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Abstract. This paper deals with an inverse potential problem posed in two dimen-
sional space whose forward problem is governed by a modified Helmholtz equation. The
inverse problem consists in the reconstruction of a set of anomalies embedded into a
geometrical domain from partial measurements of the associated potential. Since the in-
verse problem, we are dealing with, is written in the form of an ill-posed boundary value
problem, the idea is to rewrite it as a topology optimization problem. In particular, a
shape functional is defined to measure the misfit of the solution obtained from the model
and the data taken from the partial measurements. This shape functional is minimized
with respect to a set of ball-shaped anomalies by using the concept of topological deriva-
tives. It means that the shape functional is expanded asymptotically and then truncated
up to the desired order term. The resulting expression is trivially minimized with re-
spect to the parameters under consideration which leads to a non-iterative second order
reconstruction algorithm. As a result, the reconstruction process becomes very robust
with respect to noisy data and independent of any initial guess. Finally, some numeri-
cal experiments are presented to show the effectiveness of the proposed reconstruction
algorithm.

1. Introduction

In this paper, we deal with an inverse potential problem in R
2 whose corresponding

forward problem is governed by a modified Helmholtz equation. The inverse problem
under consideration is about the reconstruction of a set of anomalies embedded into a
geometrical domain with the help of partial measurements of the associated potential.
This problem is motivated by applications in aerospace industry, geophysics and medical
science where scientists try to detect anomalies embedded in a medium by measurements
obtained from incident acoustic, elastic and electromagnetic waves [16]. In addition, an-
other motivation for the current investigation comes from the open problem mentioned
in [23, pp. 126, Problem 4.2], which has applications in semiconductor theory. According
to Kovtunenko and Kunisch [30], from the mathematical point of view, object identifica-
tion is an inverse problem which belongs to the field of shape and topology optimization,
system identification, and parameter estimation. A number of researchers have been stud-
ied this kind of inverse problem governed by different partial differential equations. See,
for instance, the works related to the Laplace [3, 11, 15, 22], Poisson [9, 10, 17, 24, 31],
Schrödinger [5], Helmholtz [12, 13, 18, 29, 30] as well as modified Helmholtz [26] equations.

Iterative or non-iterative approaches can be used for solving inverse problems consisting
in the reconstruction of an unknown number of geometric objects from given measure-
ments. Among a variety of methods, we want to draw the attention of the readers on
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the level-set method and the methods based on asymptotic expansions. The level-set
method can be seen as a first-order iterative approach where a geometric test object is
reconstructed iteratively following a steepest descent direction of an objective function
[8, 17, 24, 25]. With regard to the methods based on asymptotic analysis, we focus on
those devised from the concept of topological derivatives [38]. According to [36], the use
of the first-order topological derivative also leads to first-order iterative methods but in
contrast to the level-set methods, they are free of initial guess. The simultaneous use of
the first and second-order topological derivatives allows to devise a class of non-iterative
methods whose solutions are also independent on the initial guess [7, 19]. It motivates us
to solve the problem, we are dealing with, using higher-order topological derivatives.

In particular, let Ω ⊂ R
2 be an open and bounded domain with smooth boundary ∂Ω.

We consider a subset Ωo of Ω where measurements of a scalar field of interest are taken.
As illustrated in Figure 1(a), there may be an unknown number (denoted by N∗ ∈ Z

+)
of isolated anomalies ω∗

i within the domain Ω, i.e., there is a set ω∗ = ∪N∗

i=1ω
∗
i , with open

connected components ω∗
i which satisfy ω∗

i ∩ω∗
j = ∅ for i 6= j and ω∗

i ∩∂Ω = ∅, ω∗
i ∩Ωo = ∅

for each i, j ∈ {1, · · · , N∗}.

(a) (b)

Figure 1. (a) Domain Ω with a set of anomalies ω∗ and (b) Domain Ω
without anomalies.

We consider the domain Ω as a bounded region representing a medium which contains
a different substance within a subdomain ω∗. In this set up, the inverse problem consists
in finding kω∗ such that the potential z satisfies the following boundary value problem

{
−∆z + kω∗z = 0 in Ω,

z = g on ∂Ω,
(1.1)

where the given Dirichlet data g is smooth and the parameter kω∗ is defined as

kω∗ =

{
0 in Ω \ ω∗,
k in ω∗,

(1.2)

with k ∈ R
+.

Now, for an initial guess kω of kω∗ , we consider the potential u to be the solution to
the boundary value problem

{
−∆u+ kωu = 0 in Ω,

u = g on ∂Ω,
(1.3)
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where

kω =

{
0 in Ω \ ω,
k in ω.

(1.4)

The quantity kω∗ is unknown and hence z but we assume that z can be measured in
Ωo. We would like to find kω∗ with the help of measurements of z taken in Ωo. If we want
to look for an appropriate kω∗ , we wish u to agree with z in Ωo i.e. we want u = z|Ωo

.
The inverse problem (1.1) does not have a unique solution when we want to determine

both, the topology of ω∗ and the value k. Let us observe this phenomenon through a
simple example. We consider a circular anomaly of radius ρ < 1 and material property
k centred into a unit disk in R

2. For simplicity, we take g = 1 in the problem (1.3). By
introducing the polar coordinate system (r, θ), one can observe that the solution does not
depend on θ. In fact, its explicit formula in terms of modified Bessel functions of the first
kind I0 and I1 is given by

u(r) =

{
λ1I0(

√
kr) if 0 ≤ r ≤ ρ,

λ2 ln r + 1 if ρ ≤ r ≤ 1.
(1.5)

The constants λ1 and λ2 are such that

λ1 =
1

I0(
√
kρ) − I1(

√
kρ)

√
kρ ln ρ

and λ2 =
I1(

√
kρ)

√
kρ

I0(
√
kρ) − I1(

√
kρ)

√
kρ ln ρ

. (1.6)

Notice that, for two different pairs (ρ1, k1) and (ρ2, k2), one can produce a unique λ2
using the second formula in (1.6). For example, if we take (ρ1, k1) = (0.5, 1.0) and
(ρ2, k2) = (0.25, 4.38), we get the unique λ2 = 0.112 for both of the cases. In Figure 2, we
plot the profiles of both solutions u1(r) and u2(r) from (1.5) corresponding to the pairs
(ρ1, k1) and (ρ2, k2), respectively.

Figure 2. Counter-example of lack of uniqueness when both, the topology
of ω∗ and the material property k, are simultaneously unknown.
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From the above example, it is clear that the inverse problem (1.1) cannot be solved
uniquely when both, the topology of ω∗ and the material property k, are unknown simul-
taneously and the measurements are taken in Ωo, away from the hidden anomalies. Hence,
in this article, we assume that the material property of the medium k is known and we
reconstruct the support of the anomalies ω∗ with the help of the measurements of z taken
in Ωo. It is also well known that the inverse problem of finding ω∗ in (1.1) for a given k
still leads to an ill-posed boundary value problem [23]. Therefore, the idea is to rewrite it
as a topology optimization problem. For this purpose, we consider a weaker formulation
of the inverse problem (1.1) which consists in solving the topology optimization problem

Minimize
ω⊂Ω

Jω

(
u1, · · · , uM

)
=

M∑

m=1

∫

Ωo

(um − zm)2 , (1.7)

where M ∈ Z
+ is the number of observations, zm denotes the measurement of the potential

in Ωo and um denotes the solution of the boundary value problem (1.3) corresponding to
the Dirichlet data gm for m = 1, · · · ,M . Notice that, the minimizer of the topology
optimization problem (1.7) produces the best approximation to ω∗, solution of the inverse
problem (1.1), in an appropriate sense. Since we are interested in approximating ω∗ by
a set of ball-shaped anomalies, the unknown parameters involved in the minimization
problem (1.7) are given by the number of anomalies and their corresponding centers and
radii.

