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Abstract. In this paper we deal with an inverse electromagnetic casting
problem, which consists in designing a set of inductors in such a way that a
liquid metal achieves a given shape. The inductors are assumed to be made
of single solid-core wires with a negligible cross-section area. The inverse
problem is rewritten in the form of an optimization problem. In particular,
a Kohn-Vogelius based functional is minimized with respect to a set of
admissible inductors, leading to a non-iterative second order optimization
algorithm. Finally, several numerical examples are presented showing that
the proposed approach is effective to design suitable inductors.

1. Introduction

This work deals with an inverse problem concerning the electromagnetic
shaping technique used in molten metals casting processes. The advantage of
the electromagnetic shaping is that it makes use of electromagnetic fields for
contact-less heating, shaping and control of solidification of hot metals. This
technique is appropriate for preparing very pure specimens in metallurgical ex-
periments, as even small traces of impurities can affect the physical properties
of the sample. One of the most interesting applications is the electromagnetic
casting of AI alloys, see for example the references Evans (1995); Besson et al.
(1991).

We consider a two-dimensional model corresponding to an infinitely long
falling down molten metal column shaped by an electromagnetic field exter-
nally created by a set of vertical inductors. We assume that the frequency of
the current is so high that we can neglect the penetration of the electromag-
netic field into the molten metal (skin effect). The inverse shaping problem
considered in this work consists of finding an appropriate set of vertical elec-
trical currents such that the induced electromagnetic field makes a given mass
of molten metal acquire a shape with a prescribed cross section.

The direct electromagnetic casting problem has already been investigated
from the points of view of the modeling, the application and the numerical
simulation. The two-dimensional model considered here has been studied in
many papers, for instance (Shercliff, 1981; Sneyd and Moffatt, 1982; Moffatt,
1985; Brancher and Séro-Guillaume, 1985; Gagnoud et al., 1986; Henrot et al.,
1989; Sero-Guillaume et al., 1992; Zouaoui et al., 1990; Pierre and Roche, 1993;
Coulaud, 1998) and (Hayouni and Novruzi, 2002) where a sufficient condition
for the existence of solutions is provided. Numerical analysis of the three-
dimensional case can be found in Novruzi and Roche (2000).
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The inverse problem in the two-dimensional case was analyzed in (Henrot
and Pierre, 1989; Felici, 1992; Shin et al., 2012), where necessary conditions of
existence are presented and the non-uniqueness of the solution is proved. In the
three-dimensional case we know only two papers, see (Felici, 1992; Pierre and
Rouy, 1996). From the numerical point of view, the two-dimensional inverse
problem has been studied by using shape and topological optimization meth-
ods. In (Canelas et al., 2009a,b; Roche et al., 2012) the authors optimized the
position and shape of a fixed number of inductors. Topological optimization
and level set methods used in (Canelas et al., 2011) and (Shin et al., 2012)
allow the authors to determine the position and shape, as well the number
of inductors. In (Canelas et al., 2014) the authors introduced a second order
topological sensibility analysis to determine the configuration of inductors by
minimizing a Kohn-Vogelius based shape functional.

In the present work we consider a new approach for the inverse electromag-
netic shaping problem: given certain set of positions, the algorithm proposed
looks for the best values of the electric current intensities. The main advantage
of the new approach is that it is not iterative, the solution is found by solving
a single linear system of equations, and therefore the solution method is con-
siderably faster than all previous methods that find the solution by solving a
nonlinear mathematical programming formulation, such as in (Canelas et al.,
2009a,b; Roche et al., 2012), or by using heuristic iterative algorithms such as
in (Canelas et al., 2011) and (Canelas et al., 2014). The algorithm presented
in (Shin et al., 2012) is not iterative also, but the new proposed approach is
more versatile, since it allows the user to predefine a feasible set of inductor
positions, which could be important for obtaining a practical solution.

The paper is organized as follows. In Section 2 the problem we are dealing
with is introduced. Section 2.1 presents the model problem which is given by
a boundary value problem whose source-term is the electrical current density.
The inverse problem is introduced in Section 2.2, where there is also a brief dis-
cussion concerning well-posedness of the associated direct problem. In Section
2.3 the inverse problem is rewritten in the form of an optimization problem,
where a Kohn-Vogelius based functional is minimized with respect to a set of
admissible inductors. The sensitivity analysis of the cost functional is derived
in Section 3. The resulting optimization algorithm is presented in Section 4,
where a regularization procedure is introduced. Some numerical examples are
presented in Section 5 showing that the proposed approach is effective to de-
sign suitable inductors. Finally, the paper ends with some concluding remarks
presented in Section 6.

