in Ω,
∂nu

m
0 + ikum0 = gm on ∂Ω.

(3.4)

Then, we introduce some perturbation Bε(ξ) into the domain Ω and consider the
corresponding perturbed cost functional

Jε

(
u1ε, · · · , uMε

)
=

M∑

m=1

∫

Ωo

(umε − zm) (umε − zm), (3.5)

where, m = 1, · · · ,M , umε = (umε,1, u
m
ε,2) is the solution to the following boundary value

problem 



∆umε,1 + k2umε,1 = 0 in Bε(ξ),

∆umε,2 = 0 in Ω \Bε(ξ),
umε,1 = umε,2 on ∂Bε(ξ),

∂νu
m
ε,1 = ∂νu

m
ε,2 on ∂Bε(ξ),

∂nu
m
ε,2 + ikumε,2 = gm on ∂Ω.

(3.6)

We are interested in approximating the optimal control in problem (3.1) by a set of
circular subdomains of Ω, using the concept of topological derivatives. This approach
provides us the explicit representation for the associated topological asymptotic ex-
pansion. Therefore, we consider an arbitrary number N ∈ Z

+ of circular balls of the
form

Bε (ξ) = Bε (x1, . . . , xN) =

N⋃

i=1

Bεi (xi) , (3.7)
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where Bεi(xi) is a small circular perturbation with center xi and radius εi, for i =

1, · · · , N . Moreover, we assume that Bε (ξ) ∩ ∂Ω = ∅, Bε (ξ) ∩ Ωo = ∅ and Bεi (xi) ∩
Bεj (xj) = ∅ for each i 6= j and i, j ∈ {1, · · · , N}.

Our main goal is to measure the sensitivity of the cost functional Jω defined in the
optimal control problem (3.1) with respect to the parameters (ε, ξ) related to the set
of small perturbations Bε(ξ) using topological derivatives. In other words, our idea
is to approximate the optimal control of the problem (3.1) by getting the number,
size and location of the optimal perturbation. For this purpose, let us consider the
difference between the perturbed cost functional Jε

(
u1ε, · · · , uMε

)
and its unperturbed

counter-part J0

(
u10, · · · , uM0

)
defined in (3.5) and (3.3), respectively, which yields to

the following simplified expression

Jε (uε)−J0 (u0) =
M∑

m=1

∫

Ωo

[2R{(umε − um0 ) (um0 − zm)}+ (umε − um0 ) (umε − um0 )], (3.8)

where uε =
(
u1ε, · · · , uMε

)
, u0 =

(
u10, · · · , uM0

)
and R{ · } denotes the real part of { · }.

Since the control ω is performed through a set of circular balls Bε(ξ), we expand the
perturbed functional Jε

(
u1ε, · · · , uMε

)
with respect to the Lebesgue measure (volume)

of the two-dimensional ball Bεi(xi), namely, |Bεi (xi) | = πε2i . To simplify the notation,
we introduce the vector

α = (α1, · · · , αN) with αi := |Bεi (xi) |. (3.9)

Now we introduce some auxiliary boundary value problems whose solutions are func-
tions which appear in the ansätz for the asymptotic expansion of uε to be defined next.
For each i, j = 1, · · · , N and m = 1, · · · ,M , hε,mi is the solution of

{
∆hε,mi = −(αi)

−1um0 χBεi
(xi) in Ω,

∂nh
ε,m
i + ikhε,mi = 0 on ∂Ω,

(3.10)

the function hε,mij satisfies
{

∆hε,mij = −(αi)
−1hε,mj χBεi

(xi) in Ω,
∂nh

ε,m
ij + ikhε,mij = 0 on ∂Ω,

(3.11)

and ũmε = (ũmε,1, ũ
m
ε,2) is the solution to the following boundary value problem





∆ũmε,1 + k2ũmε,1 = −Φm
ε in Bε(ξ),

∆ũmε,2 = 0 in Ω \Bε(ξ),
ũmε,1 = ũmε,2 on ∂Bε(ξ),

∂ν ũ
m
ε,1 = ∂ν ũ

m
ε,2 on ∂Bε(ξ),

∂nũ
m
ε,2 + ikũmε,2 = 0 on ∂Ω,

(3.12)

with

Φm
ε = k6

N∑

i=1

N∑

j=1

N∑

l=1

αjαlh
ε,m
jl χBεi

(xi). (3.13)

In order to simplify the analysis further, we write hε,mi as a sum of three functions

pεi , qi and h̃ε,mi in the form

hε,mi = um0 (xi)(p
ε
i + qi) + h̃ε,mi . (3.14)

The function pεi is a solution of
{

∆pεi = −(αi)
−1χBεi

(xi) in BR(xi),
pεi = −(2π)−1 lnR on ∂BR(xi),

(3.15)
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with Bεi(xi) ⊂ Ω ⊂ BR(xi), xi ∈ Ω, ε ≪ R. By solving problem (3.15), one can
observe that the solution pεi does not depend on ε outside the ball Bεi(xi). Therefore,

we use the notation pi(x) := pεi (x), ∀x ∈ Ω \Bεi(xi). Additionally, qi is the solution to
the homogeneous boundary value problem

{
∆qi = 0 in Ω,

∂nqi + ikqi = −∂npi − ikpi on ∂Ω,
(3.16)

and h̃ε,mi solves the boundary value problem

{
∆h̃ε,mi = −(αi)

−1 (um0 − um0 (xi))χBεi
(xi) in Ω,

∂nh̃
ε,m
i + ikh̃ε,mi = 0 on ∂Ω.

(3.17)

From the decomposition (3.14) and the solution of the problem (3.15), we can introduce
the notation

hε,mi :=

{
um0 (xi)h

ε
i + h̃ε,mi in Bεi(xi),

um0 (xi)hi + h̃ε,mi in Ω \Bεi(xi),
(3.18)

where

hεi := pεi + qi and hi := pi + qi. (3.19)

Moreover, we also introduce an adjoint state vm as the solution of the following auxiliary
boundary value problem

{
∆vm = (um0 − zm)χΩo

in Ω,
∂nv

m − ikvm = 0 on ∂Ω.
(3.20)

Finally, the ansätz for the asymptotic expansion of uε can be defined in the following
form

umε (x) = um0 (x) + k2
N∑

i=1

αih
ε,m
i (x) + k4

N∑

i=1

N∑

j=1

αiαjh
ε,m
ij (x) + ũmε (x) , (3.21)

with hε,mi , hε,mij and ũεm the solutions to the boundary value problems (3.10), (3.11) and
(3.12), respectively.

