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Abstract. Auxetic materials and microstructures are attracting the attention of a
growing community of researchers due to their unusual properties and high mechani-
cal performances, in both the static and dynamic regimes. The topological derivative is
used in this contribution to determine microstructures having the most negative in-plane
mean Poisson’s ratio. The auxetic nature of the computed microstructures is demon-
strated by both numerical and real experiments performed over samples fabricated by
additive printing. The effective mechanical properties of these auxetic structures have
been computed in the framework of couple stress elasticity, allowing to identify both
in-plane and out-of plane effective properties. The calculated classical moduli are found
independent of the size of the window of analysis and are consequently effective coeffi-
cients. In contrast to this, the calculated in-plane bending moduli show a clear depen-
dency on the auxetic cell size, whereas the out-of-plane bending moduli appear to be
size-independent.

1. Introduction

The emergence of additive manufacturing in combination with topology optimisation
methods has led to the emergence of a new paradigm in the design of materials, coined
material by design, in which the organization of matter plays a central role. The design
of architectured and network materials requires to master and control microstructural
effects, and consequently the inherent scale effects. It is well known that a great variety
of non-standard behaviours can be obtained due to the network topology.

Materials with negative Poisson’s ratio (abbreviated NPR in the sequel) were termed
as Auxetic Materials (meaning anti-rubber) by Evans and Alderson; they have the prop-
erty to expand in the lateral direction when stretched in the longitudinal direction. NPR
materials have demonstrated rather unusual mechanical properties and to show excep-
tional performances, including an enhanced shear and indentation resistance, high fracture
toughness, high energy dissipation ability and excellent dynamic crushing performance.
NPR materials find potential applications in many fields, such as aerospace, protection
against impact, or the biomedical sector. The effective properties of such auxetic materials
are controlled by varying the topology of the repetitive unit cells within the structure.

The superiority of such auxetic materials [27] is related to their heterogeneity [21], so
that tailoring or optimizing the microstructure is a central issue in many research works,
in order to fulfill certain macroscopic or mesoscopic performances [26, 25]. The design
of auxetic structures has attracted many researchers. Conceptual designs of composite
materials with Poisson’s ratio close to -1 are presented in [12]. Design techniques using
numerical approaches such as topology optimization started with the work of Sigmund
[19], wherein a topology optimization framework for designing both 2D and 3D auxetic
truss-based structures is presented. Different techniques are also adopted for auxetic
structure design optimization. In [16], the authors study the topology design for auxetic
structures using bi-directional evolutionary structural optimization. In [26], the authors
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develop a new level-set based topology optimization method for the computational design
of multimaterial metamaterials with exotic thermomechanical properties. In [10] a topol-
ogy optimization methodology of framed structures to design a planar periodic structure
that exhibits negative Poisson’s ratio has been proposed. Using both mathematical and
numerical methods, isotropic design optimization for auxetic material is studied recently
by [5]. Recent work by [24] introduced smoothed petal-shaped auxetic structures, where
the hinges are replaced by smoothed connections. The optimized designs are shown to
achieve low negative Poisson’s ratios, while the difficulties of manufacturing the hinges
are avoided.

Starting historically from the SIMP method (Solid Isotropic Material Penalization) in
the late eighties [2] (see also [3]), different topology optimization methods have been de-
veloped in the literature, including the bubble method [6], the bidirectional structural
optimization technique (BESO) presented in [9], and the topological derivative exposed
in [7] and [8]. In [22] and [25] a new topological shape optimization method for system-
atic computational design of a type of mechanical metamaterials with negative Poisson’s
ratios has been developed, which integrates the numerical homogenization approach into
a powerful parametric level set method. More recently, in [22] a level set based method
for topology optimization of both single and multiple-material Negative Poisson’s Ratio
metamaterials has been proposed. In the literature, nonlinear materials with prescribed
stress-strain response or prescribed Poisson’s ratio are designed in [23], relying on the
SIMP method to interpolate material properties between full material properties or void.
The authors analyze the optimization of the material design under finite deformation. The
employed topology optimization method allows a systematic virtual design of materials
subjected to tensile tests, by minimizing the errors between the actual and prescribed
mechanical properties in a given axial strain range. In [4], a family of 3D auxetic cubic
lattices is proposed, which presents a unidirectional Poisson’s ratio close to the stability
limit of -1; the obtained value of Poisson’s ratio is direction dependent and function of the
ratio of the tensile to bending stiffness of the truss elements. A specific structure has been
tailored to give an isotropic behavior with Poisson’s ratio close of even less than -1 along
certain directions. Elastic metamaterials with Poisson’s ratio close to the lower bound of
-1 for isotropic materials have been computed based on a parametric level set method in
[23]. An optimization framework for 3D porous solids is presented in [21], leading to the
computation of microstructures having optimal effective elasticity properties, especially
minimum Poisson’s ratio. As outlined in [21], the topological derivative based approach
does not involve a regularization parameter, which makes it more attractive compared to
the SIMP method.

The objective of the present work is to determine numerically microstructures present-
ing an optimal auxetic behavior in a planar situation, relying on the topological derivative
as a mathematical optimization tool. Thereby, we shall combine homogenization with
topology optimization to design optimally designed metamaterials showing an auxetic
behavior. The proposed methodology is systematic and goes well beyond the heuristic
most often employed in the literature to design such microstructures. Both numerical
experiments designed to evaluate an effective constitutive couple stress model and real
experiments done on samples of the identified auxetic microstructures shall be performed.

The novelty of the manuscript consists accordingly in the design, testing and numer-
ical evaluation of the effective moduli of auxetic periodic microstructures took from [1].
We shall design and manufacture 3D periodically microporous structures (with planar
periodicity) based on optimal unit cells using BLENDER, CATIA and ABAQUS soft-
ware environments and additive printing technology, and next identify experimentally
and numerically the effective constitutive coefficients of an enriched constitutive model
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accounting for the local microrotations and strain gradients that develop within the tested
samples.