2. The electromagnetic casting problem

The two-dimensional model considers the cross-section of a vertical column
of molten metal, which is shaped by the electromagnetic field created by verti-
cal inductors. We assume that a stationary horizontal cross-section is reached,
so that the two-dimensional model is valid. We also assume that the frequency
of the imposed current is very high, and hence the electromagnetic field does
not penetrate into the molten metal. An equilibrium shape is then charac-
terized by the static balance on the surface of the molten metal between the
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surface tension and the electromagnetic forces produced by pointwise induc-
tors. The associated inverse problem consists in the design of the inductors
so that a given shape for the liquid metal is achieved. The inverse problem
is rewritten in the form of an optimization problem. Since we are dealing
with pointwise inductors, a Kohn-Vogelius based functional is minimized with
respect to their locations and current intensities, leading to a non-iterative
second order optimization algorithm.

2.1. The model problem. Let the cross-section of the molten metal col-
umn be represented by the closed and simply connected domain ω ∈ R2 with
boundary Γ. Let Ω = R2 \ω be the open exterior domain. Let j0 be the mean
square value of the vertical component of the electrical current density vector.
We assume that j0 has a compact support in Ω and satisfies∫

Ω

j0 dx = 0 . (1)

In that case the equilibrium domains are characterized by the following Bernoulli-
type boundary equilibrium equation:

1

2µ0

|∂νϕ|2 + σC = P0 on Γ , (2)

with ∂νϕ := ∇ϕ · ν, where ν is the normal vector to the boundary Γ pointing
to the molten metal. In addition, µ0 > 0 is the vacuum permeability, σ > 0 is
the surface tension of the molten metal, C is the curvature of Γ seen from the
metal, P0 is the constant that represents the difference between the interior
and exterior pressures, and ϕ is the magnetic flux function which satisfies: −∆ϕ = µ0j0 in Ω ,

ϕ = 0 on Γ ,
ϕ(x) = O(1) as ‖x‖ → ∞ .

(3)

The direct problem consists of looking for a domain ω ⊂ R2 such that ϕ is a
solution of (3) and satisfies (2) for certain real constant P0.

We are interested in the particular case when the inductors are made of
single solid-core wires with a negligible area of cross-section. In this case the
function j0 can be modeled as the sum of several Dirac masses, i.e. j0 belongs
to the following set of admissible currents

Cδ(Ω) =

{
j : Ω→ R | j(x) =

n∑
i=1

αiδi(x), with
n∑
i=1

αi = 0 and n ∈ N

}
, (4)

with αi ∈ R used to denote the inductors intensities and δi(x) := δ(x − xi),
where all inductor locations xi ∈ Ω. In other words, we have a finite number
of wires that do not touch the boundary Γ.

2.2. The inverse problem. Let the target shape ω ⊂ R2 be a closed and
simple connected domain with boundary Γ of class C2. The purpose of the
inverse problem is to find an electric current density j0 and a real constant P0

such that the solution ϕ of (3) satisfies also the equilibrium equation (2). The
inverse problem is generally ill-posed, since small variations of the boundary
Γ of ω cause dramatic variations of the inverse problem solution (Felici and
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Brancher, 1991). In addition, the solution may not exist, or may be non-
unique (Henrot and Pierre, 1989; Shin et al., 2012).

The authors of reference (Henrot and Pierre, 1989) provided the main known
result about existence of solutions: given P0 ≥ σmaxΓ C, the inverse problem
has a solution j0 if and only if (i) Γ is an analytic curve and (ii) if

P0 = σmax
Γ
C , (5)

then the maximum of the curvature C must be achieved in an even number
of points (the points are counted with their multiplicity). In addition, the
existence of a solution j0 satisfying (1) requires the satisfaction of (5).