4. Main theorem

In this section, we state our main result which consists in the closed form of the
topological derivatives that appear in the topological asymptotic expansion of the per-
turbed cost functional. The asymptotic development of the cost functional in terms of
the parameters related to N number of ball-shaped inclusions is completely described
in Section 5.1.

In order to state the main result, we first introduce the vector d ∈ R
N and the

matrices G, H ∈ R
N×N whose entries are defined as

di := 2k2
M∑

m=1

R{um0 (xi)vm(xi)}, (4.1)

Gii :=
k4

2π

M∑

m=1

R{um0 (xi)vm(xi)}, Gij = 0, if i 6= j (4.2)
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and

Hii := −1 + log π2

2π
k4

M∑

m=1

R{um0 (xi)vm(xi)} − 4k4
M∑

m=1

R{um0 (xi)vm(xi)qi(xi)}

− k2

π

M∑

m=1

R{∇um0 (xi) · ∇vm(xi)} + 2k4
M∑

m=1

∫

Ωo

um0 (xi)hi u
m
0 (xi)hi, (4.3)

Hij := −4k4
M∑

m=1

R{um0 (xj)hj(xi)vm(xi)}+ 2k4
M∑

m=1

∫

Ωo

R{um0 (xi)hi u
m
0 (xj)hj}, (4.4)

if i 6= j; respectively, for i, j = 1, · · · , N .
We are now in position to state the main result of this paper.

Theorem 1. Let qi, hi for i = 1, · · · , N and um0 , v
m for m = 1, · · · ,M be the functions

defined in (3.16), (3.19) and (3.4), (3.20), respectively. Additionally, let d, G and H
be the vector and the matrices whose entries are defined in (4.1), (4.2) and (4.3)-
(4.4), respectively. Then, for the vector α introduced in (3.9), we have the following

asymptotic expansion for the topologically perturbed cost functional ψ (χε (ξ)) := Jε (uε)
defined in (3.5):

ψ (χε (ξ)) = ψ (χ) − α · d(ξ) +G(ξ)α · diag(α⊗ logα) +
1

2
H(ξ)α · α+ o(|α|2) , (4.5)

where ψ (χ) := J0 (u0) is the topologically unperturbed cost functional from (3.3).

5. Proof of the main result

The proof of Theorem 1 is demonstrated in three steps. Firstly, we develop the
asymptotic expansion of the topologically perturbed cost functional. Next, we prove
a priori estimates related to the auxiliary states h̃ε,mi , hε,mi , hε,mij and ũmε for i, j =
1, · · · , N and m = 1, · · · ,M . Finally, in the last part of this section, the previously
obtained results are used to estimate the remainders appeared in the first step. These
estimates justify our topological asymptotic expansion (4.5).

5.1. Asymptotic development of the cost functional. Let us use (3.21) in (3.8),
to obtain

Jε (uε) − J0 (u0) = 2k2
M∑

m=1

N∑

i=1

αi

∫

Ωo

R{hε,mi (um0 − zm)}

+ 2k4
M∑

m=1

N∑

i=1

N∑

j=1

αiαj

∫

Ωo

R{hε,mij (um0 − zm)}

+ k4
M∑

m=1

N∑

i=1

N∑

j=1

αiαj

∫

Ωo

hε,mi hε,mj +

M∑

m=1

6∑

ℓ=1

Em
ℓ (ε) , (5.1)

where

Em
1 (ε) = 2

∫

Ωo

R{ũmε (um0 − zm)}, (5.2)

Em
2 (ε) = 2k6

N∑

i=1

N∑

j=1

N∑

l=1

αiαjαl

∫

Ωo

R{hε,mi hε,mjl }, (5.3)



8

Em
3 (ε) = 2k2

N∑

i=1

αi

∫

Ωo

R{hε,mi ũmε }, (5.4)

Em
4 (ε) = k8

N∑

i=1

N∑

j=1

N∑

l=1

N∑

p=1

αiαjαlαp

∫

Ωo

hε,mij hε,mlp , (5.5)

Em
5 (ε) = 2k4

N∑

i=1

N∑

j=1

αiαj

∫

Ωo

R{hε,mij ũmε } (5.6)

and

Em
6 (ε) =

∫

Ωo

ũmε ũ
m
ε . (5.7)

Now, let us introduce the weak formulation of the adjoint problem (3.20) to find
vm ∈ H1 (Ω) such that

∫

Ω

∇vm · ∇η − ik

∫

∂Ω

vmη = −
∫

Ωo

(um0 − zm) η, ∀η ∈ H1 (Ω) . (5.8)

The weak formulations of (3.10) and (3.11) are to find hε,mi ∈ H1 (Ω) such that
∫

Ω

∇hε,mi · ∇η + ik

∫

∂Ω

hε,mi η =
1

αi

∫

Bεi
(xi)

um0 η, ∀η ∈ H1 (Ω) (5.9)

and hε,mij ∈ H1 (Ω) such that
∫

Ω

∇hε,mij · ∇η + ik

∫

∂Ω

hε,mij η =
1

αi

∫

Bεi
(xi)

hε,mj η, ∀η ∈ H1 (Ω) , (5.10)

respectively.
By choosing η = hε,mi in (5.8) and η = vm in (5.9) as test functions and then

considering the real part of the respective resulting equalities, we obtain
∫

Ωo

R{hε,mi (um0 − zm)} = − 1

αi

∫

Bεi
(xi)

R{um0 vm}. (5.11)

Similarly, if we choose η = hε,mij in (5.8) and η = vm in (5.10) as test functions and
then we consider the real part of the respective resulting equalities, it gives

∫

Ωo

R{hε,mij (um0 − zm)} = − 1

αi

∫

Bεi
(xi)