In particular, problem (1.7) is minimized with respect to a set of ball-shaped anom-
alies by using the concept of topological derivatives. It means that the shape functional
Jω

(
u1, · · · , uM

)
is expanded asymptotically and then truncated up to the desired order

term. The resulting expression is trivially minimized with respect to the parameters un-
der consideration which leads to a non-iterative second order reconstruction algorithm.
As a result, the reconstruction process becomes very robust with respect to noisy data
and independent of any initial guess.

The paper is organized as follows. In Section 2, the mathematical formulation of the
inverse potential problem is described as a topological optimization problem. In Section
3, some notations and auxiliary problems are introduced. The topological asymptotic
expansion of the shape functional is presented in Section 4, which is the main result of
this article. The a priori estimates of the remainders, obtained in Section 4, are presented
in Section 5. The novel non-iterative reconstruction algorithm is devised in Section 6
and some numerical experiments showing the effectiveness of the proposed reconstruction
algorithm are presented.

2. Topology Optimization Setting

The inverse problem (1.1) has been written in the form of a topology optimization
problem (1.7). It is well known that a quite general approach for dealing with such class
of problems is based on the concept of topological derivative, which consists in expanding
the shape functional Jω

(
u1, · · · , uM

)
with respect to the parameters depend upon a set

of small inclusions. Since the topological derivative does not depend on the initial guess
of the unknown topology ω∗, we start with the unperturbed domain by setting ω = ∅, see
Figure 1(b). More precisely, we consider
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J0

(
u10, · · · , uM0

)
=

M∑

m=1

∫

Ωo

(um0 − zm)2 , (2.1)

where um0 be the solution of the unperturbed boundary value problem
{

−∆um0 = 0 in Ω,
um0 = gm on ∂Ω.

(2.2)

In this article, we are considering the topology optimization problem (1.7) for the ball-
shaped anomalies and hence we define the topologically perturbed counter-part of (2.2)
by introducing N ∈ Z

+ number of small circular inclusions Bεi (xi) with center at xi ∈ Ω
and radius εi for i = 1, · · · , N . The set of inclusions can be denoted as

Bε (ξ) =

N⋃

i=1

Bεi (xi) , (2.3)

where ξ = (x1, . . . , xN) and ε = (ε1, . . . , εN). Moreover, we assume that Bε ∩ ∂Ω = ∅,

Bε ∩ Ωo = ∅ and Bεi (xi) ∩ Bεj (xj) = ∅ for each i 6= j and i, j ∈ {1, · · · , N}. The shape
functional associated with the topologically perturbed domain is written as

Jε

(
u1ε, · · · , uMε

)
=

M∑

m=1

∫

Ωo

(umε − zm)2 (2.4)

with umε be the solution of the perturbed boundary value problem
{

−∆umε + kεu
m
ε = 0 in Ω,
umε = gm on ∂Ω,

(2.5)

where the parameter kε is defined as

kε =

{
0 in Ω \Bε (ξ) ,
k in Bε (ξ) .

(2.6)

As mentioned earlier, the topological derivatives measure the sensitivity of the shape
functional with respect to the parameters (ε, ξ) depending upon a set of small inclusions
Bε (ξ). Therefore, in this article, our idea is to obtain the number, radius and location
of the inclusions that produce the best approximation to the anomaly ω∗ by using the
concept of topological derivatives.

3. Notations and Auxiliary Problems

The first term of the asymptotic expansion of a given shape functional with respect to
the small parameter which measures the size of singular domain perturbations, such as
holes, inclusions, source-terms, cracks, etc., represents the first-order topological deriva-
tive. This concept, introduced by Soko lowski & Żochowski [38] and further developed by
many authors [14, 20, 34, 37], can be seen as a particular case of the broader class of as-
ymptotic methods fully developed in the books by Ammari et al. [1] and Ammari & Kang
[4], for instance. See also related works [27, 32, 33]. For an account on the topological
derivative concept the reader may refer to the book by Novotny & Soko lowski [35]. In the
context of Helmholtz equation, the stability and resolution analysis for a imaging func-
tional based on the first-order topological derivative has been presented in [2]. The case
of high-order topological expansions for Helmholtz problems into two spatial dimensions
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has been studied in [28]. However, such an analysis is missing for the potential inverse
problem we are dealing with. On the other hand, one can define nth order topological
derivative. In fact, the second-order topological derivative concept started to play an
important role in the resolution of a class of inverse problems. In particular, it has been
successfully applied for solving the EIT [7, 19, 22] and gravimetry [9, 10] problems.

In general, an open and bounded domain Ω ⊂ R
d, d ≥ 2, is perturbed by introducing

nonsmooth features confined in a small region ωε (ξ) of size ε > 0 centred at ξ ∈ Ω such

that ωε (ξ) ⊂ Ω. We define a characteristic function having support in the unperturbed
domain Ω of the form χ = 1Ω. Similarly, we introduce a characteristic function χε (ξ)
associated to the topologically perturbed domain. For example, in the case of holes as
the perturbation ωε (ξ), we can write χε (ξ) = 1Ω − 1ωε(ξ)

and the singularly perturbed

domain can be represented by Ωε (ξ) = Ω\ωε (ξ). Further, one assumes that a given shape
functional ψ (χε (ξ)) associated to the topologically perturbed domain Ωε (ξ) admits the
following topological asymptotic expansion

ψ (χε (ξ)) = ψ (χ) + f (ε)DTψ (ξ) + o (f (ε)) , (3.1)

where ψ (χ) is the shape functional associated to the reference (unperturbed) domain Ω
and f (ε) is a positive function depending upon the size ε of the topological perturbation
such that f (ε) → 0 when ε ↓ 0. The function ξ 7→ DTψ (ξ) is called the first order
topological derivative of the shape functional ψ at ξ. Mathematically, we can express it
as

DTψ (ξ) := lim
ε→0

ψ (χε (ξ)) − ψ (χ)

f (ε)
. (3.2)

Similarly, the second order topological derivative of the shape functional ψ at ξ can be
obtained by expanding the remainder term o (f (ε)) in (3.1). More precisely, we will get
the topological asymptotic expansion

ψ (χε (ξ)) = ψ (χ) + f (ε)DTψ (ξ) + f2 (ε)D2
Tψ (ξ) + o (f2 (ε)) , (3.3)

where f2 (ε) is such that

lim
ε→0

f2 (ε)

f (ε)
= 0. (3.4)

Thus, the second order topological derivative can be defined as

D2
Tψ (ξ) := lim

ε→0

ψ (χε (ξ)) − ψ (χ) − f (ε)DTψ (ξ)

f2 (ε)
. (3.5)