Hence, given a smooth target shape ω, if we compute P0 by (5) and define

the positive function p =
√

2µ0(P0 − σC), then the equilibrium equation (2)
can be rewritten in the following way:

∂νϕ = κ p on Γ , (6)

where κ = ±1, with the sign changes of κ located where the curvature C
reaches the maximum value. Note that κ p is of class C0 on Γ.

Consequently, the inverse problem can be formulated in the following way:
given a target shape ω, find an electric current density j0 satisfying (1) such
that there exists ϕ, solution to the following over-determined boundary value
problem: 

−∆ϕ = µ0j0 in Ω ,
ϕ = 0 on Γ ,

∂νϕ = κp on Γ ,
ϕ(x) = O(1) as ‖x‖ → ∞ .

(7)

To find a solution j0 the following approach is proposed. First, we remove
the Dirichlet condition ϕ = 0 from (7) with the purpose to avoid the over-
determination. Then we minimize the functional 1

2

∫
Γ
ϕ2 ds with respect to j0

trying to enforce the Dirichlet condition that was left aside. In the general
case the optimal value of the functional will not be zero, hence the optimal
solution j0 will be only an approximation to the inverse problem.

Consider (7) without the Dirichlet condition ϕ = 0 on Γ and with j0 sat-
isfying (1). Then, this problem has a solution if and only if the following
compatibility condition is satisfied (Hsiao and Wendland, 2008):∫

Γ

κp ds = 0 . (8)

It turns out that (8) is a necessary condition for the existence of solutions to
the inverse problem. In the following we will assume that the target shape ω
is such that (8) holds. Note that the Neumann problem is still not well-posed,
since u = ϕ + c is a solution for each real constant c provided that ϕ is a
solution. However, there is only one solution that minimizes the functional
1
2

∫
Γ
u2 ds with respect to c. Note that this functional is well defined. In fact,

since Γ is at least of class C2 and κ p is of class C0 on Γ, hence any solution
u of the Neumann problem is of class C1 in a neighborhood of Γ provided
that the inductors do not touch the boundary Γ (Atkinson, 1997). To find the
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optimal c, we compute

1

2

∫
Γ

u2 ds =
1

2

∫
Γ

ϕ2 ds+ c

∫
Γ

ϕds+
1

2
c2|Γ| . (9)

By differentiating the above expression with respect to c we obtain the optimal
value c∗ = −|Γ|−1

∫
Γ
ϕds. By considering this result, we have that the optimal

function u is the solution of the exterior Neumann problem that also satisfies
the following condition: ∫

Γ

u ds =

∫
Γ

ϕ+ c∗ ds = 0 . (10)

Remark 1. The resulting Neumann problem obtained after removing the Dirich-
let condition ϕ = 0 on Γ, and including the condition

∫
Γ
ϕds = 0, is a

well-posed problem provided that the boundary data satisfies (8), see the book
by Hsiao and Wendland (2008). The details are given in the next section.

2.3. The optimization problem. In this paper we study the particular case
in which j0 is a finite linear combination of Dirac masses, namely j0 ∈ Cδ(Ω),
which is defined through (4). Moreover, in this work we consider a set of
points xi, located in positions previously established in Ω, and look for suit-
able current intensities αi, such that the resulting electric current density j0 is
a good approximation of a solution of the inverse problem. Consequently, this
approach reduces the original problem to a finite dimensional one. The opti-
mization formulation of the inverse problem consists of looking for a minimum
j0 ∈ Cδ(Ω) of the functional

J (u) =
1

2

∫
Γ

u2 ds , (11)

where u : Ω→ R is the unique solution of the following auxiliary problem:
−∆u = µ0j0 in Ω,
∂νu = κp− µ0γ(j0) on Γ,
u(x) = O(1) as ‖x‖ → ∞,∫

Γ

u ds = 0.

(12)

Note that we have imposed (10) as an additional condition in the exterior
Neumann problem in order to have an unique solution for any given j0. The
function γ(j0) is a compatibility constant defined by:

γ(j0) =
1

|Γ|

∫
Ω

j0 dx . (13)

The term γ(j0) added in the Neumann boundary conditions guarantees the
compatibility condition required for the existence of solutions of (12) when (1)
is not satisfied. This procedure will allow us to enlarge the domain of definition
of the objective function and treat (1) as a constraint of the optimization
problem. If a solution satisfying (1) is found, e.g. j0 ∈ Cδ(Ω), then γ(j0) = 0,
which means that all conditions in (7) will be satisfied with the exception of
the Dirichlet condition, which will be satisfied approximately with an accuracy
depending on the final value of the objective function.
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Remark 2. Note that we are not dealing with the Kohn-Vogelius criterion
in its strict sense. Actually, our approach is just based (inspired) on it. As
mentioned above, the cost functional (11) is well defined provided that the
inductors do not touch the boundary Γ.