R{hε,mj vm}. (5.12)

By using (5.11) and (5.12) in (5.1), we get

Jε (uε) − J0 (u0) = −2k2
M∑

m=1

N∑

i=1

∫

Bεi
(xi)

R{um0 vm}

− 2k4
M∑

m=1

N∑

i=1

N∑

j=1

αj

∫

Bεi
(xi)

R{hε,mj vm} + k4
M∑

m=1

N∑

i=1

N∑

j=1

αiαj

∫

Ωo

hε,mi hε,mj

+

M∑

m=1

6∑

ℓ=1

Em
ℓ (ε) . (5.13)
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Taking into account the notations of (3.18), we get

Jε (uε) − J0 (u0) = −2k2
M∑

m=1

N∑

i=1

∫

Bεi
(xi)

R{um0 vm}

− 2k4
M∑

m=1

N∑

i=1

N∑

j=1
j 6=i

αj

∫

Bεi
(xi)

R{um0 (xj) hjvm} − 2k4
M∑

m=1

N∑

i=1

αi

∫

Bεi
(xi)

R{um0 (xi) h
ε
iv

m}

+ k4
M∑

m=1

N∑

i=1

N∑

j=1

αiαj

∫

Ωo

um0 (xi) hi u
m
0 (xj) hj +

M∑

m=1

10∑

ℓ=1

Em
ℓ (ε) . (5.14)

Here, for m = 1, · · · ,M , the new remainders are defined as

Em
7 (ε) = −2k4

N∑

i=1

N∑

j=1
j 6=i

αj

∫

Bεi
(xi)

R{h̃ε,mj vm}, (5.15)

Em
8 (ε) = −2k4

N∑

i=1

αi

∫

Bεi
(xi)

R{h̃ε,mi vm}, (5.16)

Em
9 (ε) = 2k4

N∑

i=1

N∑

j=1

αiαj

∫

Ωo

R{um0 (xi) hih̃
ε,m
j }, (5.17)

Em
10 (ε) = k4

N∑

i=1

N∑

j=1

αiαj

∫

Ωo

h̃ε,mi h̃ε,mj . (5.18)

The result (5.14) can be simplified further by noting that, in the first and the second
terms of (5.14), we can consider the Taylor’s expansions of the functions um0 , vm and
hj around the point xi, with x̂ being an intermediate point between x and xi. Let us
denote the last nth term of the Taylor’s expansion of a function f(x) around xi by
Dnf(x̂)(x − xi)

n, n ≥ 1, n ∈ N. In addition, in the third term of (5.14), we can use
the explicit expression for the analytical part pεi of hεi in (3.19) inside the ball Bεi (xi).

Finally, after taking into account the above mentioned observations along with the
decomposition (3.14) with the fact that um0 and vm are harmonic outside Ωo, (5.14)
takes the form
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Jε (uε) − J0 (u0) =

− 2k2
M∑

m=1

N∑

i=1

αiR{um0 (xi) vm (xi)} +
k4

2π

M∑

m=1

N∑

i=1

α2
i logαiR{um0 (xi) vm (xi)}

− 1 + log π2

4π
k4

M∑

m=1

N∑

i=1

α2
iR{um0 (xi) vm (xi)} − 2k4

M∑

m=1

N∑

i=1

α2
iR{um0 (xi) vm (xi) qi (xi)}

− k2

2π

M∑

m=1

N∑

i=1

α2
iR{∇um0 (xi)·∇vm (xi)}−2k4

M∑

m=1

N∑

i=1

N∑

j=1
j 6=i

αiαjR{um0 (xj)hj (xi) vm (xi)}

+ k4
M∑

m=1

N∑

i=1

N∑

j=1

αiαj

∫

Ωo

um0 (xi) hi (x) um0 (xj) hj (x) +
M∑

m=1

20∑

ℓ=1

Em
ℓ (ε) . (5.19)

Now we have new remainders, namely,

Em
11 (ε) = −2k2

N∑

i=1

∫

Bεi
(xi)

R{[∇um0 (xi) · (x− xi)][D
3vm (x̂) (x− xi)

3]}, (5.20)

Em
12 (ε) = −2k2

N∑

i=1

∫

Bεi
(xi)

R{[D2um0 (xi) (x− xi)
2][D2vm (xi) (x− xi)

2]}, (5.21)

Em
13 (ε) = −2k2

N∑

i=1

∫

Bεi
(xi)

R{[∇vm (xi) · (x− xi)][D
3um0 (x̂) (x− xi)

3]}, (5.22)

Em
14 (ε) = −2k2

N∑

i=1

∫

Bεi
(xi)

R{[D3um0 (x̂) (x− xi)
3][D3vm (x̂) (x− xi)

3]}, (5.23)

Em
15 (ε) = −2k4

N∑

i=1

N∑

j=1
j 6=i

αj

∫

Bεi
(xi)

R{um0 (xj) vm (xi) D
2hj (x̂) (x− xi)

2}, (5.24)

Em
16 (ε) = −2k4

N∑

i=1

N∑

j=1
j 6=i

αj

∫

Bεi
(xi)

R{um0 (xj)hj (xi) D
2vm (x̂) (x− xi)

2}, (5.25)

Em
17 (ε) = −2k4

N∑

i=1

N∑

j=1
j 6=i

αj

∫

Bεi
(xi)

R{um0 (xj) [∇vm (xi) · (x− xi)][∇hj (xi) · (x− xi)]}, (5.26)

Em
18 (ε) = −2k4

N∑

i=1

N∑

j=1
j 6=i

αj

∫

Bεi
(xi)

R{um0 (xj) [D2vm (x̂) (x− xi)
2][D2hj (x̂) (x− xi)

2]}, (5.27)

Em
19 (ε) = −2k4

M∑

m=1

N∑

i=1

αi

∫

Bεi
(xi)

R{um0 (xi) (qivm − qi (xi) vm (xi))}, (5.28)
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Em
20 (ε) = −2k4

M∑

m=1

N∑

i=1

αi

∫

Bεi
(xi)

R{um0 (xi) p
ε
i (v

m − vm (xi))}, (5.29)

for m = 1, · · · ,M .