The generalized continua that may emerge when substituting the computed initially
discrete network by an effective continuum provide a description of the kinematics and
constitutive response showing microstructural and scale effects which are richer in com-
parison to Cauchy classical elasticity; these microstructural effects are potentially a source
of novel unexpected effects like Poisson’s ratio outside the isotropic limits of conventional
structures (like negative Poisson’s ratio), which make them suitable for a wide range of
potential applications in which these unusual behaviours will have a great benefit. There
are many discussions on the use of generalized continua to model auxetic microstructures
in the literature [11, 13, 15, 18, 25, 27].

Although such generalized continuum media have been widely used to regularize ill-
posed boundary value problems and reduce the computational cost inherent to large
repetitive structures, they have never been employed to produce new microstructures.

Novel aspects presented in the present paper are the following:

• Optimal orthotropic auxetic microstructures are computed based on the topolog-
ical derivative;
• A couple stress model is identified for the designed auxetic microstructures;
• The effective Poisson’s ratio predicted by topology optimization is validated by

numerical simulations and real measurements.

The evaluation of the topological derivative of the homogenized elasticity tensor is done
in section 2, leading to the closed form expression of the topological derivative of the
average in-plane Poisson’s ratio. Tensile experiments for the auxetic samples fabricated
by additive printing are performed in section 3 to evaluate their relevant mechanical
properties, especially Poisson’s ratio. In section 4, we compute the homogenized linear
response of the optimal auxetic network material, relying on an analysis performed over
a repetitive unit cell at a mesoscopic level, intermediate between the microscopic and
continuum scales. We conclude in section 5 with a summary of the main achievements of
the present work and a few perspectives.

2. Computation of auxetic microstructures based on the topological
derivative concept

In order to set the stage, we synthetically recall the notion of topological derivative
which is the topology optimization method employed in the present work to determine
optimal auxetic microstructures. The topological derivative represents the first term of
the asymptotic expansion of a given shape functional with respect to the small parame-
ter which measures the size of singular domain perturbations, such as holes, inclusions,
source-terms and cracks. This relatively new concept was introduced in the fundamental
paper [20] and has been successfully applied to many relevant fields such as shape and
topology optimization, inverse problems, imaging processing, multiscale material design
and mechanical modeling including damage and fracture evolution phenomena. See, for
instance, the book by Novotny & Soko lowski, 2013 [14]. In the context of multiscale
material design, the topological derivative obtained in [8] represents the sensitivity of the
homogenized elasticity tensor to the nucleation of a circular hole within the Representa-
tive Volume Element (RVE) whose domain is denoted by Dµ, with boundary ∂Dµ. More
precisely, the homogenized elasticity tensor C, whose components written in terms of the
orthonormal basis {ei}, for i = 1, 2, of the Euclidean space, can be defined as

(C)ijkl =
1

Vµ

∫
Ωµ

σµ(uklµ ) · εµ(uijµ ) , (2.1)
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where Ωµ ⊂ Dµ and Vµ denotes the total volume of the RVE, namely Vµ = |Dµ|. See Fig.
1. The canonical microscopic displacement field uklµ (y), with y ∈ Ωµ, may be decomposed
into a sum

uklµ (y) := u+ (ek ⊗ el)y + ũklµ (y) (2.2)

of a constant (rigid) RVE displacement coinciding with the macroscopic displacement
field u, a linear field (ek⊗ el)y, and a canonical microscopic displacement fluctuation field
ũklµ (y) solution of [17]

ũklµ ∈ Vµ :

∫
Ωµ

σµ(ũklµ ) · εµ(η) +

∫
Ωµ

Cµ(ek ⊗s el) · εµ(η) = 0 ∀η ∈ Vµ , (2.3)

where ⊗s denotes the symmetric tensor product between vectors and η is the test function
living in Vµ. The virtual strain tensor εµ(η) is given by the symmetric part of the gradient
of η. We assume that the microscopic stress tensor field σµ(ũklµ ) satisfies

σµ(ũklµ ) = Cµεµ(ũklµ ) , (2.4)

where Cµ is the microscopic constitutive tensor, which in terms of the Lamé’s coefficients
µ and λ is given by

Cµ = 2µI + λI⊗ I , (2.5)

with I and I used to denote the second and fourth order identity tensors, respectively.
Moreover, the space Vµ of kinematically admissible displacement fluctuations is defined
as follows

Vµ :=
{
ϕ ∈ Uµ : ϕ(y+) = ϕ(y−) ∀ (y+, y−) ∈ P

}
, (2.6)

where P is the set of pairs of points, defined by a one-to-one periodicity correspondence,
lying on opposing sides of the RVE boundary ∂Dµ. Finally, the minimally constrained
space of kinematically admissible displacements Uµ is defined as

Uµ :=

{
ϕ ∈ H1(Ωµ) :

∫
Ωµ

ϕ = 0,

∫
∂Dµ

ϕ⊗s n = 0

}
. (2.7)

where n is the outward unit normal to the boundary ∂Dµ and ⊗s denotes the symmetric
tensor product between vectors.

(a) (b)

Figure 1. Hold-all RVE domain Dµ (a) and RVE domain Ωµ (b).

Since each component of the homogenized elasticity tensor is defined by the energy
based functional (2.1), the associated topological derivative with respect to the nucleation
of a circular hole at an arbitrary point of Ωµ is given by [8]

Tµ(y) = − 1

Vµ
Pµσµ(uijµ (y)) · εµ(uklµ (y)) , ∀y ∈ Ωµ , (2.8)

with the polarization tensor Pµ defined as

Pµ =
2µ+ λ

3µ+ λ

(
I +

µ− λ
4(µ+ λ)

I⊗ I

)
. (2.9)
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From the result given by (2.8), we can recognize a fourth order tensor field over Ωµ that
represents the sensitivity of the macroscopic elasticity tensor C to topological microstruc-
tural changes resulting from the insertion of a circular hole within the RVE. Therefore,
the topological derivative of the homogenized elasticity tensor reads

Dµ(y) = − 1

Vµ
Pµσµ(uijµ (y)) · σµ(uklµ (y))ei ⊗ ej ⊗ ek ⊗ el , (2.10)

where the fields uijµ come out from the solutions to (2.3) for the unperturbed RVE domain
Ωµ together with the additive decomposition (2.2).