3. Sensitivity analysis

The next step consists in measuring the sensitivity of the functional (11)
with respect to the insertion of perturbations in the electric current j0 of
the auxiliary problem (12). The idea is to obtain an explicit form for the
sensitivities with respect to the control parameters αi, which shall be crucial
to devise a simple and fast optimization algorithm to be presented in the next
section. For this purpose, we add to the source j0 a number m of Dirac masses
with arbitrary locations and intensities, i.e.

jδ(x) = j0(x) +
m∑
i=1

αiδi(x), (14)

Note that if j0 ∈ Cδ(Ω), then jδ ∈ Cδ(Ω) only if:

m∑
i=1

αi = 0. (15)

In order to evaluate the effect that the perturbation (14) causes on the func-
tional (11), it is necessary to make the sensitivity analysis of the functional
with respect to the perturbation parameters, namely: m, αi and xi. From (14)
we get the following exterior boundary value problem:

−∆uδ = µ0jδ in Ω,
∂νuδ = κp− µ0γ(jδ) on Γ,
uδ(x) = O(1) as ‖x‖ → ∞,∫

Γ

uδ ds = 0.

(16)

Then, the perturbed shape functional is given by:

J (uδ) =
1

2

∫
Γ

u2
δ ds . (17)

The next step is to calculate the difference between the perturbed and unper-
turbed shape functional. Moreover, it is required that the resulting expression
be written in terms of the perturbation parameters. So we propose a relation
between the solutions of (16) and (12). This relation is given by:

uδ = u+
m∑
i=1

αihi, (18)
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where each function hi is solution to the following exterior boundary value
problem: 

−∆hi = µ0δi in Ω,

∂νhi = − µ0

|Γ|
on Γ,

hi(x) = O(1) as ‖x‖ → ∞,∫
Γ

hi ds = 0.

(19)

It should be noted that there is a direct relationship between the functions hi
and the perturbation points xi, since δi(x) = δ(x−xi). However, the functions
hi are independent of the intensity values αi.

Proposition 3. Let α = (α1, . . . , αm)> ∈ Rm such that
∑m

i=1 αi = 0 and let
v =

∑m
i=1 αihi where the functions hi are the solutions of (19) for a set of

distinct points xi. Then the trace of v on Γ is zero only if α = 0.

Proof. Take α such that
∑m

i=1 αi = 0, and assume that the trace of v =∑m
i=1 αihi on Γ is zero. Then v is a solution to:

−∆v =
∑m

i=1 µ0αiδi in Ω,
v = 0 on Γ,

∂νv = 0 on Γ,
v(x) = O(1) as ‖x‖ → ∞,

(20)

In addition, there exist funtions φ1, . . . , φm, satisfying (see the demonstration
of Theorem 2 in (Shin et al., 2012)): −∆φj = 0 in Ω,

φj(xi) = δij,
|∂rφj| = O(r−2) as r →∞,

(21)

where r is the coordinate of the polar system, r = ‖x‖, and δij is the Kronecker
delta. Then, the second Green identity applied to v and φj provides:

m∑
i=1

µ0αiφj(xi) = µ0αj = 0 , (22)

which proves the proposition. �

Now we can calculate the sensitivity of the shape functional. Subtracting
Eqs. (17) and (11) we get the following:

J (uδ)− J (u) =
1

2

∫
Γ

(u2
δ − u2) ds

=
1

2

∫
Γ

(uδ − u)(uδ + u) ds

=
1

2

∫
Γ

(
m∑
i=1

αihi

)(
2u+

m∑
i=1

αihi

)
ds

=

∫
Γ

u

(
m∑
i=1

αihi

)
ds+

1

2

∫
Γ

(
m∑
i=1

αihi

)2

ds. (23)
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Note that the expression on the RHS of (23) depends directly on the parame-
ters m, αi and xi (the latter through the functions hi). It is also observed that
this expression is a quadratic form with respect to the intensities αi.