Remark 2. From the final expansion (5.19) we can obtain an estimate of the form

|Jε (uε) −J0 (u0) | ≤ Ck2|ε|2, (5.30)

which corroborates with the result obtained in [37] in the context of singular domain

perturbation. In addition, the topological derivatives in (5.19) are written in terms

of point-wise values of the solutions um0 , v
m, hj, qj and the gradients of um0 , v

m. As

suggested in [36], these values can be replaced by equivalent integrals over circles around

the centers xi, i = 1, · · · , N , allowing for overcoming regularity issues, if any.

5.2. Preliminary lemmas. In this section, we prove some estimates for the auxiliary
states and residual terms which will be useful to get bounds for the remainders in the
next section. We denote a positive constant independent of ε, i and m for i = 1, · · · , N
and m = 1, · · · ,M by C whose value changes according to the place it is used.

Lemma 3. For i = 1, · · · , N and m = 1, · · · ,M , let h̃ε,mi be the weak solution of the

problem (3.17). Then, there exists a C such that

‖h̃ε,mi ‖H1(Ω) ≤ Cεδii , ∀i = 1, · · · , N and m = 1, · · · ,M, (5.31)

for any 0 < δi < 1.

Proof. Let us choose h̃ε,mi as a test function in the variational formulation of the problem
(3.17) to get

∫

Ω

∇h̃ε,mi · ∇h̃ε,mi + ik

∫

∂Ω

h̃ε,mi h̃ε,mi =
1

αi

∫

Bεi
(xi)

(um0 − um0 (xi))h̃
ε,m
i . (5.32)

Using the Cauchy-Schwarz inequality and the interior elliptic regularity of the function
um0 , we get

∫

Ω

∇h̃ε,mi · ∇h̃ε,mi + k

∫

∂Ω

h̃ε,mi h̃ε,mi ≤ Cε−2
i ‖um0 − um0 (xi)‖L2(Bεi

)‖h̃ε,mi ‖L2(Bεi
)

≤ Cε−2
i ‖x− xi‖L2(Bεi

)‖h̃ε,mi ‖L2(Bεi
)

≤ C‖h̃ε,mi ‖L2(Bεi
), (5.33)

since αi ∼ ε2i . Hölder inequality and the Sobolev embedding theorem provide us the
inequality

‖h̃ε,mi ‖L2(Bεi
) ≤ Cε

1/q
i ‖h̃ε,mi ‖L2p(Bεi

) ≤ Cεδii ‖h̃ε,mi ‖H1(Ω), (5.34)

for any 1 < q < ∞ with 1/p + 1/q = 1. If we denote δi = 1/q, we have 0 < δi < 1.
Combining (5.33) and (5.34) with the coercivity of the Robin boundary value problem,
we get the desired estimate (5.31). �

Corollary 4. For any 0 < δi, δj < 1, there exists a C such that

‖h̃ε,mi ‖L2(Bεj
) ≤ Cεδii ε

δj
j , ∀i, j = 1, · · · , N and m = 1, · · · ,M, (5.35)

where h̃ε,mi is the weak solution of the problem (3.17).

Proof. We can prove the desired result using Hölder inequality, Sobolev embedding
theorem and Lemma 3. �
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Lemma 5. There exists a C such that

‖hε,mi ‖L2(Bεi
) ≤ C(εi| log εi| + ε2δii ), (5.36)

‖hε,mi ‖L2(Bεj
) ≤ C(εj + εδii ε

δj
j ), if i 6= j, (5.37)

for any 0 < δi, δj < 1 with i, j = 1, · · · , N and m = 1, · · · ,M where hε,mi is defined in

(3.14).

Proof. Using the definition (3.14) with the triangular inequality, we get

‖hε,mi ‖L2(Bεj
) ≤ C

(
‖pεi‖L2(Bεj

) + ‖qi‖L2(Bεj
) + ‖h̃ε,mi ‖L2(Bεj

)

)
. (5.38)

Since the equation satisfied by pεi can be solved explicitly, we can establish the following
estimates

‖pεi‖L2(Bεi
) ≤ Cεi| log εi| (5.39)

and

‖pεi‖L2(Bεj
) ≤ Cεj, for i 6= j. (5.40)

The interior elliptic regularity of function qi, Corollary 4 and the estimates (5.39)-(5.40)
give us

‖hε,mi ‖L2(Bεi
) ≤ C(εi| log εi| + εi + ε2δii ), (5.41)

‖hε,mi ‖L2(Bεj
) ≤ C(εj + εδii ε

δj
j ), if i 6= j, (5.42)

for any 0 < δi, δj < 1 with i, j = 1, · · · , N and m = 1, · · · ,M . Hence the fact. �

Lemma 6. For i = 1, · · · , N and m = 1, · · · ,M , let hε,mi be the weak solution of the

problem (3.10). Then, there exists a C such that

‖hε,mi ‖H1(Ω) ≤ C(
√

| log εi| + ε
δi−1/2
i ), (5.43)

for any 0 < δi < 1.

Proof. Let us take hε,mi as a test function in the weak formulation of (3.10) and use
Cauchy-Schwarz inequality with the interior elliptic regularity of the function um0 and
Lemma 5 to get

∫

Ω

∇hε,mi · ∇hε,mi + k

∫

∂Ω

hε,mi hε,mi ≤ Cε−2
i ‖um0 ‖L2(Bεi

)‖hε,mi ‖L2(Bεi
)

≤ Cε−1
i ‖hε,mi ‖L2(Bεi

)

≤ C(| log εi| + ε2δi−1
i ). (5.44)

Similar to the argument used in the proof of Lemma 3, we can use the coercivity of
the Robin boundary value problem and (5.44) to have the desired result. �

Lemma 7. For i, j = 1, · · · , N and m = 1, · · · ,M , let hε,mij be the weak solution of the

problem (3.11). Then, there exists a C such that

‖hε,mii ‖H1(Ω) ≤ Cεδi−1
i (| log εi| + ε2δi−1

i ), (5.45)

