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Abstract. In this paper we propose an approach for Reliability Based Design Optimization
where a structure of minimum weight subject to reliability constraints on the effective stresses is
sought. The Reliability Based Topology Optimization (RBTO) problem is formulated by using
the Performance Measure Approach and the Sequential Optimization and Reliability Assessment
method is employed. This strategy allows for decoupling the RBTO problem into two steps,
namely, a deterministic topology optimization and a reliability analysis. In particular, the
deterministic structural optimization problem subject to stress constraints is addressed with
an efficient methodology based on the topological derivative concept together with a level-set
domain representation method. The resulting algorithm is applied to some benchmark problems,
showing the effectiveness of the proposed approach.

1. Introduction

Topology optimization of continuum structures with stress constraints has been subject of
intense research over the last decades [11, 25, 6, 12]. In this context, one seeks the optimum
distribution of material inside a given domain that results in a structure with minimum weight
and that respects constraints based on the effective stresses. Results obtained with topology
optimization have a valuable field of application in the design of structures and mechanical
components. In addition, in most traditional approaches, loads and material properties are
considered as deterministic parameters. However, it is well known that in realistic engineering
problems many parameters are subject to uncertainties. Besides, it has been observed that
uncertainties consideration may lead to solutions conceptually different from deterministic opti-
mization. This fact supports the application of optimization under uncertainties in several cases
of practical interest.

Over the years, different approaches to incorporate uncertainties in the design optimization
process have been proposed, see for example the reviews presented in [8, 26, 19] and references
therein for details. Optimization of continuum structures considering uncertainties has been
widely discussed in the literature. In particular, most works on the subject can be grouped into
the classes: Robust Design Optimization and Reliability Based Design Optimization (RBDO).
In the case of Robust Design Optimization, the goal is to obtain an optimum design that is least
sensitive to uncertainties in the problems parameters [18, 10, 5, 29]. In the case of Reliability
Based Design Optimization the constraints of the optimization problem are stated as to impose
a target reliability level for the system under design [30, 22, 20].

More recently, RBDO approaches have been applied to topology optimization, originating
the field of Reliability-Based Topology Optimization (RBTO) [16, 28, 13]. The main goal in
RBTO is to find optimal topologies taking into account uncertainties in some parameters, such
as load magnitudes and material properties. The optimum topologies obtained with RBTO are
frequently different than the ones obtained with deterministic optimization alone. Recent works
concerning RBTO applied to the volume minimization of structures with stress constraints were
presented by [20, 27], while design of Microelectromechanical systems has been presented in
[22, 17].

The goal of this paper is to present an approach based on the topological derivative concept for
Reliability Based Topology Optimization (RBTO), where a structure of minimum weight sub-
ject to von Mises stress constraints under load and material uncertainties is sought. Following

Key words and phrases. topology design; structural optimization; uncertainties; topological derivatives.

1



2

the original ideas presented in [29] in the context of compliance minimization under uncertain-
ties, the RBTO problem is formulated using the Performance Measure Approach (PMA) [30]
and the Sequential Optimization and Reliability Assessment (SORA) approach [9] is employed.
This strategy allows for decoupling the RBTO problem into two steps, namely, a deterministic
topology optimization step and a reliability analysis step. The deterministic structural topology
optimization problem subject to stress constraints is addressed with an efficient algorithm based
on the topological derivative of the associated objective functional combined with a level-set
representation of the structure domain [4].

There are two main advantages in using the topological derivative concept in the context
of topology optimization under uncertainties, which are: (i) from the mathematical point of
view, this concept has been proved to be robust with respect to uncertain data [15] and, (ii)
it provides an analytical (exact) form for the topological sensitivity [24] which allows to obtain
the optimal design in few iterations. In fact, the resulting approach leads to a topology design
algorithm of remarkably efficiency and of simple computational implementation, which features
only a minimal number of user-defined algorithmic parameters. In this paper therefore, the
theory developed in [15] is also confirmed from the numerical point of view. At the end of this
paper some benchmark problems are solved in order to show the effectiveness of the proposed
approach. The numerical experiments agree well with the results that should be expected by
other methods. Therefore, our approach can be seen as an alternative method for optimum
design of structures with stress constraints under uncertainties.