Let d = (d1, d2, . . . , dm)> ∈ Rm be the vector with the following entries:

di :=

∫
Γ

uhi ds (24)

and H the symmetric matrix with entries:

Hij :=

∫
Γ

hihj ds. (25)

Then we obtain:

J (uδ) = J (u) +α>d+
1

2
α>Hα , (26)

where α = (α1, α2, . . . , αm)> ∈ Rm.

Proposition 4. The matrix H is symmetric positive semidefinite, and it is
positive definite on the linear subspace {α ∈ Rm :

∑m
i=1 αi = 0}.

Proof. The symmetry of H results directly from its definition (25). Further-
more, for any α ∈ Rm we have

α>Hα =

∫
Γ

(
m∑
i=1

αihi

)2

ds , (27)

and the thesis of the proposition follows from Proposition 3. �

4. Procedure of solution

Since (26) is a quadratic form in α, the next step consists in minimizing the
variation of the functional with respect to this variable. In other words, we
want to solve the following minimization problem:

Minimize
α∈Rm

J(α) := α>d+
1

2
α>(H + λI)α

Subject to
m∑
i=1

αi = e>α = 0
(28)

where λ > 0 is a regularizing parameter and e = (1, 1, . . . , 1)> ∈ Rm. The
regularization term is necessary to reduce the condition number of the problem.
Note that the inverse problem in the continuum setting is ill-posed, so that any
attempt to approximate a continuum solution by considering a large number
of points covering a neighborhood of the liquid metal will result in a bad
conditioned problem. A bad location of the points can also affect dramatically
the condition number, e.g. if two points are too close to each other or all the
points are too far from the liquid metal, then we have observed that H presents
a high condition number. In fact, the matrix H becomes singular if two points
coincide. The regularizing term, that can be written as (λ/2)‖α‖2, has also the
beneficial effect of penalizing the high electric current intensities, which leads
to a reduction of the total electric energy consumption. Then, the regularizing
term is convenient also from the economical point of view. Connections with
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the Tikhonov regularization and the Levemberg-Marquardt algorithm can also
be recognized.

To solve (28) we consider the Lagrangian L : Rm ×R→ R:

L(α, β) = J(α) + β(e>α). (29)

Since J is a strictly convex quadratic function, and the constraint is linear,
then there exists a unique Lagrangian multiplier β such that (α, β) is a sta-
tionary point of the Lagrangian function. This point can be found by solving
the following linear system:(

H + λI e
e> 0

)(
α
β

)
= −

(
d
0

)
. (30)

It is know that the linear system (30) has a unique solution for any λ ≥
0 since H has the properties indicated in Proposition 4. In addition, this
linear system can be solved accurately if H + λI is well conditioned, see for
instance (Luenberger, 2003). In addition, note that the residual of the solution
of (30) in the unregularized system is:

R(α, β) = Hα+ βe+ d . (31)

By assuming that the inductors locations are fixed, the resulting optimiza-
tion algorithm becomes strikingly simple and very fast, which consists in solv-
ing the linear system (30) once. In contrast, if the locations also belong to the
set of unknown design variables, then expression (26) would have to be mini-
mized with respect to the intensities as well as to the locations of the inductors.
This last step of the optimization problem leads to a combinatorial search in
the set of admissible locations. These ideas have been fully developed in the
paper by Machado et al. (2017) in the context of inverse gravimetry problem,
where a discussion concerning the complexity of the resulting reconstruction
algorithm can be found, together with alternatives to accelerate it.

5. Numerical examples

We show here some examples to illustrate the efficiency of the algorithm pro-
posed. For details of the boundary element method used to solve the boundary
value problems see (Canelas et al., 2011). In the examples we express all phys-
ical magnitudes in the same consistent system of units. In this system we set
for all the examples σ = 1.0× 10−4 and µ0 = 1.0. The regularizing parameter
considered for the examples is λ = 1.0 × 10−8 unless otherwise indicated. In
all examples the initial guess is set as j0 = 0.