‖hε,mij ‖H1(Ω) ≤ Cεδi−1
i (1 + εδi−1

i ε
δj
j ), if i 6= j, (5.46)

for any 0 < δi, δj < 1.
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Proof. Let us take hε,mij as a test function in the weak formulation of (3.11) and use
the Cauchy-Schwarz inequality with Lemma 5 to have∫

Ω

∇hε,mii · ∇hε,mii + k

∫

∂Ω

hε,mii hε,mii ≤ Cε−1
i (| log εi| + ε2δi−1

i ) ‖hε,mii ‖L2(Bεi
), (5.47)

∫

Ω

∇hε,mij · ∇hε,mij + k

∫

∂Ω

hε,mij hε,mij ≤ Cε−1
i (1 + εδi−1

i ε
δj
j ) ‖hε,mij ‖L2(Bεi

), (5.48)

if i 6= j. Hölder inequality and the Sobolev embedding theorem can be used to derive

‖hε,mij ‖L2(Bεi
) ≤ Cε

1/q
i ‖hε,mij ‖L2p(Bεi

) ≤ Cεδii ‖hε,mij ‖H1(Ω), (5.49)

for any 1 < q <∞ with 1/p+ 1/q = 1. Like earlier, we denote δi = 1/q which implies
0 < δi < 1. Combining (5.47) and (5.49) with the coercivity of the Robin boundary
value problem, we obtain the desired estimate (5.45). Analogously, we can obtain the
estimate (5.46) from (5.48). �

Lemma 8. For m = 1, · · · ,M , let ũmε be the weak solution of the problem (3.12).
Then, there exists a C such that

‖ũmε ‖L2(Ωo) ≤ C
(
1 + Ck2ε

) N∑

i,j,l=1

ε2δll εδi+1
i (ε2i | log εi| + ε2δi+1

i + ε2j + εδi−1
i ε

δj+2
j ) (5.50)

for any 0 < δi, δj, δl < 1 with ε = max{ε2δii }, for i, j, l = 1, · · · , N .

Proof. Let us choose ũmε as a test function in the weak formulation of (3.12) for m =
1, · · · ,M to get

∫

Ω

∇ũmε · ∇ũmε − k2
N∑

l=1

∫

Bεl
(xl)

ũmε ũ
m
ε + ik

∫

∂Ω

ũmε ũ
m
ε =

∫

Ω

Φm
ε ũ

m
ε . (5.51)

Considering the real and imaginary part, we have
∫

Ω

∇ũmε · ∇ũmε − k2
N∑

l=1

∫

Bεl
(xl)

ũmε ũ
m
ε = R

{∫

Ω

Φm
ε ũ

m
ε

}
(5.52)

and

k

∫

∂Ω

ũmε ũ
m
ε = Im

{∫

Ω

Φm
ε ũ

m
ε

}
, (5.53)

where Im{ · } denotes the imaginary part of { · }. By summing (5.52) and (5.53), we
get
∫

Ω

∇ũmε ·∇ũmε +k

∫

∂Ω

ũmε ũ
m
ε = R

{∫

Ω

Φm
ε ũ

m
ε

}
+Im

{∫

Ω

Φm
ε ũ

m
ε

}
+k2

N∑

l=1

∫

Bεl
(xl)

ũmε ũ
m
ε ,

(5.54)
from which the following inequality holds

∫

Ω

∇ũmε · ∇ũmε + k

∫

∂Ω

ũmε ũ
m
ε ≤ C

∣∣∣∣
∫

Ω

Φm
ε ũ

m
ε

∣∣∣∣ + k2
N∑

l=1

∫

Bεl
(xl)

ũmε ũ
m
ε . (5.55)

Using the Cauchy-Schwarz inequality taking into account the definition of the function
Φm

ε given by (3.13), we obtain
∫

Ω

∇ũmε ·∇ũmε +k

∫

∂Ω

ũmε ũ
m
ε ≤ C

[
N∑

i,j,l=1

ε2i ε
2
j‖hε,mij ‖L2(Bεl

)‖ũmε ‖L2(Bεl
) + k2

N∑

l=1

‖ũmε ‖2L2(Bεl
)

]
.

(5.56)
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Hölder inequality and the Sobolev embedding theorem can be used to derive

‖ũmε ‖L2(Bεl
) ≤ Cε

1/q
l ‖ũmε ‖L2p(Bεl

) ≤ Cεδll ‖ũmε ‖H1(Ω), ∀l = 1, · · · , N, (5.57)

for any 1 < q < ∞ with 1/p + 1/q = 1, where δl = 1/q which implies 0 < δl < 1.
Combining (5.56) and (5.57), we have

∫

Ω

∇ũmε ·∇ũmε +k

∫

∂Ω

ũmε ũ
m
ε ≤ C

[
N∑

i,j,l=1

εδll ε
2
i ε

2
j‖hε,mij ‖L2(Bεl

)‖ũmε ‖H1(Ω) + k2
N∑

l=1

ε2δll ‖ũmε ‖2H1(Ω)

]
.

(5.58)

Defining ε := max{ε2δll }, for l = 1, · · · , N , the last inequality can be rewritten as

∫

Ω

∇ũmε ·∇ũmε +k

∫

∂Ω

ũmε ũ
m
ε ≤ C

[
N∑

i,j,l=1

εδll ε
2
i ε

2
j‖hε,mij ‖L2(Bεl

)‖ũmε ‖H1(Ω) + k2ε‖ũmε ‖2H1(Ω)

]
.