Expression (2.10) allows the exact topological derivative of any differentiable function
of C be calculated through the direct application of the conventional rules of differential
calculus. That is, any such a function Ψ(C) has exact topological derivative of the form

Tµ = 〈DΨ(C),Dµ〉 , (2.11)

with the brackets 〈·, ·〉 denoting the appropriate product between the derivative of Ψ with
respect to C and the topological derivative Dµ of C. In particular, let ϕ1, ϕ2 ∈ R2 × R2

be any pair of second order tensors. Then, for a function Ψ(C) of the form

Ψ(C) :=
C−1ϕ1 · ϕ2

C−1ϕ1 · ϕ1

+
C−1ϕ2 · ϕ1

C−1ϕ2 · ϕ2

, (2.12)

the corresponding topological derivative is given by

Tµ = − (C−1DµC−1)ϕ1 · [(C−1ϕ1 · ϕ1)ϕ2 − (C−1ϕ1 · ϕ2)ϕ1]

(C−1ϕ1 · ϕ1)2

− (C−1DµC−1)ϕ2 · [(C−1ϕ2 · ϕ2)ϕ1 − (C−1ϕ2 · ϕ1)ϕ2]

(C−1ϕ2 · ϕ2)2
, (2.13)

where C−1 is used here to denote the compliance tensor S.
The topology optimization problem we are dealing with consists in minimizing Ψ(C)

with respect to Ωµ ⊂ Dµ. Mathematically, it can be written as follows

Minimize
Ωµ⊂Dµ

Ψ(C) , (2.14)

where Ψ(C) is defined in (2.12), whose dependence with respect to the design domain Ωµ

comes out from the definition of the homogenized elasticity tensor C given by (2.1).
Let us now consider one RVE into two spatial dimensions given by a unit square Dµ =

(0, 1) × (0, 1). The Young’s modulus and the Poisson’s ratio of the bulk material are
respectively set as Eµ = 1725MPa and νµ = 0.3. The initial guess is given by a porous
microcell Ωµ as shown in Fig. 2. By setting ϕ1 = e1⊗ e1 and ϕ2 = −e2⊗ e2 in (2.12), the
resulting function Ψ(C) represents twice the arithmetic mean of both in-plane Poisson’s
ratio, expressing as

Ψ(C) := −(C−1)1122

(C−1)1111

− (C−1)2211

(C−1)2222

. (2.15)

The optimal value of the average in-plane Poisson ratio is -0.82, and the obtained op-
timized auxetic microstructure due to [1] is presented in Fig. 3(a), while the resulting
periodic auxetic structure is shown in Fig. 3(b); due to the adopted definition of Pois-
son’s ratio, the obtained microstructure is orthotropic. For more details on the numerical
implementation see [1], where the adopted topology design algorithm is presented. We
remark however that the result presented in Fig. 3 is just a local minimizer. Indeed, there
is a lack of sufficient optimality conditions for such topology optimization problems, thus
no global minimizer can usually be obtained.
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Figure 2. Initial guess of the porous microstructure Ωµ.

(a) (b)

Figure 3. Optimized auxetic microstructure (a) and periodic auxetic
structure (b) obtained from [1].

3. Measurements of the mechanical response of the auxetic samples

A 3D structure based on the unit cell having the microstructure computed by the
topological derivative exposed in previous section has been generated using the software
BLENDER, starting from the quadrilateral shapes in the plane, and which have further
been extruded to get a 3D geometry. The generated images have next been exported
to CATIA to produce an initial geometry, which has finally been exported to ABAQUS.
Based on this geometry, samples made of Acrylonitrile Butadiene Styrene (ABS in short
cut) have been produced by additive printing, as shown on Fig. 4.

The fabricated structures are designed as plates with 216 mm length (this defines the
x direction), 120 width, and a uniform thickness of 4 mm (the thickness of each newly
added layer is 0.3 mm). The Young’s modulus of the bulk material was measured by
tensile testing of homogeneous plates as Eµ = 1725 MPa, and Poisson’s ratio measured
as νµ = 0.3. The samples have been tested in uniaxial tension along the x direction
with a MTS2/M10kN standard tensile machine, at a constant velocity of 5 mm/min, up
to fracture. Uniaxial measurements of the auxetic samples lead to a measured apparent
Young’s modulus in the tensile x direction equal to Ex = 30 MPa, a value much lower
than the bulk material tensile modulus, reflecting the impact of the microporosity. We
performed overall 5 measurements for different specimen, and obtained a high correlation
coefficient of 0.95. Since this is indicative of a small dispersion of measurements, we can
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Figure 4. Auxetic samples produced by additive printing.

judge that average value of the measured effective tensile modulus is representative of the
measured specimen properties.

The important difference between the responses of the homogeneous plate and the
auxetic plate can be explained by the inherent microstructure, which can be accounted
in a global manner by the reduced section of material supporting the load within the
sample. The normalized corrected section S(x)/S0 (by the section of the homogeneous
plate) evolution versus the axial variable x shown in Fig. 3(b) is pictured on Fig. 5. The
corrected section is shown to exhibit strong variations by a factor close to 10, as shown
in Fig. 5, with the minimum ratio S(x)/S0 = 0.1.