The first example considers the same target shape of Example 1 in (Canelas
et al., 2014). This target shape is found as a solution of a direct free-surface
problem for a given distribution of electric current. We first try to arrange
the electric currents in a circle surrounding the target shape, which has radius
R = 1.5, and after that in a fine regular grid of inductors. The solutions found
when considering m = 30 possible inductors in the circle and m = 1188 in
the regular grid are shown in Figure 1. Note that the arrange of 30 inductors
is enough to find an equilibrium shape that almost exactly match the target
shape. This configuration has also the advantage of requiring the solution
of a smaller linear system which is not ill-conditioned even when considering
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Figure 1. Example 1, solutions found when considering m =
30 electric currents arranged in a circle of radius R = 1.5 and
m = 1188 inductors arranged in a square regular grid. Dashed
line: target shape, thin solid line: equilibrium shape for the
currents found. Currents are indicated by a circle with area
proportional to the current intensity, the positive currents are
indicated with a plus sign.
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Figure 2. Example 1, L-curve obtained for the case of Fig-
ure 1-right. The solution norm ‖α‖ is plotted against the resid-
ual norm ‖R(α, β)‖. Four values of the parameter λ are indi-
cated. The value λ = 1.0 × 10−14 provides a too high solution
norm, the value λ = 3.2× 10−12 would be chosen by the L-curve
criterion, the value λ = 1 × 10−8 provides the still acceptable
solution of Figure 1-right, and the value λ = 1.0×10−4 provides
a too high residual norm.

λ = 0. The solution of 1188 inductors cannot be obtained without applying
regularization. Figure 2 shows that when λ < 3.2× 10−12 the solution implies
high electric currents and is not acceptable. The L-curve criterion (Hansen
and O’Leary, 1993) can then be used to choose an appropriate value for the
regularization parameter.
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Figure 3. Example 2, solutions found when considering m =
30 electric currents arranged in circles of radius R = 1.5 and
R = 2.5.

The second example considers the target shape of Example 2 in (Canelas
et al., 2014). The concavity of target shape has the effect of increasing the
intensities of the surrounding inductors. When experimenting with inductors
located in a circle of larger radius the accuracy is deteriorated. If a radius
R = 2.5 is considered then the concavity is lost as is shown in Figure 3.

The next two examples consider target shapes that were not found by solving
direct equilibrium problems. Example 3 correspond to an ellipse of principal
diameters equal to 2.5 and 1.6. Example 4 considers the same target shape
of Example 3 in Canelas et al. (2014). The solutions found when considered
m = 30 inductors arranged in a circle of radius R = 1.5 for the ellipse and
radius R = 3.0 for Example 4 are depicted in Figure 4. Note that the ellipse
is accurately obtained, while the target shape of Example 4 cannot be shaped
accurately by considering inductors arranged in a circle. Note also that in both
examples the inductors located close to the target shape have less intensities
that the inductors located far from it. This fact suggests that we could find
more accurate and more economical solutions by locating the inductors close
to the target shape.

We then solve Example 4 considering a regular grid of m = 152 possible
inductors, and considering a subset of the inductors of the grid which contains
only the closest m = 48 inductors to the target shape. The results obtained
are shown in Figure 5. It can be appreciated that the solutions found are
in both cases very accurate and preferable over the one depicted in Figure 4.
Note that the intensities in some of the remaining inductors have changed in
value and also in the sign. Finally, note that the solution with only m = 48
inductors has the advantage of requiring the solution of a smaller linear system
of equations.

6. Conclusions

A new method for determining the optimal locations and intensities of point-
wise inductors in a inverse electromagnetic casting problem has been proposed
in this paper. The main idea consists in minimizing a Kohn-Vogelius based
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Figure 4. Examples 3 and 4, solutions found when considering
m = 30 electric currents arranged in circles of radius R = 1.5
and R = 3.0, respectively.

Figure 5. Examples, solutions found when considering m =
152 and m = 42 electric currents.

functional with respect to a set of admissible inductors, leading to a very
simple and efficient (fast) non-iterative second-order algorithm. Since the as-
sociated Hessian matrix becomes ill-conditioned, a regularizing term has been
introduced. As an adjacent result, it penalizes the higher electric current in-
tensities, which leads to a reduction of the total electric energy consumption.
Finally, some numerical examples have been resented, showing the efficiency
of the proposed method to design suitable inductors.
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