(5.59)
The coercivity of the Robin boundary value problem combined with the inequality
above gives us

‖ũmε ‖H1(Ω) ≤ C

(
1

1 − Ck2ε

) N∑

i,j,l=1

εδll ε
2
i ε

2
j‖hε,mij ‖L2(Bεl

). (5.60)

Taking into account that

1

1 − Ck2ε
= 1 + Ck2ε+O(ε2), (5.61)

we obtain, from (5.60), that

‖ũmε ‖H1(Ω) ≤ C
(
1 + Ck2ε

) N∑

i,j,l=1

εδll ε
2
i ε

2
j‖hε,mij ‖L2(Bεl

). (5.62)

Analogously to the estimate obtained in (5.57), we use Hölder inequality and the
Sobolev embedding theorem to derive

‖hε,mij ‖L2(Bεl
) ≤ Cε

1/q
l ‖hε,mij ‖L2p(Bεl

) ≤ Cεδll ‖hε,mij ‖H1(Ω), ∀l = 1, · · · , N, (5.63)

for any 1 < q < ∞ with 1/p + 1/q = 1, where δl = 1/q which implies 0 < δl < 1.
Combining (5.60) and (5.61) with Lemma 7, we get

‖ũmε ‖H1(Ω) ≤ C
(
1 + Ck2ε

) N∑

i,j,l=1

ε2δll εδi+1
i (ε2i | log εi| + ε2δi+1

i + ε2j + εδi−1
i ε

δj+2
j ). (5.64)

The desired estimate is obtained from (5.64), taking into account that ‖ũmε ‖L2(Ωo) ≤
‖ũmε ‖H1(Ω). �

5.3. A priori estimates of the remainders. We will successively prove that |Em
ℓ (ε) | =

o (|ε|4) for ℓ = 1, . . . , 20, where |ε| := ε1 + · · · + εN . For simplicity, we use the symbol
C to denote any constant independent of ε.



15

5.3.1. Estimates for the remainders Em
ℓ (ε), ℓ = 1, . . . , 10. We start by using the

Cauchy-Schwarz inequality and then we use the appropriate lemmas of Section 5.2.
Proceeding in this way, we obtain

|Em
1 (ε) | ≤ C‖ũmε ‖L2(Ωo)‖um0 − zm‖L2(Ωo) = o

(
|ε|4

)
, (5.65)

for any 1/2 < δ < 1, where we have used Lemma 8;

|Em
2 (ε) | ≤ C|ε|6

N∑

i=1

‖hε,mi ‖H1(Ω)

N∑

j=1

N∑

l=1

‖hε,mjl ‖H1(Ω) = o
(
|ε|4

)
, (5.66)

for any 1/8 < δ < 1, where we have used Lemmas 6 and 7;

|Em
3 (ε) | ≤ C|ε|2‖ũmε ‖L2(Ωo)

N∑

i=1

‖hε,mi ‖H1(Ω) = o
(
|ε|4

)
, (5.67)

for any 1/10 < δ < 1, where we have used Lemmas 6 and 8;

|Em
4 (ε) | ≤ C|ε|8

N∑

i=1

N∑

j=1

‖hε,mij ‖H1(Ω)

N∑

l=1

N∑

p=1

‖hε,mlp ‖H1(Ω) = o
(
|ε|4

)
, (5.68)

for any 0 < δ < 1, where we have used Lemma 7;

|Em
5 (ε) | ≤ C|ε|4‖ũmε ‖L2(Ωo)

N∑

i=1

N∑

j=1

‖hε,mij ‖H1(Ω) = o
(
|ε|4

)
, (5.69)

for any 0 < δ < 1, where we have used Lemmas 7 and 8;

|Em
6 (ε) | ≤ C‖ũmε ‖L2(Ωo)‖ũmε ‖L2(Ωo) = o

(
|ε|4

)
, (5.70)

for any 0 < δ < 1, where we have used Lemma 8;

|Em
7 (ε) | ≤ C|ε|3

N∑

i=1

N∑

j=1
j 6=i

‖h̃ε,mj ‖L2(Bεi
) = o

(
|ε|4

)
, (5.71)

for any 1/2 < δ < 1, where we have used Corollary 4 together with the interior elliptic
regularity of the function vm;

|Em
8 (ε) | ≤ C|ε|3

N∑

i=1

‖h̃ε,mi ‖L2(Bεi
) = o

(
|ε|4

)
, (5.72)

for any 1/2 < δ < 1, where we have use the same arguments as before;

|Em
9 (ε) | ≤ C|ε|4

N∑

j=1

‖h̃ε,mj ‖H1(Ω) = o
(
|ε|4

)
, (5.73)

for any 0 < δ < 1, where we have used Lemma 3;

|Em
10 (ε) | ≤ C|ε|4

N∑

i=1

‖h̃ε,mi ‖H1(Ω)

N∑

j=1

‖h̃ε,mj ‖H1(Ω) = o
(
|ε|4

)
, (5.74)

for any 0 < δ < 1, where we have used Lemma 3.
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5.3.2. Estimates for the remainders Em
ℓ (ε), ℓ = 11, . . . , 19. For the remainders of this

section, the estimates are obtained as follows: we firstly use the Cauchy-Schwarz in-
equality and then we consider the fact that ‖x− xi‖nL2(Bεi

) = O(|ε|n+1), where n ∈ Z
+.

The estimates are

|Em
11 (ε) | ≤ C

N∑

i=1

‖x− xi‖L2(Bεi
)‖x− xi‖3L2(Bεi

) = O(|ε|6); (5.75)

|Em
12 (ε) | ≤ C

N∑

i=1

‖x− xi‖2L2(Bεi
)‖x− xi‖2L2(Bεi

) = O(|ε|6); (5.76)

|Em
13 (ε) | ≤ C

N∑

i=1

‖x− xi‖L2(Bεi
)‖x− xi‖3L2(Bεi

) = O(|ε|6); (5.77)

|Em
14 (ε) | ≤ C

N∑

i=1

‖x− xi‖3L2(Bεi
)‖x− xi‖3L2(Bεi

) = O(|ε|8); (5.78)

|Em
15 (ε) | ≤ C|ε|2

N∑

i=1

‖x− xi‖2L2(Bεi
)‖1‖L2(Bεi

) = O(|ε|6); (5.79)

|Em
16 (ε) | ≤ C|ε|2

N∑

i=1

‖x− xi‖2L2(Bεi
)‖1‖L2(Bεi

) = O(|ε|6); (5.80)

|Em
17 (ε) | ≤ C|ε|2

N∑

i=1

‖x− xi‖L2(Bεi
)‖x− xi‖L2(Bεi

) = O(|ε|6); (5.81)

|Em
18 (ε) | ≤ C|ε|2

N∑

i=1

‖x− xi‖2L2(Bεi
)‖x− xi‖2L2(Bεi

) = O(|ε|8); (5.82)

and

|Em
19 (ε) | ≤ C|ε|2

N∑

i=1

‖qivm − qi(xi)v
m(xi)‖L2(Bεi

)‖1‖L2(Bεi
)

≤ C|ε|3
N∑

i=1

‖x− xi‖L2(Bεi
) = O(|ε|5), (5.83)

where we have used the interior elliptic regularity of the functions qi and vm.