Figure 5. Normalized section occupied by the material within the aux-
etic sample versus coordinate x. The scalar function S(x) is the corrected
section, while S0 is the section of the homogeneous plate without microstruc-
ture.

Normalizing the force-displacement measured response for the homogeneous plate by
the fraction of section occupied by the auxetic structure (adopting as the corrected sec-
tion the minimum value recorded on Fig. 5) leads to a response close to that of the
homogeneous auxetic sample, as shown on Fig. 6.



8

Figure 6. Comparison of the tensile response of the homogeneous plate
with the normalized response of the auxetic sample.

We have continuously recorded the change of configuration of the tested samples, al-
lowing to evaluate the evolution of Poisson’s ratio for a central window of analysis versus
displacement on Fig. 7; the effective in-plane Poisson’s ratio νxy is computed as (minus)
the ratio of logarithmic strains measured in the transverse to axial directions.

Figure 7. Evolution of the transverse strain versus axial strain and mea-
surement of Poisson’s ratio νxy.

Poisson’s ratio is obtained as the slope of the interpolating line, in the range [−0.82,−0.77],
accounting for the obtained variability of measurements. The high correlation coefficient
(0.91) of the obtained linear interpolation indicates a nearly constant Poisson’s value in
the considered small strains interval of the testing (below 2.5 %). The next section is
devoted to the numerical evaluation of the effective in-plane and bending moduli of the
previously tested samples.
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4. Computation of the classical and couple stress moduli

Classical continuum mechanics may not be the most appropriate macroscopic descrip-
tion of such porous auxetic structures because higher order effects - absent in classical
theories - are required to afford the transition from the discrete to an equivalent contin-
uum description. Performing a FE analysis of the displacement field at the microstructural
level for a unit cell under traction (along the vertical direction) reveals the existence of
pronounced rotations of internal domains, as illustrated on Fig. 8.

Figure 8. Kinematics of the unit cell subjected to a tensile loading along
the vertical direction. The local kinematics is indicated by arrows.

These local rotations are associated to micro moments that do not balance each other;
their existence motivates adopting a couple-stress theory at the mesoscopic level. Fig. 8
shows the deformed shape of the unit cell superposed onto the initial undeformed shape
shown with light colors. The local rotation field shown on Fig. 8 is further responsible
for the auxetic effects, since the two domains symmetrical with respect to the diagonal
rotate in opposite directions, so that the unit cell expands in the horizontal unloaded
direction while loaded in the vertical direction. This numerical evidence of pronounced
rotation effects at the microscopic scale motivates the use of a couple-stress model. In
the micropolar continuum, the deformation is described by the displacement vector with
components ui and an independent rotation vector, whereas in the couple stress theory,
the rotation vector is not independent of the displacement vector: the rotation vector with
components φx, φy, φz in a general 3D situation is related to the displacement gradients
as:
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φx =
1

2

(
∂uz
∂y
− ∂uy

∂z

)
(4.1)

φy =
1

2

(
∂ux
∂z
− ∂uz

∂x

)
(4.2)

φz =
1

2

(
∂uy
∂x
− ∂ux

∂y

)
(4.3)

The kinematic variables to be taken into account in the framework of linear couple-
stress theory of elasticity are the strain εij and the gradient of the microrotation, the
tensor with components χij; they are defined, respectively, as

εij =
1

2
(ui,j + uj,i) = εji and χij =

1

2
(φi,j + φj,i) = χji, i, j = x, y, z. (4.4)

The strain tensor εij is symmetrical, with components depending upon the displace-
ments gradients as:

εxx =
∂ux
∂x

; εyy =
∂uy
∂y

; εzz =
∂uz
∂z

;

εxy = εyx =
1

2

(
∂uy
∂x

+
∂ux
∂y

)
;

εxz = εzx =
1

2

(
∂uz
∂x

+
∂ux
∂z

)
;

εyz = εzy =
1

2

(
∂uz
∂y

+
∂uy
∂z

)
.

The couple-stress curvature tensor χij is an asymmetric tensor; its independent com-
ponents are explicitly written from the gradient of the microrotation vector as

χxx =
1

2

(
∂2uz
∂x∂y

− ∂2uy
∂z∂x

)
;χxy =

1

2

(
∂2ux
∂z∂x

− ∂2uz
∂x2

)
;χxz =

1

2

(
∂2uy
∂x2

− ∂2ux
∂x∂y

)
;

χyy =
1

2

(
∂2ux
∂y∂z

− ∂2uz
∂x∂y

)
;χyx =

1

2

(
∂2uz
∂y2

− ∂2uy
∂y∂z

)
;χyz =

1

2

(
∂2uy
∂x∂y

− ∂2ux
∂y2

)
;

χzz =
1

2

(
∂2uy
∂x∂z

− ∂2ux
∂y∂z

)
;χzx =

1

2

(
∂2uz
∂y∂z

− ∂2uy
∂z2

)
;χzy =

1

2

(
∂2ux
∂z2

− ∂2uz
∂x∂z

)
.

For solids endowed with central symmetry, the constitutive equations of the effective
couple stress continua can be expressed in a compact form as follows:

{σ} = [C]{ε} and {m} = [D]{χ}, (4.5)

with the stiffness matrix [C] relating stresses to strains and the curvature tensor [D]
relating couple stresses to curvatures.

The stress and couple-stress tensors for the effective 3D couple stress continuum can
be defined in vector format as

{σ} = {σxx, σyy, σzz, σxy, σyz, σxz}>, (4.6)

{m} = {mxx,myy,mzz,mxy,myx,myz,mzy,mxz,mzx}>, (4.7)

wherein the three components mxx,myy,mzz are the torsion couple-stresses and the six
components mxy,myx,myz,mzy,mxz,mzx are the bending couple stresses.