Furthermore, one can define higher order topological derivatives by arguing analogically.
In this article, we are interested in expanding the shape functional Jε

(
u1ε, · · · , uMε

)

defined in (2.4) similar to (3.3). Therefore, we start by simplifying the difference be-
tween the perturbed shape functional Jε

(
u1ε, · · · , uMε

)
and its unperturbed counter-part

J0

(
u10, · · · , uM0

)
defined in (2.4) and (2.1), respectively, as follows

Jε (uε) − J0 (u0) =

M∑

m=1

∫

Ωo

[
2 (umε − um0 ) (um0 − zm) + (umε − um0 )2

]
, (3.6)

where uε =
(
u1ε, · · · , uMε

)
and u0 =

(
u10, · · · , uM0

)
.
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For m = 1, · · · ,M , let us consider the following ansätz to justify the asymptotic expan-
sion of umε with respect to the parameters corresponding to the small circular inclusions
as described in Section 2

umε (x) = um0 (x) + k
N∑

i=1

|Bεi (xi) |hε,mi (x)

+ k2
N∑

i=1

N∑

j=1

|Bεi (xi) ||Bεj (xj) |hε,mij (x) + ũmε (x) , (3.7)

where |Bεi (xi) | is the Lebesgue measure (volume) of the two-dimensional ball Bεi (xi),
i.e., |Bεi (xi) | = πε2i . Furthermore, for each i = 1, · · · , N and m = 1, · · · ,M , hε,mi is the
solution of 




∆hε,mi =
um0

|Bεi (xi) |
χBεi

(xi) in Ω,

hε,mi = 0 on ∂Ω.
(3.8)

We write hε,mi as a sum of three functions pεi , qi and h̃ε,mi . In other words,

hε,mi = um0 (xi)(p
ε
i + qi) + h̃ε,mi , (3.9)

where pεi is a particular solution obtained by the convolution of |Bεi(xi)|−1χBεi
(xi) with

the kernel of the Laplacian. More precisely,

pεi (x) =
1

|Bεi(xi)|

∫

Bεi
(xi)

1

2π
log ‖y − x‖dy. (3.10)

Outside the ball Bεi(xi), we can simplify (3.10) to obtain

pi(x) := pεi (x) =
1

2π
log ‖xi − x‖ ∀x ∈ Ω \Bεi(xi). (3.11)

Observe that pi(x) does not depend on εi. Additionally, qi is the solution to the homoge-
neous boundary value problem

{
∆qi = 0 in Ω,

qi = − 1

2π
log ‖xi − x‖ on ∂Ω

(3.12)

and h̃ε,mi solves the boundary value problem




∆h̃ε,mi =
um0 − um0 (xi)

|Bεi(xi)|
χBεi

(xi) in Ω,

h̃ε,mi = 0 on ∂Ω.
(3.13)

Taking into account the decomposition (3.9), we can introduce the notations

hi := pi + qi and hεi := pεi + qi (3.14)

with pεi , pi as given in (3.10), (3.11), respectively. In (3.7), hε,mij and ũmε are the solutions
of the following boundary value problems





∆hε,mij =
hε,mj

|Bεi (xi) |
χBεi

(xi) in Ω,

hε,mij = 0 on ∂Ω,
(3.15)
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and {
−∆ũmε + kεũ

m
ε = −Φm

ε in Ω,
ũmε = 0 on ∂Ω,

(3.16)

respectively, for each i, j = 1, · · · , N and m = 1, · · · ,M . In problem (3.16), we have

Φm
ε = k3

N∑

i=1

N∑

j=1

N∑

l=1

|Bεj (xj) ||Bεl (xl) |hε,mjl χBεi
(xi). (3.17)

To compact the notation, let us denote

α = (α1, · · · , αN) with αi = |Bεi (xi) |, (3.18)

for i = 1, · · · , N . Using (3.18), the expansion (3.7) will have the form

umε (x) = um0 (x) + k
N∑

i=1

αih
ε,m
i (x) + k2

N∑

i=1

N∑

j=1

αiαjh
ε,m
ij (x) + ũmε (x) . (3.19)

In order to simplify further analysis, let us introduce an adjoint state vm as the solution
of the following auxiliary boundary value problem

{
−∆vm = (um0 − zm)χΩo

in Ω,
vm = 0 on ∂Ω.

(3.20)

4. Main Theorem

In this section, we state our main result which describes the topological asymptotic
expansion of the perturbed shape functional in terms of the parameters related to N
number of ball-shaped inclusions as explained in Section 2.

Theorem 1. Let qi, hi for i = 1, · · · , N and um0 , v
m for m = 1, · · · ,M be the functions

defined in (3.12), (3.14) and (2.2), (3.20), respectively. Then, for the vector α introduced

in (3.18), we have the following asymptotic expansion for the topologically perturbed shape

functional ψ(χε(ξ)) = Jε (uε) defined in (2.4):

ψ(χε(ξ)) = ψ(χ) − α · d(ξ) +G(ξ)α · diag(α⊗ logα) +
1

2
H(ξ)α · α+ o(|α|2) , (4.1)

where ψ(χ) = J0 (u0) is the topologically unperturbed shape functional from (2.1). More-

over, the vector d ∈ R
N , the matrix G ∈ R

N ×R
N and the Hessian matrix H ∈ R

N ×R
N

in the above expansion are defined as

di := 2k

M∑

m=1

um0 (xi)v
m(xi), (4.2)

Gii := − k2

2π

M∑

m=1

um0 (xi)v
m(xi), Gij = 0, if i 6= j (4.3)
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and

Hii :=
1 + log π2

2π
k2

M∑

m=1

um0 (xi)v
m(xi) − 4k2

M∑

m=1

um0 (xi)v
m(xi)qi(xi)

− k

π

M∑

m=1

∇um0 (xi) · ∇vm(xi) + 2k2
M∑

m=1

(um0 (xi))
2

∫

Ωo

h2i , (4.4)

Hij := −4k2
M∑

m=1

um0 (xj)v
m(xi)hj(xi) + 2k2

M∑

m=1

um0 (xi)u
m
0 (xj)

∫

Ωo

hihj , if i 6= j, (4.5)

respectively, for i, j = 1, · · · , N .

5. Proof of the Main Result

The proof of Theorem 1 is demonstrated in three steps. Firstly, we develop the asymp-
totic expansion of the topologically perturbed shape functional. Next, we prove a priori

estimates related to the auxiliary states h̃ε,mi , hε,mi , hε,mij and ũmε for i, j = 1, · · · , N and
m = 1, · · · ,M . Finally, in the last part of this section, the previously obtained results
are used to estimate the remainders appeared in the first step. These estimates justify
our topological asymptotic expansion (4.1).