This paper is organized as follows. We first present a brief review of RBDO with key aspects
relevant to this work. The proposed approach is stated in Section 3. In particular, we describe
how the SORA concept can be used to decouple the nested reliability optimization problem into
a deterministic optimization step and a reliability analysis step. The resulting deterministic
structural topology optimization problem is presented in Section 4, which is solved by using the
topological derivative concept together with a level-set domain representation method. Some nu-
merical examples are presented in Section 5, showing the effectiveness of the proposed approach
as well as the importance of considering uncertainties in the topology optimization problem.
Finally, some concluding remarks are presented in Section 6.

2. Brief review of RBDO

Historically, uncertainties in design of structures were taken into account by using safety
factors. However, it is well known that the safety factor approach can be limited in a wide
variety of cases, resulting in too conservative or unsafe designs. For these reasons, methods
for evaluating the reliability of structures have been developed over the years [21, 23]. When
constraints considering reliability measures are imposed on design optimization the resulting
problem is called RBDO.

There are many different ways to formulate and solve RBDO problems [8, 26]. However,
concepts related to First/Second Order Reliability Methods (FORM/SORM) are frequently
employed [19]. It is well known that results obtained with FORM/SORM are only approximate
in the presence of non-linear problems and random variables with non Gaussian distribution [21,
23]. Nevertheless, FORM based approaches are widely employed since the resulting numerical
schemes are, in general, computationally efficient in comparison to other approaches, such as
sampling based approaches. A given RBDO problem can be stated as

{
Minimize f(d)
subject to: Pfi(d,x) ≤ Pt, i = 1, 2, ...,m,

, (2.1)

where d is the design vector, x is a vector of random variables, Pt is the allowable probability
of failure and Pfi is the probability of failure given by

Pfi(d,x) = P (gi(d,x) > 0), (2.2)

where gi are limit state functions such that gi > 0 indicates failure of the systems under analysis
and P indicates the probability of occurrence of a given event. In the above problem we neglected
deterministic constraints without loss of generality. Besides, in order to keep the notation in
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accordance with the rest of this work, we have modified the standard notation encountered in
literature where gi < 0 indicates failure.

In the case of highly reliable systems the probability of failure results in very small values.
In order to avoid numerical issues related to working with small values, the RBDO problem is
generally rewritten in terms of reliability indexes. The reliability index according to the limit
state gi can be defined as

βi(d,x) = Φ−1 (1− Pfi(d,x)) , (2.3)

where Φ−1 is the inverse cumulated distribution function of the normal distribution with zero
mean and unitary standard deviation. This reliability index can be evaluated exactly if the
probability of failure is known or using some approximate scheme. In the case of FORM, the
exact reliability index is approximated by the Hasofer-Lind reliability index, defined as the
solution of the reliability analysis problem

{
βHL
i (d,x) = min ‖v‖

subject to: gi(d,x) = 0
(2.4)

with

v = T (d,x), (2.5)

where T is a transformation from x to an equivalent normal random vector v [21, 23]. Note that
the reliability analysis problem searches for the realization of the random vector that is closest
to the expected value v = 0 and lies over the edge of the limit state gi = 0. For this reason, the
solution of this problem is frequently called the most probable point of failure. It is important
to highlight that the Hasofer-Lind reliability index is exact only when gi is a linear function of
x and the random variables have Gaussian distribution [21, 23].

In this context, the RBDO problem can be rewritten in terms of reliability indexes as
{

Minimize f(d)
subject to: βi(d,x) ≥ βt, i = 1, 2, ...,m,

(2.6)

where βt is the target reliability index given by

βt = Φ−1(1− Pt). (2.7)

In most situations the reliability index is approximated by the Hasofer-Lind reliability index,
in order to reduce the computational effort required. In these cases the solution of the RBDO
problem must be viewed as an approximate solution.