The main purpose of this section is to determine the effective constitutive coefficients of
the couple-stress continuum from the response of the numerically tested auxetic samples.
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Figure 9. Four different 3D periodic model representation of auxetic struc-
tures with (a) a single unit cell denoted 1× 1, (b) 2× 2 unit cells, (c) 4× 4
unit cells, and (d) 8× 8 unit cells.

Note that although the procedures of computing all couple stress components (twisting
and bending) are exposed, we would presently focus on the bending curvatures behav-
iors of both in-plane and out-of-plane situations for the underlying auxetic structures.
We design different boundary conditions for the determination of the components of the
rigidity constants over the domain Ωµ in Fig. 9. In each case, we force the RVE in a 3D
context to bear the designed specific deformations εij and curvatures χij, and compute
numerically (by finite elements) the total elastic strain energy URVE stored in the RVE
under the corresponding boundary conditions. The adopted numerical procedure relies on
equating the total elastic strain energy stored in the RVE to the energy of an equivalent
homogeneous couple-stress continuum, thus it holds the following equality:

URVE = Ucouple−stress =
Vµ
2

(εijCijklεkl + χijDijklχkl) , (4.8)

where Vµ = |Ωµ| is the volume of the RVE. The left-hand side in (4.8) is the total
elastic strain energy stored in the RVE of the auxetic, which is evaluated thanks to FE
computations performed over the representative unit cell. The right-hand side is the
energy of the effective couple-stress continuum, which is a function of the volume-average
strains εij and curvatures χij of the unit cell, and involving the effective couple-stress
moduli, which are to be identified. We aim at investigating the effect of scale size, therefore
we choose different sample sizes involving the repetition of the smallest unit cell to form
different unit cell sizes as shown in Fig. 9. Since our objective is to study scale effects,
then we are currently exploring how the elastic constants relying on couple stress continua
within the elementary cell change when we increase the size of the repeated unit cell.
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The developed numerical homogenization consists in determining the overall effective
couple-stress elastic coefficients of the auxetic structure samples, relying on a finite ele-
ment discretization of the RVE geometry. This is performed using mixed traction and
displacement boundary conditions involving applied displacements and tractions. The
applied loadings include uniaxial extension tests, biaxial extension tests, in-plane and
out-of plane shear tests to evaluate stiffness matrix components [C] and uniaxial twist
(or torsion) tests, biaxial twist tests, in plane and out-of plane curvature (or bending
moment) tests to evaluate the stiffness matrix components [D]. For each loading case,
we compute by the FE method within the ABAQUS environment the total strain energy
stored in the RVE and then equate this energy with the energy of an equivalent homo-
geneous couple-stress continuum, as previously explained. Since the auxetic samples are
made from ABS, the isotropic bulk mechanical properties of the auxetic unit cells wall
in the FE simulations are taken as Eµ = 1725 MPa and Poisson’s ratio νµ = 0.3. The
methodology for computing the effective moduli involves the application of elementary
unit strains and curvatures onto the RVEs. One has to be aware that this procedure is
only for the purpose of computing moduli, but it has nothing to do with real tests, which
should be limited to a strain or curvature range for which the auxetic structures remain
elastic. Following the sketch in Fig. 10, to evaluate the components of the stress stiffness
tensor [C], we conduct nine elementary tests, described in the sequel.

(1) Uniaxial extension for C11: we apply a uniform strain εxx = 1 and shear stress
σxy = σyz = σxz = 0 on the unit cell’s boundary, the corresponding boundary
conditions are then written as

ux = x, σxyn1 = 0, σxzn1 = 0 on n1-face,

uy = 0, σxyn2 = 0, σyzn2 = 0 on n2-face,

uz = 0, σxzn3 = 0, σyzn3 = 0 on n3-face,

which leads to identify C11 = 2URVE/Vµ.
(2) Uniaxial extension for C22: we apply a uniform strain εyy = 1 and shear stress

σxy = σyz = σxz = 0 on the unit cell’s boundary, the corresponding boundary
conditions are then written as

ux = 0, σxyn1 = 0, σxzn1 = 0 on n1-face,

uy = y, σxyn2 = 0, σyzn2 = 0 on n2-face,

uz = 0, σxzn3 = 0, σyzn3 = 0 on n3-face,

which gives C22 = 2URVE/Vµ.
(3) Uniaxial extension for C33: we apply a uniform strain εzz = 1 and shear stress

σxy = σyz = σxz = 0 on the unit cell’s boundary, the corresponding boundary
conditions are then written as

ux = 0, σxyn1 = 0, σxzn1 = 0 on n1-face,

uy = 0, σxyn2 = 0, σyzn2 = 0 on n2-face,

uz = z, σxzn3 = 0, σyzn3 = 0 on n3-face,

This gives C33 = 2URVE/Vµ.
(4) Biaxial extension for C12: we apply a uniform strain εxx = εyy = 1 and shear

stress σxy = σyz = σxz = 0 on the unit cell’s boundary, the corresponding mixed
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boundary conditions are then written as

ux = x, σxyn1 = 0, σxzn1 = 0 on n1-face,

uy = y, σxyn2 = 0, σyzn2 = 0 on n2-face,

uz = 0, σxzn3 = 0, σyzn3 = 0 on n3-face,

which yields C12 = (2URVE/Vµ − C11 − C22) /2.
(5) Biaxial extension for C23: we apply a uniform strain εyy = εzz = 1 and shear stress

σxy = σyz = σxz = 0 on the unit cell’s boundary, the corresponding boundary
conditions are then written as

ux = 0, σxyn1 = 0, σxzn1 = 0 on n1-face,

uy = y, σxyn2 = 0, σyzn2 = 0 on n2-face,

uz = z, σxzn3 = 0, σyzn3 = 0 on n3-face,

which yields C23 = (2URVE/Vµ − C22 − C33) /2.
(6) Biaxial extension for C13: we apply a uniform strain εxx = εzz = 1 and shear stress