5.1. Asymptotic development of the shape functional. Let us use (3.19) in (3.6),
to obtain

Jε (uε) − J0 (u0) = 2k
M∑

m=1

N∑

i=1

αi

∫

Ωo

hε,mi (um0 − zm)

+ 2k2
M∑

m=1

N∑

i=1

N∑

j=1

αiαj

∫

Ωo

hε,mij (um0 − zm)

+ k2
M∑

m=1

N∑

i=1

N∑

j=1

αiαj

∫

Ωo

hε,mi hε,mj +
M∑

m=1

6∑

ℓ=1

Em
ℓ (ε) , (5.1)

where

Em
1 (ε) = 2

∫

Ωo

ũmε (um0 − zm) , (5.2)

Em
2 (ε) = 2k3

N∑

i=1

N∑

j=1

N∑

l=1

αiαjαl

∫

Ωo

hε,mij hε,ml , (5.3)

Em
3 (ε) = 2k

N∑

i=1

αi

∫

Ωo

ũmε h
ε,m
i , (5.4)

Em
4 (ε) = k4

N∑

i=1

N∑

j=1

N∑

l=1

N∑

p=1

αiαjαlαp

∫

Ωo

hε,mij hε,mlp , (5.5)

Em
5 (ε) = 2k2

N∑

i=1

N∑

j=1

αiαj

∫

Ωo

ũmε h
ε,m
ij (5.6)
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and

Em
6 (ε) =

∫

Ωo

(ũmε )2 . (5.7)

Now, let us introduce the weak formulation of the adjoint problem (3.20) to find vm ∈
H1

0 (Ω) such that ∫

Ω

∇vm · ∇η =

∫

Ωo

(um0 − zm) η, ∀η ∈ H1
0 (Ω) . (5.8)

The weak formulations of (3.8) and (3.15) are to find hε,mi ∈ H1
0 (Ω) such that∫

Ω

∇hε,mi · ∇η = − 1

|Bεi (xi) |

∫

Bεi
(xi)

um0 η, ∀η ∈ H1
0 (Ω) (5.9)

and hε,mij ∈ H1
0 (Ω) such that
∫

Ω

∇hε,mij · ∇η = − 1

|Bεi (xi) |

∫

Bεi
(xi)

hε,mj η, ∀η ∈ H1
0 (Ω) , (5.10)

respectively. By taking η = hε,mi in (5.8) and η = vm in (5.9) as test functions, we get
∫

Ωo

hε,mi (um0 − zm) = − 1

|Bεi (xi) |

∫

Bεi
(xi)

um0 v
m. (5.11)

Similarly, if we take η = hε,mij in (5.8) and η = vm in (5.10) as test functions, it gives
∫

Ωo

hε,mij (um0 − zm) = − 1

|Bεi (xi) |

∫

Bεi
(xi)

hε,mj vm. (5.12)

By using (5.11) and (5.12) in (5.1), we get

Jε (uε) − J0 (u0) = −2k

M∑

m=1

N∑

i=1

∫

Bεi
(xi)

um0 v
m − 2k2

M∑

m=1

N∑

i=1

N∑

j=1

αj

∫

Bεi
(xi)

hε,mj vm

+ k2
M∑

m=1

N∑

i=1

N∑

j=1

αiαj

∫

Ωo

hε,mi hε,mj +
M∑

m=1

6∑

ℓ=1

Em
ℓ (ε) . (5.13)

Taking into account the notations (3.14), we get

Jε (uε) − J0 (u0) = −2k
M∑

m=1

N∑

i=1

∫

Bεi
(xi)

um0 v
m

− 2k2
M∑

m=1

N∑

i=1

N∑

j=1
j 6=i

αju
m
0 (xj)

∫

Bεi
(xi)

hjv
m − 2k2

M∑

m=1

N∑

i=1

αiu
m
0 (xi)

∫

Bεi
(xi)

hεiv
m

+ k2
M∑

m=1

N∑

i=1

N∑

j=1

αiαju
m
0 (xi) u

m
0 (xj)

∫

Ωo

hihj +
M∑

m=1

9∑

ℓ=1

Em
ℓ (ε) . (5.14)

Here, the three new remainders are defined as

Em
7 (ε) = −2k2

N∑

i=1

N∑

j=1
j 6=i

αj

∫

Bεi
(xi)

h̃ε,mj vm, (5.15)
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Em
8 (ε) = −2k2

N∑

i=1

αi

∫

Bεi
(xi)

h̃ε,mi vm, (5.16)

Em
9 (ε) = k2

N∑

i=1

N∑

j=1

αiαj

∫

Ωo

(
um0 (xi)hih̃

ε,m
j + um0 (xj) hjh̃

ε,m
i + h̃ε,mi h̃ε,mj

)
. (5.17)

We can simplify (5.14) further by noting the following:

(i) In the first and the second terms of (5.14), we can consider the Taylor’s expansions
of the functions um0 , vm and hj around the point xi, namely,

um0 (x) = um0 (xi) + ∇um0 (xi) · (x− xi)

+
1

2
∇2um0 (xi) (x− xi) · (x− xi) +D3um0 (x̂) (x− xi)

3 , (5.18)

vm (x) = vm (xi) + ∇vm (xi) · (x− xi)

+
1

2
∇2vm (xi) (x− xi) · (x− xi) +D3vm (x̂) (x− xi)

3 (5.19)

and

hj (x) = hj (xi) + ∇hj (xi) · (x− xi) +D2hj (x̂) (x− xi)
2 , (5.20)

where x̂ is an intermediate point between x and xi. Moreover, Dnf(x̂)(x − xi)
n,

n ≥ 1, n ∈ N, denotes the last nth term of the Taylor’s expansion of a function
f(x) around xi.

(ii) In the third term of (5.14), we can use the explicit form of the analytical part pεi
of hεi inside the ball Bεi (xi).

Finally, after taking into account the above mentioned observations along with the
decomposition (3.9) with the fact that um0 and vm are harmonic outside Ωo, (5.14) takes
the form

Jε (uε) − J0 (u0) = −2k
M∑

m=1

N∑

i=1

αiu
m
0 (xi) v

m (xi) −
k2

2π

M∑

m=1

N∑

i=1

α2
i logαi u

m
0 (xi) v

m (xi)

+
1 + log π2

4π
k2

M∑

m=1

N∑

i=1

α2
iu

m
0 (xi) v

m (xi) − 2k2
M∑

m=1

N∑

i=1

α2
iu

m
0 (xi) v

m (xi) qi (xi)

− k

2π

M∑

m=1

N∑

i=1

α2
i∇um0 (xi) · ∇vm (xi) − 2k2

M∑

m=1

N∑

i=1

N∑

j=1
j 6=i

αiαju
m
0 (xj) v

m (xi) hj (xi)

+ k2
M∑

m=1

N∑

i=1

N∑

j=1

αiαju
m
0 (xi)u

m
0 (xj)

∫

Ωo

hi (x) hj (x) +

M∑

m=1

19∑

ℓ=1

Em
ℓ (ε) . (5.21)

Now we have new remainders, namely,

Em
10 (ε) = −2k

N∑

i=1

∫

Bεi
(xi)

[∇um0 (xi) · (x− xi)]
[
D3vm (x̂) (x− xi)

3] , (5.22)
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Em
11 (ε) = −2k

N∑

i=1

∫

Bεi
(xi)

[
D2um0 (xi) (x− xi)

2] [D2vm (xi) (x− xi)
2] , (5.23)

Em
12 (ε) = −2k

N∑

i=1

∫

Bεi
(xi)

[∇vm (xi) · (x− xi)]
[
D3um0 (x̂) (x− xi)

3] , (5.24)

Em
13 (ε) = −2k

N∑

i=1

∫

Bεi
(xi)