5.3.3. Estimate for the remainder Em
20 (ε). Here, the Cauchy-Schwarz inequality and

the explicit expression of pεi in the ball Bεi (xi), for i = 1, · · · , N , are used to obtain
the estimate of the last remainder. Proceeding in this way, we get

|Em
20 (ε) | ≤ C|ε|2

N∑

i=1

‖pεi‖L2(Bεi
)‖vm − vm(xi)‖L2(Bεi

)

≤ C|ε|2
N∑

i=1

εi| log εi| ‖x− xi‖L2(Bεi
) = o(|ε|4). (5.84)
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6. Numerical results

In this section we describe the resulting algorithm based on the asymptotic expan-
sion (4.5) and some numerical examples are presented in order to demonstrate the
effectiveness of the method proposed in the earlier sections of this paper.

6.1. Non-iterative algorithm. By disregarding the terms of order o(|α|2) of the
expansion (4.5), we obtain the following truncated expansion δJ(α, ξ,N) whose ex-
pression is

δJ(α, ξ,N) := −α · d(ξ) +G(ξ)α · diag(α⊗ logα) +
1

2
H(ξ)α · α . (6.1)

Note that the expression on the right-hand side of (6.1) depends on the number of per-
turbations N , their sizes α and locations ξ. The derivative of the function δJ(α, ξ,N)
with respect to the variable α yields the first order optimality condition

〈DαδJ, β〉 = [(H(ξ) +G(ξ))α + 2G(ξ)diag(α⊗ logα) − d(ξ)] · β = 0, ∀β , (6.2)

which leads to the non-linear system of the form

(H(ξ) +G(ξ))α + 2G(ξ)diag(α⊗ logα) = d(ξ) (6.3)

with the entries of the vector d ∈ R
N and the matrices G, H ∈ R

N × R
N defined in

(4.1), (4.2) and (4.3)-(4.4), respectively. The solution of the system (6.3) is obtained
by using Newton’s method. In addition, observe that if the quantity α is solution of
the mentioned system then it becomes a function of the locations ξ, that is, α = α(ξ).

Let us now replace the solution of (6.3) into δJ(α, ξ,N) defined by (6.1). Therefore,
the pair of vectors (ξ⋆, α⋆) which minimizes (6.1) is given by

ξ⋆ := argmin
ξ∈X

{
δJ(α(ξ), ξ, N) = −1

2
(d(ξ) +G(ξ)α(ξ)) · α(ξ)

}
and α⋆ := α(ξ⋆),

(6.4)
where X is the set of admissible locations of the perturbations. Thus, the optimal
control (or minimizer) of (6.1) is a geometrical subdomain denoted by ω⋆ which is
completely characterized by the pair (ξ⋆, α⋆).

The optimal locations ξ⋆ can be trivially obtained from a combinatorial search over
all the n-points of the set X and the optimal sizes are given by the second expression
in (6.4). In summary, for a given number of perturbations N , our method is able to
find in one step their sizes α⋆ and their locations ξ⋆. On the other hand, according to
Machado et al. [24], since we are dealing with a combinatorial problem, such exhaus-
tive search becomes rapidly infeasible for n ≫ N as N increases. In other words, the
combinatorial search over the set X for multiple perturbations increases the computa-
tional cost significantly. Despite this last fact, our approach can be used either as a
standalone tool to compute the control for the problem of interest or as an initializa-
tion for iterative approaches such as the ones based on level-set methods. For further
applications of this algorithm we refer to [8, 9, 12, 31], for instance. In order to deal
with a high number N of perturbations we refer to [24] where a multi-grid strategy has
been proposed. The algorithm proposed in this section can be found in pseudo-code
format in [24].

6.2. Numerical examples. Let us apply the proposed algorithm for solving some
examples. We consider the geometric domain as a unitary disk centered at the origin,
namely Ω := B1(0), which is discretized using a three-node finite element scheme. The
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subdomain Ωo ⊂ Ω, where the misfit between the state and the target is measured, is
defined according to the examples given below.

For a given geometrical subdomain ω∗ ⊂ Ω \ Ωo and k ∈ R, the desired target
zm = (zm1 , z

m
2 ) is constructed to be the solution of the boundary value problem





∆zm1 + k2zm1 = 0 in ω∗,
∆zm2 = 0 in Ω \ ω∗,
zm1 = zm2 on ∂ω∗,

∂νz
m
1 = ∂νz

m
2 on ∂ω∗,

∂nz
m
2 + ikzm2 = gm on ∂Ω.

(6.5)

The control here, solution for the minimization problem (3.1), is given by the geometri-
cal subdomain ω which is related to the state um by the boundary value problem (3.2).
Since the cost functional measures the misfit between the state um and the target zm,
we desire to find the geometrical subdomain ω such that um = zm|Ωo

, for m = 1, . . . ,M ,
assuming that the parameter k is known.

Remark 9. The optimal control problem, we are dealing with, can be seen as an inverse

problem consisting in the reconstruction of the geometrical support ω∗ of the potential in

(6.5), from partial measurements of zm taken within Ωo. The resulting inverse problem

is closely related to the open problem mentioned in the book by Isakov [15, pp. 126,
Problem 4.2].

The auxiliary boundary value problems are solved using the Finite Element Method.
Special attention has to be given in the numerical solution of problem (6.5), since the
condition k2h < 1 must be fulfilled, where h is the size of the finite element mesh.
From these solutions the sensitivities can be numerically evaluated at any point of the
mesh which, in turn, is constructed according to each example. However, due to the
high complexity of the algorithm presented in Section 6.1, the sub-mesh X is defined
over the finite element mesh where the combinatorial search is performed in order to
find the optimal size α⋆ and the appropriate center ξ⋆ of the geometrical domain ω⋆.