σxy = σyz = σxz = 0 on the unit cell’s boundary, the corresponding boundary
conditions are then written as

ux = x, σxyn1 = 0, σxzn1 = 0 on n1-face,

uy = 0, σxyn2 = 0, σyzn2 = 0 on n2-face,

uz = z, σxzn3 = 0, σyzn3 = 0 on n3-face,

which yields C13 = (2URVE/Vµ − C11 − C33) /2.
(7) Shear deformation for C44: we apply a uniform shear strain εxy = 1 and normal

stress σxx = σyy = σzz = 0 on the unit cell’s boundary, the corresponding boundary
conditions are then written as

ux = y/2, σxyn1 = 0, σxzn1 = 0 on n1-face,

uy = x/2, σxyn2 = 0, σyzn2 = 0 on n2-face,

uz = 0, σxzn3 = 0, σyzn3 = 0 on n3-face,

which yields C44 = 2URVE/Vµ.
(8) Shear deformation for C55: we apply a uniform shear strain εyz = 1 and nor-

mal stress σxx = σyy = σzz = 0 on the unit cell’s boundary; the corresponding
boundary conditions are then written as

ux = 0, σxyn1 = 0, σxzn1 = 0 on n1-face,

uy = z/2, σxyn2 = 0, σyzn2 = 0 on n2-face,

uz = y/2, σxzn3 = 0, σyzn3 = 0 on n3-face,

which yields C55 = 2URVE/Vµ.
(9) Shear deformation for C66: we apply a uniform shear strain εxz = 1 and normal

stress σxx = σyy = σzz = 0 on the unit cell’s boundary, the corresponding boundary
conditions are then written as

ux = z/2, σxyn1 = 0, σxzn1 = 0 on n1-face,

uy = 0, σxyn2 = 0, σyzn2 = 0 on n2-face,

uz = y/2, σxzn3 = 0, σyzn3 = 0 on n3-face,

which yields C66 = 2URVE/Vµ.
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Figure 10. The oriented faces n1-face, n2-face and n3-face.

The classical and non-classical bending coefficients are derived computationally using
the FE method. The auxetic unit cells have been meshed by a combination of linear hex-
ahedral elements C3D8R and linear wedge elements C3D6 used in ABAQUS environment
with an approximate global size of 0.2 mm. The computed Cij coefficients are given in
Table 1. One can conclude from the results that mixed displacement and traction bound-
ary conditions give effective elastic coefficients Cij which are relatively independent of
unit cell sizes.

Table 1. Calculated moduli Cij in MPa for the simulated auxetic samples.

Cell sizes
Uniaxial tensile tests Biaxial tensile tests Shear tests
C11 C22 C33 C12 C23 C13 C44 C55 C66

1× 1 93.9 92.4 821.8 -78.3 4.97 5.45 3.21 76.7 78.0
2× 2 94.7 93.0 820.0 -79.3 4.98 5.47 3.25 76.4 77.8
4× 4 95.5 93.9 820.0 -80.0 4.98 5.58 3.27 76.5 78.0
8× 8 102.6 100.6 818.6 -85.0 5.40 6.00 3.32 77.8 79.0

We observe that the structure is as expected nearly transversely isotropic, since the
two in-plane tensile moduli are very close to each other. From the results, it appears that
the rigidity coefficients C11 and C33 are different: this is expected, since C11 is computed
in x-direction, whereas C33 is evaluated in the z-direction which is stiffer. This difference
in the rigidity values also results from the kinematics applied on the boundaries of the
representative volume element to evaluate these two moduli, which are quite different, as
previously shown. The constitutive law relating the equivalent stress components to the
strain components, viz {σ} = [C]{ε}, can then be written as

σxx
σyy
σzz
σxy
σyz
σxz


=


C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66





εxx
εyy
εzz
εxy
εyz
εxz


(4.9)

Therefore, one derives the effective traction moduli from the effective compliance matrix
[S] = [C]−1, as

Ex = [1/S11] , Ey = [1/S22] , Ez = [1/S33]

Furthermore, the effective in-plane Poisson’s ratios are computed from the relations

νxy = −S21Ex νyx = −S12Ey,
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and the out-of-plane Poisson’s ratios are similarly computed from the relations

νyz = −S32Ey, νzy = −S23Ez, νxz = −S31Ex, νzx = −S13Ez.

The effective shear moduli are additionally computed respectively as

Gxy = [1/S44] , Gyz = [1/S55] , Gxz = [1/S66] .

The above mentioned Young’s and shear moduli as well as Poisson’s ratio are calculated
from the coefficients Cij in Table 1 for different auxetic unit cells and the results are
displayed in Tables 2 and 3. The computed in plane Poisson’s ratio (-0.84) is very close
to the measured ones (-0.8, representing the average value over the different tests) and to
the optimal Poisson’a ratio (-0.82) obtained from topology optimization, the differences
originating from the uncertainty in the measured elastic properties of the bulk material,
and the imperfect representation of the sample geometry. The effective relative density of
the samples has been measured by image analysis (counting the relative amount of black
and white pixels, respectively corresponding to the presence and absence of material) as
0.4; in comparison, the computed effective relative density is 0.41, so it is very close to
the measured one.

Table 2. Calculated engineering constants in MPa for the simulated aux-
etic samples.

Cell sizes Ex Ey Ez Gxy Gyz Gxz

1× 1 27.5 27.0 818 3.21 76.7 78.0
2× 2 27.0 26.5 816 3.25 76.4 77.8
4× 4 27.2 26.8 816 3.27 76.5 78.0
8× 8 30.6 30.0 815 3.32 77.8 79.0

Table 3. Calculated in-plane and out-of-plane Poisson’s ratio for the sim-
ulated auxetic samples.