[
D3um0 (x̂) (x− xi)

3] [D3vm (x̂) (x− xi)
3] , (5.25)

Em
14 (ε) = −2k2

N∑

i=1

N∑

j=1
j 6=i

αju
m
0 (xj) v

m (xi)

∫

Bεi
(xi)

D2hj (x̂) (x− xi)
2 , (5.26)

Em
15 (ε) = −2k2

N∑

i=1

N∑

j=1
j 6=i

αju
m
0 (xj) hj (xi)

∫

Bεi
(xi)

D2vm (x̂) (x− xi)
2 , (5.27)

Em
16 (ε) = −2k2

N∑

i=1

N∑

j=1
j 6=i

αju
m
0 (xj)

∫

Bεi
(xi)

[∇vm (xi) · (x− xi)] [∇hj (xi) · (x− xi)] , (5.28)

Em
17 (ε) = −2k2

N∑

i=1

N∑

j=1
j 6=i

αju
m
0 (xj)

∫

Bεi
(xi)

[
D2vm (x̂) (x− xi)

2] [D2hj (x̂) (x− xi)
2] , (5.29)

Em
18 (ε) = −2k2

M∑

m=1

N∑

i=1

αiu
m
0 (xi)

∫

Bεi
(xi)

(qiv
m − qi (xi) v

m (xi)), (5.30)

Em
19 (ε) = −2k2

M∑

m=1

N∑

i=1

αiu
m
0 (xi)

∫

Bεi
(xi)

pεi (v
m − vm (xi)). (5.31)

5.2. Preliminary lemmas. In order to simplify the presentation, we denote all the
constants independent of ε, i and m as C for i = 1, · · · , N and m = 1, · · · ,M , whose
value changes according to the place it is used.

Lemma 2. For i = 1, · · · , N and m = 1, · · · ,M , let h̃ε,mi be the weak solution of the

variational problem to find h̃ε,mi ∈ H1
0 (Ω) such that

∫

Ω

∇h̃ε,mi · ∇η = − 1

|Bεi (xi) |

∫

Bεi
(xi)

(um0 − um0 (xi))η, ∀η ∈ H1
0 (Ω) . (5.32)

Then, there exists a positive constant C independent of ε such that

‖h̃ε,mi ‖H1(Ω) ≤ Cεδii , ∀i = 1, · · · , N and m = 1, · · · ,M, (5.33)

for any 0 < δi < 1.



13

Proof. By taking η = h̃ε,mi as a test function in (5.32), we have
∫

Ω

|∇h̃ε,mi |2 = − 1

|Bεi (xi) |

∫

Bεi
(xi)

(um0 − um0 (xi))h̃
ε,m
i . (5.34)

From the Cauchy-Schwarz inequality and the interior elliptic regularity of the function
um0 , there exists a positive constant C independent of ε, i and m such that

∫

Ω

|∇h̃ε,mi |2 ≤ Cε−2
i ‖um0 − um0 (xi)‖L2(Bεi

)‖h̃ε,mi ‖L2(Bεi
)

≤ Cε−2
i ‖x− xi‖L2(Bεi

)‖h̃ε,mi ‖L2(Bεi
) ≤ C‖h̃ε,mi ‖L2(Bεi

). (5.35)

Notice that, Hölder inequality and the Sobolev embedding theorem can be used to derive

‖h̃ε,mi ‖L2(Bεi
) ≤ Cε

1/q
i ‖h̃ε,mi ‖L2p(Bεi

) ≤ Cεδii ‖h̃ε,mi ‖H1(Ω), (5.36)

for any 1 < q <∞ with 1/p+ 1/q = 1. Let us denote δi = 1/q which implies 0 < δi < 1.
Using (5.36) in (5.35), we get

∫

Ω

|∇h̃ε,mi |2 ≤ Cεδii ‖h̃ε,mi ‖H1(Ω). (5.37)

From Poincaré inequality, we have

C‖h̃ε,mi ‖2H1(Ω) ≤
∫

Ω

|∇h̃ε,mi |2. (5.38)

Combining (5.34)-(5.38), we get the required estimate (5.33). �

Corollary 3. For i, j = 1, · · · , N and m = 1, · · · ,M , let h̃ε,mi be the weak solution of

(5.32). Then, there exists a positive constant C independent of ε such that

‖h̃ε,mi ‖L2(Bεj
) ≤ Cεδii ε

δj
j , ∀i, j = 1, · · · , N and m = 1, · · · ,M, (5.39)

for any 0 < δi, δj < 1.

Proof. Similar to (5.36), from Hölder inequality and the Sobolev embedding theorem, we
get

‖h̃ε,mi ‖L2(Bεj
) ≤ Cε

δj
j ‖h̃ε,mi ‖H1(Ω) ≤ Cε

δj
j ε

δi
i , (5.40)

for any 0 < δi, δj < 1. We obtain the last inequality by using Lemma 2. Hence the
fact. �

Lemma 4. For i, j = 1, · · · , N and m = 1, · · · ,M , let hε,mi be written as (3.9). Then,

there exists a positive constant C independent of ε such that

‖hε,mi ‖L2(Bεi
) ≤ C(εi| log εi| + ε2δii ), (5.41)

‖hε,mi ‖L2(Bεj
) ≤ C(εj + εδii ε

δj
j ), if i 6= j, (5.42)

for any 0 < δi, δj < 1 with i, j = 1, · · · , N and m = 1, · · · ,M .

Proof. From the decomposition (3.9) and the triangular inequality, we have

‖hε,mi ‖L2(Bεj
) ≤ C

(
‖pεi‖L2(Bεj

) + ‖qi‖L2(Bεj
) + ‖h̃ε,mi ‖L2(Bεj

)

)
. (5.43)
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The explicit form of the analytical part pεi in (3.10) and (3.11) together with the interior
elliptic regularity of function qi and Corollary 3 allow us to derive

‖hε,mi ‖L2(Bεi
) ≤ C(εi| log εi| + εi + ε2δii ), (5.44)

‖hε,mi ‖L2(Bεj
) ≤ C(εj + εδii ε

δj
j ), if i 6= j, (5.45)

which leads to the required estimates (5.41) and (5.42), respectively, for any 0 < δi, δj < 1
with i, j = 1, · · · , N and m = 1, · · · ,M . �

Lemma 5. For i = 1, · · · , N and m = 1, · · · ,M , let hε,mi be the weak solution of the

variational problem (5.9). Then, there exists a positive constant C independent of ε such

that

‖hε,mi ‖H1(Ω) ≤ C(
√

| log εi| + ε
δi−1/2
i ), (5.46)

for any 0 < δi < 1 with i = 1, · · · , N and m = 1, · · · ,M .