The boundary ∂Ω is excited by using three functions as Robin data, namely, g1 = 1,
g2 = x and g3 = y. In the Figures 3-6, we represent ω∗ as well as ω⋆ by black, the
subdomain Ωo by gray and the remaining domain by white colors.

6.2.1. Example 1. In this example, we first analyze the optimal control (ξ⋆, α⋆) for
the minimization problem when different values of k are considered. A small set ω∗

located at x∗ = (0, 0), with radius ε∗ = 0.05, is considered to the construction of the
target zm. The information is collected in Ωo = B1(0) \ Bρ(0) with ρ = 0.7. In the
current setting, we take only one observation by taking into account the Robin data g1.
The control was performed by considering k = 2s with s ∈ {−4,−3,−2,−1, 0, 1, 2, 3}.
The geometrical domain Ω is discretized into 120320 elements comprising 60417 nodes.
The combinatorial search was conducted on the sub-mesh of 175 nodes within Ω \ Ωo.
We successfully find the exact location of the center x∗ of the set ω∗ for all values of
k. We plot the size of the obtained control ε⋆ on vertical axis against the value of
k on horizontal axis in Figure 2. We observe that the exact radius ε∗ of the control
was accurately predicted by ε⋆ with k ∈ (0, 1], while for k > 1 the radius ε∗ was
overestimated. This phenomenon occurs because the parameter k present in topological
derivatives and the coefficient α are of similar order in equation (4.5). Hence, we take
k = 1 for the forthcoming examples. See Remark 2.



19

Figure 2. Example 1: The approximated solution ε⋆ for different values
of k.

Since the value of k is fixed (k = 1), we are now interested in investigating the ro-
bustness of the method with respect to noisy data. For this purpose, the measure-
ment zm is corrupted with white Gaussian noise. Therefore, zm(x) is replaced by
zmµ (x) = zm(x)(1 + µτ(x)), where τ(x) is a function assuming random values in the
interval (0, 1) and µ corresponds to the noise level. Figure 3 illustrates the optimal
control ω⋆ for different levels of noise. We successfully find the exact location of the
center x∗ of the set ω∗ for all noise levels considered. However, the higher is the level of
the additive noise, the more overestimated is the size of the obtained optimal control.
This statement is confirmed by the quantitative results presented in Table 1.

(a) µ = 0.5% (b) µ = 1%

(c) µ = 2% (d) µ = 5%

Figure 3. Example 1: Results ω⋆.
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Table 1. Example 1: Size of the optimal control ω⋆ for different values
of µ and M = 1

µ = 0.5% µ = 1% µ = 2% µ = 5%

ε⋆ 0.0574 0.0636 0.0745 0.1

6.2.2. Example 2. Let the subdomain Ωo be a small circular region centred at (0.2, 0.2)
with radius ρ = 0.3 in this example. The target zm is constructed by considering a
geometrical subdomain ω∗ consisting of two circular regions, ω∗

1 and ω∗
2, with radius

ε∗1 = ε∗2 = 0.1 and the centers located at x∗1 = (0.4,−0.5) and x∗2 = (−0.5, 0.3),
respectively. The domain Ω, subdomain Ωo and the sets ω∗

1 and ω∗
2 are illustrated in

Figure 4. The finite element mesh for the geometrical domain Ω comprises 115712
elements and 58145 nodes. A sub-mesh of 193 points represents the combinatorial
search region inside the subdomain Ω\Ωo. Like Example 1, we again consider only one
observation with the help of the Robin data g1. By comparing Figures 4 and 5(a), one
can observe that the control ω⋆ is not satisfactory, since we certainly have um 6= zm|Ωo

.
This happens because of the lack of information. Therefore, we improve the number of
measurements by considering all the Robin data g1, g2 and g3 simultaneously. Finally,
in this case, we obtain the exact centers x⋆1 = x∗1 and x⋆2 = x∗2. The associated optimal
radii were ε⋆1 = 0.10177 and ε⋆2 = 0.10168, which are approximately equal to the true
values. Since ω⋆ ≈ ω∗, we have um ≈ zm|Ωo

and then ω⋆ is the optimal control to the
problem (6.1). We demonstrate the numerical result in the Figure 5(b). We conclude by
noticing the need of more than one observation in the case of insufficient information.
This motivates us to collect data through three boundary excitations g1, g2 and g3 in
the forthcoming example where the sets ω∗

1 and ω∗
2 considered to the construction of

the target zm have different sizes.

Figure 4. Example 2: ω∗ = ω∗
1 ∪ ω∗

2.
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(a) M = 1 (b) M = 3

Figure 5. Example 2: Results ω⋆ = ω⋆
1 ∪ ω⋆

2.

6.2.3. Example 3. Two circular regions ω∗
1 and ω∗

2 with centers located at x∗1 = (−0.4,−0.5)
and x∗2 = (0.7, 0) with radii ε∗1 = 0.1 and ε∗2 = 0.05, respectively, are considered to the
construction of the target zm. The subdomain Ωo is the same of the previous exam-
ple. The domain Ω, subdomain Ωo and the sets ω∗

1 and ω∗
2 are illustrated in Figure

6(a). The geometrical domain Ω is discretized into 142592 elements comprising 71593
nodes. Here, we consider the sub-mesh for the combinatorial search inside the subdo-
main Ω \Ωo which consists of 245 distributed nodes. Figure 6(b) shows us the optimal
control ω⋆. In fact, we obtained the exact centers x⋆1 = x∗1 and x⋆2 = x∗2; and the radii
ε⋆1 = 0.10313 and ε⋆2 = 0.04796 which are approximately equal to the true values ε∗1
and ε∗2, respectively. This example shows us that our proposed algorithm computes the
optimal control efficiently in the case of a target constructed from geometrical domains
ω∗
1 and ω∗

2 of different sizes.

(a) ω∗ = ω∗

1
∪ ω∗

2
(b) Result ω⋆ = ω⋆

1
∪ ω⋆

2

Figure 6. Example 3
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