Cell sizes νxy νyx νyz νzy νxz νzx
1× 1 -0.850 -0.834 0.0115 0.350 0.0117 0.349
2× 2 -0.854 -0.838 0.0116 0.359 0.0119 0.359
4× 4 -0.851 -0.839 0.0117 0.359 0.0119 0.359
8× 8 -0.844 -0.827 0.0126 0.343 0.0128 0.343

The displacement distributions within 2×2 unit cells of auxetic structure due to uniaxial
strain loadings εxx = 1, εzz = 1, biaxial strain loadings

εxx = εyy = 1, εxx = εzz = 1

and shear loading εxy = 1 are exposed in Figs. 11-15.
The displacement distributions within 8×8 unit cells of auxetic structure due to uniaxial

strain loading εxx = 1, biaxial strain loading εxx = εyy = 1, and shear loading εxy = 1,
are additionally exposed in Figs. 16-18.

We extract from the effective compliance matrix an effective Poisson’s ratio equal to
-0.84 (we consider the value obtained for the largest tested RVE size). An additional set
of twelve tests is actually required to identify the higher order moduli associated with the
couple-stress theory; these tests are described in the sequel.
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Figure 11. Displacement distributions within 2×2 unit cells of the auxetic
structure due to uniaxial extension along x (εxx = 1).

Figure 12. Displacement distributions within 2×2 unit cells of the auxetic
structure due to uniaxial extension along z (εzz = 1).

(1) Uniaxial torsional rotation for D11: we apply a uniform torsional rotation χxx = 1
and specify zero shear tractions on the unit cell’s boundary, thus the corresponding
boundary conditions are written as

ux = 0, uy = −xz, uz = xy on n1-face,

which gives D11 = 2URVE/Vµ.
(2) Uniaxial torsional rotation for D22: we apply a uniform torsional rotation χyy = 1

and specify zero shear tractions on the unit cell’s boundary, thus the corresponding
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Figure 13. Displacement distributions within 2×2 unit cells of the auxetic
structure due to biaxial extension εxx = εyy = 1.

Figure 14. Displacement distributions within 2×2 unit cells of the auxetic
structure due to biaxial extension εxx = εzz = 1.

boundary conditions are written as

ux = yz, uy = 0, uz = −xy on n2-face,

which gives D22 = 2URVE/Vµ.

(3) Uniaxial torsional rotation for D33: we apply a uniform torsional rotation χzz = 1
and specify zero shear tractions on the unit cell’s boundary, thus the corresponding
boundary conditions are written as

ux = −yz, uy = xz, uz = 0 on n3-face,
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Figure 15. Displacement distributions within 2×2 unit cells of the auxetic
structure due to shear loading εxy = 1.

Figure 16. Displacement distributions within 8 × 8 unit cells of auxetic
structure due to uniaxial extension along x (εxx = 1).

which gives D33 = 2URVE/Vµ.

(4) Biaxial torsional rotation for D12: we apply a uniform torsional rotation χxx =
χyy = 1 and specify zero shear tractions on the unit cell’s boundary, thus the
corresponding boundary conditions are written as

uy = −xz, uz = xy on n1-face,

ux = yz, uz = −xy on n2-face,
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Figure 17. Displacement distributions within 8 × 8 unit cells of auxetic
structure due to biaxial extension εxx = εyy = 1.

Figure 18. Displacement distributions within 8 × 8 unit cells of auxetic
structure due to shear strain εxy = 1.

which gives D12 = (2URVE/Vµ −D11 −D22) /2.
(5) Biaxial torsional rotation for D23: when we apply a uniform torsional rotation

χyy = χzz = 1 on the unit cell’s boundary, the corresponding boundary conditions
are then written as

ux = yz, uz = −xy on n2-face,

ux = −yz, uy = xz on n3-face,
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which yields D23 = (2URVE/Vµ −D22 −D33) /2.
(6) Biaxial torsional rotation for D13: when we apply a uniform torsional rotation

χxx = χzz = 1 on the unit cell’s boundary, the corresponding boundary conditions
are then written as

uy = −xz, uz = xy on n1-face,

ux = −yz, uy = xz on n3-face,

which yields D13 = (2URVE/Vµ −D11 −D33) /2.
(7) Uniform curvature for D44: when we apply a uniform curvature χxy = 1 on the

unit cell’s boundary, the corresponding boundary conditions are then given as

ux = xz on n1-face, uy = 0 on n2-face, uz = −x2/2 on n3-face,

which yields D44 = 2URVE/Vµ − C11z
2.

(8) Uniform curvature for D55: when we apply a uniform curvature χyx = 1 on the
unit cell’s boundary, the corresponding boundary conditions are then given as

ux = 0 on n1-face, uy = −yz on n2-face, uz = y2/2 on n3-face,

which yields D55 = 2URVE/Vµ − C22z
2.

(9) Uniform curvature for D66: when we apply a uniform curvature χyz = 1 on the
unit cell’s boundary, the corresponding boundary conditions are then given as

ux = −y2/2 on n1-face, uy = xy on n2-face, uz = 0 on n3-face,

which gives D66 = 2URVE/Vµ − C22x
2.

(10) Uniform curvature for D77: when we apply a uniform curvature χzy = 1 on the
unit cell’s boundary, the corresponding boundary conditions are then given as

ux = −xy on n1-face, uy = x2/2 on n2-face, uz = 0 on n3-face,

which yields D77 = 2URVE/Vµ − C33x
2.

(11) Uniform curvature for D88: when we apply a uniform bending curvature χxz = 1 on
the unit cell’s boundary, the corresponding boundary conditions are then written
as

ux = −xy on n1-face, uy = x2/2 on n2-face, uz = 0 on n3-face,

which yields D88 = 2URVE/Vµ − C11y
2.

(12) Uniform curvature for D99: When we apply a uniform curvature χzx = 1 on the
unit cell’s boundary, the corresponding boundary conditions are then given as

ux = 0 on n1-face, uy = −z2/2 on n2-face, uz = yz on n2-face,

which yields D99 = 2URVE/Vµ − C33y
2.