Proof. By taking η = hε,mi as a test function in (5.9), we have
∫

Ω

|∇hε,mi |2 = − 1

|Bεi (xi) |

∫

Bεi
(xi)

um0 h
ε,m
i . (5.47)

From the Cauchy-Schwarz inequality together with the interior elliptic regularity of the
function um0 and Lemma 4, we obtain

∫

Ω

|∇hε,mi |2 ≤ Cε−2
i ‖um0 ‖L2(Bεi

)‖hε,mi ‖L2(Bεi
)

≤ Cε−1
i ‖hε,mi ‖L2(Bεi

) ≤ C(| log εi| + ε2δi−1
i ). (5.48)

From the Poincaré inequality, we have

C‖hε,mi ‖2H1(Ω) ≤
∫

Ω

|∇hε,mi |2. (5.49)

Combining (5.47)-(5.49), we get the required estimate (5.46). �

Lemma 6. For i, j = 1, · · · , N and m = 1, · · · ,M , let hε,mij be the weak solution of the

variational problem (5.10). Then, there exists a positive constant C independent of ε such
that

‖hε,mii ‖H1(Ω) ≤ Cεδi−1
i (| log εi| + ε2δi−1

i ), (5.50)

‖hε,mij ‖H1(Ω) ≤ Cεδi−1
i (1 + εδi−1

i ε
δj
j ), if i 6= j, (5.51)

for any 0 < δi, δj < 1 with i, j = 1, · · · , N and m = 1, · · · ,M .

Proof. By taking η = hε,mij as test a function in (5.10), we have
∫

Ω

|∇hε,mij |2 = − 1

|Bεi (xi) |

∫

Bεi
(xi)

hε,mj hε,mij . (5.52)

From the Cauchy-Schwarz inequality, we obtain
∫

Ω

|∇hε,mij |2 ≤ Cε−2
i ‖hε,mj ‖L2(Bεi

)‖hε,mij ‖L2(Bεi
). (5.53)
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By using Lemma 4, we can write
∫

Ω

|∇hε,mii |2 ≤ Cε−1
i (| log εi| + ε2δi−1

i ) ‖hε,mii ‖L2(Bεi
), (5.54)

∫

Ω

|∇hε,mij |2 ≤ Cε−1
i (1 + εδi−1

i ε
δj
j ) ‖hε,mij ‖L2(Bεi

), if i 6= j. (5.55)

Notice that, Hölder inequality and the Sobolev embedding theorem can be used to derive

‖hε,mij ‖L2(Bεi
) ≤ Cε

1/q
i ‖hε,mij ‖L2p(Bεi

) ≤ Cεδii ‖hε,mij ‖H1(Ω), (5.56)

for any 1 < q <∞ with 1/p+ 1/q = 1. Like earlier, let us denote δi = 1/q which implies
0 < δi < 1. Using (5.56) into (5.54) and (5.55), we get

∫

Ω

|∇hε,mii |2 ≤ Cεδi−1
i (| log εi| + ε2δi−1

i ) ‖hε,mii ‖H1(Ω), (5.57)

∫

Ω

|∇hε,mij |2 ≤ Cεδi−1
i (1 + εδi−1

i ε
δj
j ) ‖hε,mij ‖H1(Ω), if i 6= j. (5.58)

From Poincaré inequality, we have

C‖hε,mij ‖2H1(Ω) ≤
∫

Ω

|∇hε,mij |2. (5.59)

Combining (5.57)-(5.59), we get the required estimates (5.50) and (5.51). �

Lemma 7. For m = 1, · · · ,M , let ũmε be the weak solution of the variational problem to

find ũmε ∈ H1
0 (Ω) such that

∫

Ω

∇ũmε · ∇η +

∫

Ω

kεũ
m
ε η = −

∫

Ω

Φm
ε η, ∀η ∈ H1

0 (Ω) , (5.60)

where Φm
ε is given by (3.17). Then, there exists a positive constant C independent of ε

such that

‖ũmε ‖H1(Ω) ≤ C
N∑

i,j,l=1

ε2δll εδi+1
i (ε2i | log εi| + ε2δi+1

i + ε2j + εδi−1
i ε

δj+2
j ), (5.61)

for any 0 < δi, δj, δl < 1 with i, j, l = 1, · · · , N and m = 1, · · · ,M .

Proof. By taking η = ũmε as a test function in (5.60), we have
∫

Ω

|∇ũmε |2 +

∫

Ω

kε|ũmε |2 = −
∫

Ω

Φm
ε ũ

m
ε . (5.62)

From the Cauchy-Schwarz inequality, we obtain

∫

Ω

|∇ũmε |2 +

∫

Ω

kε|ũmε |2 ≤ C

N∑

l=1

‖ũmε ‖L2(Bεl
)

N∑

i=1

N∑

j=1

ε2i ε
2
j‖hε,mij ‖L2(Bεl

). (5.63)

From Poincaré inequality, we have

C‖ũmε ‖2H1(Ω) ≤
∫

Ω

|∇ũmε |2 +

∫

Ω

kε|ũmε |2. (5.64)
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Using this fact with the Hölder inequality and the Sobolev embedding theorem in (5.63),
we get

‖ũmε ‖2H1(Ω) ≤ C

N∑

l=1

ε2δll ‖ũmε ‖H1(Ω)

N∑

i=1

N∑

j=1

ε2i ε
2
j‖hε,mij ‖H1(Ω)

≤ C

N∑

i,j,l=1

ε2δll εδi+1
i (ε2i | log εi| + ε2δi+1

i + ε2j + εδi−1
i ε

δj+2
j )‖ũmε ‖H1(Ω). (5.65)

We use Lemma 6 to derive the second inequality of (5.65), which holds true for any
0 < δi, δj , δl < 1 with i, j, l = 1, · · · , N and m = 1, · · · ,M . Hence the fact. �

5.3. A priori estimates of the remainders. We shall prove that Em
ℓ (ε) = o (|ε|4) for

ℓ = 1, . . . , 19, where |ε| := ε1 + · · · + εN . For simplicity, we use the symbol C to denote
any constant independent of ε. The estimate for the remainders are obtained in two steps.
We start by using the Cauchy-Schwarz inequality, then

• for the remainders Em
ℓ (ε), ℓ = 1, . . . , 9, we use the appropriate lemmas of Section

5.2;
• for the remainders Em

ℓ (ε), ℓ = 10, . . . , 18, we use the fact ‖x − xi‖nL2(Bεi
) =

O(|ε|n+1), where n ∈ Z
+;

• for the remainder Em
19 (ε), we use the estimate of the explicit solution pεi in the ball

Bεi (xi) for i = 1, · · · , N .

Proceeding in this way, we obtain

|Em
1 (ε) | ≤ C‖ũmε ‖H1(Ωo)‖um0 − zm‖H1(Ωo) ≤ C‖ũmε ‖H1(Ω) = o

(
|ε|4

)
, (5.66)

for any 2/5 < δ < 1, where we have used Lemma 7;

|Em
2 (ε) | ≤ C|ε|6

N∑

i=1

N∑

j=1

‖hε,mij ‖H1(Ω)

N∑

l=1

‖hε,ml ‖H1(Ω) = o
(
|ε|4

)
, (5.67)

for any 1/8 < δ < 1, where we have used Lemmas 5 and 6;

|Em
3 (ε) | ≤ C|ε|2‖ũmε ‖H1(Ω)

N∑

i=1

‖hε,mi ‖H1(Ω) = o
(
|ε|4

)
, (5.68)

for any 1/12 < δ < 1, where we have used Lemmas 5 and 7;

|Em
4 (ε) | ≤ C|ε|8

N∑

i=1

N∑

j=1

‖hε,mij ‖H1(Ω)