However we presently focus on the interesting bending curvatures behaviors for those
auxetic lattices.

The derived couple-stress moduli do in fact not depend on the choice the origin of
the coordinate system with respect to the centroid of the tested sample. The additional
terms involving the coordinate vanish when the origin of the coordinate axes is selected
as the centroid of the tested sample. The calculated bending curvature components of
stiffness tensor Dij of the auxetic samples with different sizes are reported in Table 4.
The dependency of the in-plane bending moduli D66 and D88 on the size of the auxetic
structures is very clear, due to the fact that these moduli increase with the auxetic cell
size. On the other hand the out-of-plane bending moduli D44 and D55 appear to be
independent of the cell size, thus they can be considerdd as intrinsic to the microstructure
itself. Observe from previous two Tables that the microstructure is symmetrical but in
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fact not isotropic, since the classical tensile moduli in x and y directions are slightly
different; similarly, the bending moduli D66 and D88 also differ as a consequence of the
lack of isotropy.

Table 4. Calculated bending curvature moduli Dij in N for the simulated
auxetic samples.

Cells size Bending curvature moduli
D44 D55 D66 D88

1× 1 268 266 419 448
2× 2 294 292 2333 2392
4× 4 269 267 7804 7997
8× 8 271 269 35308 35986

The iso-displacements within 2×2 and 8×8 unit cells of auxetic samples due to out-of-
plane bending curvatures χxy = 1 and in-plane bending curvatures χyz = 1 and χxz = 1
are respectively pictured in Figs. 19, 20 and 21.

Figure 19. Displacement distributions over 2 × 2 unit cells of auxetic
structure due to out-of-plane bending curvature χxy = 1.

Figure 20. Displacement distributions over 2 × 2 unit cells of auxetic
structure due to in-plane bending curvature χyz = 1.
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Figure 21. Displacement distributions over 2 × 2 unit cells of auxetic
structure due to in-plane bending curvature χxz = 1.

The same computations and plots are repeated for the set of 8 × 8 unit cells of the
auxetic structure, as illustrated in Figs. 22, 23 and 24.

Figure 22. Displacement distributions over 8 × 8 unit cells of auxetic
structure due to out-of-plane bending curvature χxy = 1.

Figure 23. Displacement distributions over 8 × 8 unit cells of auxetic
structure due to in-plane bending curvature χyz = 1.



23

Figure 24. Displacement distributions over 8 × 8 unit cells of auxetic
structure due to in-plane bending curvature χxz = 1.

5. Conclusions

The present work advances a topology optimization based method to conceive optimal
auxetic structures presenting an optimal average in-plane Poisson’s ratio, relying on the
topological derivative. Due to the adopted function to be minimized, the obtained opti-
mal microstructure shows an orthotropic but non isotropic behavior. The auxetic nature
of the computed microstructures has been demonstrated by both numerical and real ex-
periments; the numerical evoluation of the deformation of the microstructure highlights
pronounced rotation effects which motivate the choice of a couple stress effective contin-
uum at the macroscopic level. The effective mechanical properties of auxetic structures
have been computed in the framework of couple stress elasticity, in order to evaluate both
their in-plane properties and their bending moduli. The classical moduli are found to
be independent of the size of the selected window of analysis, whereas the nonclassical
(bending) moduli are size-dependent. Measurements performed over samples produced
by additive printing chosen large enough to be representative provide in-plane Poisson’s
ratio close to that computed by numerical experiments and obtained by topology opti-
mization. The concepts and methods advanced in this contributions have the advantage to
be systematic and are thus potentially of great interest to design microstructures showing
satisfying other requirements and unusual mechanical properties.
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elasticity tensor to topological microstructural changes. Journal of the Mechanics and Physics of
Solids, 57(3):555–570, 2009.



24

[9] X. Huang, A. Radman, and Y.M. Xie. Topological design of microstructures of cellular materials for
maximum bulk or shear modulus. Computational Materials Science, 50:1861–1870, 2011.

[10] R. Kureta and Y. Kanno. A mixed integer programming approach to designing periodic frame
structures with negative poissons ratio. Engineering Optimization, 15(3):773–800, 2014.

[11] R. Lakes. Deformation mechanisms in negative poissons ratio materials: structural aspects. Journal
of Materials Science, 26(9):2287–2292, 1991.

[12] G.W. Milton. Composite materials with poissons ratios close to -1. Journal of the Mechanics and
Physics of Solids, 40(5):1105–1137, 1992.

[13] M. Mir, M.N. Ali, J. Sami, and U. Ansari. Review of mechanics and applications of auxetic structures.
Advances in Materials Science and Engineering, pages 1–18, 2014.

[14] A. A. Novotny and J. Soko lowski. Topological derivatives in shape optimization. Interaction of Me-
chanics and Mathematics. Springer-Verlag, Berlin, Heidelberg, 2013.

[15] D. Overaker, A. Cuitino, and N. Langrana. Elastoplastic micromechanical modeling of two-
dimensional irregular convex and nonconvex (re-entrant) hexagonal foams. Journal of Applied Me-
chanics, 65(3):748–757, 1998.

[16] A. Radman, X. Huang X, and Y. Xie. Topological optimization for the design of microstructures of
isotropic cellular materials. Engineering Optimization, 45(11):1331–1348, 2013.

[17] E. Sanchez-Palencia. Non-homogeneous media and vibration theory, volume 127 of Lecture Notes in
Physics. Springer-Verlag, Berlin, 1980.

[18] A. Sapdoni and M. Ruzzene. Elasto-static micropolar behavior of a chiral auxetic lattice. Journal of
the Mechanics and Physics of Solids, 60(1):156–171, 2012.

[19] O. Sigmund. Materials with prescribed constitutive parameters: an inverse homogenization problem.
International Journal of Solids and Structures, 31(17):2313–2329, 1994.
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