N∑

l=1

N∑

p=1

‖hε,mlp ‖H1(Ω) = o
(
|ε|4

)
, (5.69)

for any 0 < δ < 1, where we have used Lemma 6;

|Em
5 (ε) | ≤ C|ε|4‖ũmε ‖H1(Ω)

N∑

i=1

N∑

j=1

‖hε,mij ‖H1(Ω) = o
(
|ε|4

)
, (5.70)

for any 0 < δ < 1, where we have used Lemmas 6 and 7;

|Em
6 (ε) | ≤ C‖ũmε ‖H1(Ω)‖ũmε ‖H1(Ω) = o

(
|ε|4

)
, (5.71)
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for any 0 < δ < 1, where we have used Lemma 7;

|Em
7 (ε) | ≤ C|ε|3

N∑

i=1

N∑

j=1
j 6=i

‖h̃ε,mj ‖L2(Bεi
) = o

(
|ε|4

)
, (5.72)

for any 1/2 < δ < 1, where we have used Corollary 3 together with the interior elliptic
regularity of functions vm;

|Em
8 (ε) | ≤ C|ε|3

N∑

i=1

‖h̃ε,mi ‖L2(Bεi
) = o

(
|ε|4

)
, (5.73)

for any 1/2 < δ < 1, where we have use the same arguments as before;

|Em
9 (ε) | ≤ C|ε|4

N∑

i=1

N∑

j=1

(
‖h̃ε,mj ‖H1(Ω) + ‖h̃ε,mi ‖H1(Ω) + ‖h̃ε,mi ‖H1(Ω)‖h̃ε,mj ‖H1(Ω)

)
= o

(
|ε|4

)
,

(5.74)
for any 0 < δ < 1, where we have used Lemma 2;

|Em
10 (ε) | ≤ C

N∑

i=1

‖x− xi‖L2(Bεi
)‖x− xi‖3L2(Bεi

) = O(|ε|6); (5.75)

|Em
11 (ε) | ≤ C

N∑

i=1

‖x− xi‖2L2(Bεi
)‖x− xi‖2L2(Bεi

) = O(|ε|6); (5.76)

|Em
12 (ε) | ≤ C

N∑

i=1

‖x− xi‖L2(Bεi
)‖x− xi‖3L2(Bεi

) = O(|ε|6); (5.77)

|Em
13 (ε) | ≤ C

N∑

i=1

‖x− xi‖3L2(Bεi
)‖x− xi‖3L2(Bεi

) = O(|ε|8); (5.78)

|Em
14 (ε) | ≤ C|ε|2

N∑

i=1

‖x− xi‖2L2(Bεi
)‖1‖L2(Bεi

) = O(|ε|6); (5.79)

|Em
15 (ε) | ≤ C|ε|2

N∑

i=1

‖x− xi‖2L2(Bεi
)‖1‖L2(Bεi

) = O(|ε|6); (5.80)

|Em
16 (ε) | ≤ C|ε|2

N∑

i=1

‖x− xi‖L2(Bεi
)‖x− xi‖L2(Bεi

) = O(|ε|6); (5.81)

|Em
17 (ε) | ≤ C|ε|2

N∑

i=1

‖x− xi‖2L2(Bεi
)‖x− xi‖2L2(Bεi

) = O(|ε|8). (5.82)
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Finally, the last two remainders can be estimated as follows

|Em
18 (ε) | ≤ C|ε|2

N∑

i=1

‖qivm − qi(xi)v
m(xi)‖L2(Bεi

)‖1‖L2(Bεi
)

≤ C|ε|3
N∑

i=1

‖x− xi‖L2(Bεi
) = O(|ε|5); (5.83)

|Em
19 (ε) | ≤ C|ε|2

N∑

i=1

‖pεi‖L2(Bεi
)‖vm − vm(xi)‖L2(Bεi

)

≤ C|ε|2
N∑

i=1

εi| log εi| ‖x− xi‖L2(Bεi
) = o(|ε|4). (5.84)

6. Numerical Results

The expression on the right-hand side of (4.1) depends on the number of anomalies N ,
their sizes α and locations ξ. Thus, from (4.1), we can define

δJ(α, ξ,N) := −α · d(ξ) +G(ξ)α · diag(α⊗ logα) +
1

2
H(ξ)α · α . (6.1)

The derivative of the function δJ(α, ξ,N) with respect to the variable α yields the first
order optimality condition

〈DαδJ, β〉 = [(H(ξ) +G(ξ))α + 2G(ξ)diag(α⊗ logα) − d(ξ)] · β = 0, ∀β , (6.2)

which leads to the non-linear system of the form

(H(ξ) +G(ξ))α + 2G(ξ)diag(α⊗ logα) = d(ξ) (6.3)

with the entries of the vector d ∈ R
N and the matrices G, H ∈ R

N ×R
N defined in (4.2),

(4.3) and (4.4)-(4.5), respectively.
The quantity α, solution of (6.3), becomes a function of the locations ξ, namely α =

α(ξ), and its value is obtained by using the Newton’s method. Let us now replace the
solution of (6.3) into δJ(α, ξ,N) defined by (6.1). Therefore, the optimal locations ξ⋆

can be trivially obtained from a combinatorial search over the domain Ω, solution to the
following minimization problem

ξ⋆ = argmin
ξ∈X

{
δJ(α(ξ), ξ, N) = −1

2
(d(ξ) +G(ξ)α(ξ)) · α(ξ)

}
, (6.4)

where X is the set of admissible anomalies locations, and the optimal sizes are given by
α⋆ = α(ξ⋆). In summary, for a given N number of anomalies, our method is able to find
their optimal sizes α⋆ and locations ξ⋆ in a non-iterative scheme. When the number of
anomalies N∗ is unknown, we can start our algorithm based on an assumption that there
exists N > N∗ and then we should find a (N −N∗) number of trial balls with negligible
sizes (see [19]). Since a combinatorial search over all the n-points of the set X has to
be performed, then this exhaustive search becomes rapidly infeasible for n ≫ N as N
increases [31]. In addition, the proposed method approximates the unknown set of hidden
anomalies by several balls which can be seen as a limitation of our approach. However, it
can be used to get a good initial guess for more sophisticated iterative approaches based
on level-sets methods [6, 21, 24], for instance. In order to deal with a high number of
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anomalies we refer to [31] where a multi-grid strategy has been proposed. The above
procedure written in pseudo-code format can be found in [31]. For further applications of
this algorithm we refer to [9, 10, 19, 36], for instance.

Now, we present some numerical examples in order to demonstrate the effectiveness
of the method proposed in the earlier sections of this paper. We consider the geometric
domain Ω = (−0.5, 0.5) × (−0.5, 0.5) which is discretized using three-node finite element
scheme. The mesh is generated as a grid of 160×160 squares. Each square is divided into
four triangles which leads to 102400 number of finite elements. The subdomain Ωo ⊂ Ω
where the measurements of the potential are taken is defined differently for each example
given below. Considering the mesh and the subdomain Ωo, we define a uniform subgrid
with a set of feasible nodes X within which a combinatorial search is performed in order
to find the optimal size α⋆ and the appropriate center ξ⋆ of the embedded anomalies.
Moreover, we define three functions to be considered as Dirichlet data on the boundary
∂Ω, namely, g1 = 1, g2 = x and g3 = y. In the Figures 4-9, we represent anomalies by
black, the subdomain Ωo by gray and the remaining domain Ω \ Ωo by white colors.

6.1. Example 1: Sensitivity with respect to the material property. In this exam-
ple, we analyse the sensitivity of the reconstruction of the anomalies when different values
of the parameter k are considered. Suppose that, there is a small anomaly ω∗ located at
x∗ = (0, 0), with radius ε∗ = 5 × 10−3. The potential is measured in Ωo = Ω \ Bρ(0, 0)
with Bρ(0, 0) = {x ∈ R

2 : ‖x‖ < ρ}, where ρ = 0.3. In the current setting, we take only
one observation produced by the Dirichlet data g1. We reconstruct the anomaly ω∗ by
considering k = 10s with s ∈ {−4,−3,−2,−1, 0, 1, 2, 3, 4}. The combinatorial search was
conducted on the subgrid of 57 nodes within Ω\Ωo. We successfully find the exact location
of the center x∗ of the anomaly ω∗ for all values of k. We plot the size of the anomaly ε⋆

on vertical axis against the value of k on horizontal axis in Figure 3. We observe that the
exact radius ε∗ of the anomaly was accurately predicted by ε⋆ with k ∈ (0, 10], while for
k > 10 the radius ε∗ was underestimated. This phenomena occurs because the parameter
k present in topological derivatives and the coefficient α are of similar order in equation
(4.1). Hence, we take k = 1 for the forthcoming examples.
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Figure 3. Example 1: The approximated solution ε⋆ for different values of k.
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6.2. Example 2: Sensitivity with respect to the set of admissible locations.

Here, the sensitivity of the reconstruction with respect to the set of admissible locations
X is investigated. For this purpose, we consider the target anomaly as a circular region
with radius ε∗ = 0.05 and center located at x∗ = (−0.2125, 0.1625). The subdomain Ωo is
given by a closed region around the target anomaly. The domain Ω, subdomain Ωo and
anomaly ω∗ are illustrated in Figure 4. Like in Example 1, we take only one observation
produced by the Dirichlet data g1. Three subgrids within Ω\Ωo are considered as the set
of admissible locations X . The first two with 113 and 481 points, respectively, such that
x∗ /∈ X . The third subgrid has 1985 points, but with x∗ ∈ X . The results associated with
each subgrid are respectively shown in Figures 5(a)-5(c). From a qualitative comparison
of the results presented in Figure 5, it can be seen that the more the subgrid is refined the
better is the reconstruction. In particular, when x∗ /∈ X (the center of the target does not
coincide with any point of the subgrid), the algorithm returns a location x⋆ in X which
is closest to x∗, as shown in Figures 5(a) and 5(b). Finally, when x∗ ∈ X , the algorithm
is able to return the exact location of the anomaly, as can be seen in Figure 5(c). In
all cases, the resulting radius ε⋆ is very close to the true value ε∗. See the quantitative
results in Table 1. From this example we confirm that our algorithm can be used to
produce a good and reliable initial guess to other well-known reconstruction methods, as
expected. In the forthcoming examples, we assume that the center of each anomaly to be
reconstructed coincides with one point of the subgrid X .

Figure 4. Example 2: Target.
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(a) subgrid of 113 points

(b) subgrid of 481 points

(c) subgrid of 1985 points

Figure 5. Example 2: Result obtained (left) and a zoom of the solution
(right) for each set of admissible locations X . The red and black circles
represent the solution and the target, respectively.
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Table 1. Example 2: Results obtained for different set of admissible loca-
tions X

Number of points of the subgrid

113 481 1985

ω⋆ x⋆ (−0.25, 0.15) (−0.225, 0.175) (−0.2125, 0.1625)
ε⋆ 0.0480 0.0490 0.0496

6.3. Example 3: Sensitivity with respect to the number of observations. Recon-
struction of two anomalies of different sizes is demonstrated in this example. Two circular
regions ω∗

1 and ω∗
2 located at x∗1 = (−0.1, 0.2) and x∗2 = (−0.3,−0.3) with radii ε∗1 = 0.02

and ε∗2 = 0.05, respectively, are considered as the target anomalies. The subdomain Ωo is
given by a circular region within Ω. The reference domain Ω, subdomain Ωo and target
anomalies ω∗

1 and ω∗
2 are shown in Figure 6. A subgrid of 156 points is defined as the

combinatorial search region inside the subdomain Ω\Ωo. We start by considering only one
observation associated with the Dirichlet data g2. After comparing Figures 6 and 7(a),
we observe that the algorithm fails in reconstructing the target domain. This happens
because of the lack of information. Therefore, we improve the number of measurements by
considering all the Dirichlet data g1, g2 and g3 simultaneously. In this case we obtain the
centers x⋆1 = (−0.1, 0.2) and x⋆2 = (−0.3,−0.3) with the associated radii ε⋆1 = 0.0195 and
ε⋆2 = 0.0491 of the target anomalies ω∗

1 and ω∗
2, which are approximately equal to the true

values ε∗1 and ε∗2, respectively. We demonstrate the numerical result in the Figure 7(b).
We conclude by noticing the need of more than one observation in the case of insufficient
information. This motivates us to collect data through three boundary excitations g1,
g2 and g3 in the forthcoming example of reconstructing three anomalies simultaneously
which is the case when we have comparatively less information.

Figure 6. Example 3: Target.
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(a) M = 1 (b) M = 3

Figure 7. Example 3: Results.

6.4. Example 4: Sensitivity with respect to partial noisy data. Reconstruction
of three embedded anomalies is demonstrated in this example. Additionally, we verify
the robustness of the method proposed in the earlier part of this paper with respect to
the noisy data. Three circular regions with centers located at x∗1 = (−0.2, 0.2), x∗2 =
(−0.1,−0.3), x∗3 = (0.3, 0.1) and with radius ε∗1 = ε∗2 = ε∗3 = 0.05 are considered as the
target anomalies. In the current setting, we take measurements in the subdomain Ωo which
is an union of four small regions in the neighborhood of the corners of the square domain
Ω. The domain Ω, subdomain Ωo and three anomalies ω∗

1, ω
∗
2 and ω∗

3 are illustrated in
Figure 8. Here, we consider, the subgrid for the combinatorial search inside the subdomain
Ω \ Ωo which consists of 177 uniformly distributed nodes. In order to obtain the noisy
synthetic data, the parameter kω∗ is replaced by kµω∗(x) = kω∗(x) + µτ(x)‖kω∗(x)‖L2(Ω),
where τ(x) is a random variable taking values in (0, 1) and µ corresponds to the noise
level. The results obtained for different levels of noise are shown in Figure 9. It can
be seen in Figure 9(a) that the anomalies are reconstructed accurately in the absence of
noise. By comparing Figures 9(b)-9(c), we can observe that the reconstruction scheme
proposed in this paper works efficiently up to 40% of noise in the parameter kω∗ . For
more noisy input, though we are not sure about the accuracy but the functionality of the
proposed scheme is ensured which can be observed in the Figure 9(d).

Figure 8. Example 4: Target.
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(a) µ = 0%

(b) µ = 20%

(c) µ = 40%

(d) µ = 80%

Figure 9. Example 4: Target (left) and the respective result (right) for
different levels of noise.
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