In the reliability index approach the above RBDO problem is solved directly using some
optimization algorithm. However, it has been observed that this approach is ill conditioned,
since evaluation of the Hasofer-Lind reliability index is sometimes numerically unstable. As
proposed by Tu et al. [30], this issue can be avoided if the problem is reformualted adopting the
PMA. In this case, the RBDO problem is rewritten as

{
Minimize f(d)
subject to: gi(d,x

∗
i ) ≤ 0, i = 1, 2, ...,m,

(2.8)

where x∗
i is solution to the inverse reliability analysis problem

{
x∗
i = arg max gi(d,x)

subject to: ‖T (d,x)‖ = βt.
. (2.9)

In the inverse reliability analysis problem we search for the realization of the random vector
that most violates the limit state within a given range from the expected value, defined according
to the target reliability index. This realization can be viewed as a worst case scenario, that is
then considered in the constraint of the RBDO problem. It has been demonstrated that this
problem is equivalent to the reliability index approach [30]. Besides, the problem is better
conditioned and in general leads to more stable algorithms and better convergence rates. For
this reason, the PMA, together with latter modifications, has become one of the most widespread
approaches in the context of RBDO.
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3. Proposed Approach

In this work we want to find the optimal design of a structure into two spatial dimensions
subject to von Mises stress constraints and uncertainties on the data. Thus, we first present
the corresponding deterministic optimization problem in which we are dealing with. Then, we
introduce the reliability based design optimization problem. Finally, we present a strategy which
allows for decoupling both problems.

3.1. Deterministic Optimization Problem. Let us consider an open and bounded domain
D ⊂ R

2 with Lipschitz boundary Γ and a sub-domain Ω ⊂ D. Given a hold-all domain D and
a stress constraint-enforcement sub-domain Ω⋆, the deterministic optimization problem consists
in minimizing the weight of the structure under point-wise stress constraints. Therefore, we
want to find a sub-domain Ωd ⊂ D that solves the following constrained topology optimization
problem: {

Minimize
Ω⊂D

|Ω|,

subject to: gΩ ≤ 0, a.e. Ω⋆ ⊂ Ω,
(3.1)

where Ω = Ω⋆ ∪ ω ⊂ D, with ω used to denote a part of Ω where the stress constraints are
not enforced. Some terms in the above equations still require explanations. The quantity |Ω|
represents the Lebesgue’s measure of Ω (required volume of material). In addition, the constraint
gΩ is defined as

gΩ = σM − σ, (3.2)

where σ is the stress limit (yielding stress) and σM is the von Mises stress given by

σM =

√
1

2
BσΩ · σΩ, (3.3)

with B = 3I − I ⊗ I and I and I the fourth and second order identity tensors, respectively. In
addition, σΩ represents the stress tensor.

3.2. Reliability Based Design Optimization Problem. As occurs in most cases of practical
interest, the parameters of the structural optimization problems such as load intensities and
material properties are not deterministic variables. Let x = [xi], i > 0, be a vector of random
variables that affect the stress constraint. Then, we note that the constraint gΩ becomes a
random variable itself and write gΩ := gΩ(x). In this case the deterministic problem (3.1) can
result in inefficient designs in practice. It is then necessary to ensure that designs present a
sufficient reliability level.

In this work we formulate the RBDO problem using the PMA [30], so the RBTO problem
can be stated as: Find Ωp ⊂ D, such that

{
Minimize

Ω⊂D
|Ω|,

subject to: gΩ(x
∗) ≤ 0, a.e. Ω⋆ ⊂ Ω,

(3.4)

where x∗ is solution of following inverse reliability analysis problem: Find x∗ ∈ R
m, such that

{
Maximize gΩ(x),
subject to: ‖T (x)‖ = βt, a.e. Ω⋆ ⊂ Ω.

(3.5)

where βt is target reliability index and v is the normalized random vector. In the case of
independent Gaussian random variables, the transformation T : x→ v is given by

vi =
xi − xi

si
, (3.6)

where xi and si are the mean and the standard deviation of the random variables xi. In the
case where the variables have non Gaussian distributions, its is possible to apply (3.6) with
equivalent mean and standard deviation obtained with some criterion, such as the normal tail
approximation [14].

The solution of problem (3.5) is the point that maximizes the limit state function gΩ within
a distance equal to the minimum allowable reliability index βt. Consequently, it can be viewed
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as the Worst Case Scenario among all points distant βt from the origin of the normalized
probabilistic space. By imposing gΩ(x

∗) ≤ 0 in problem (3.4), we are actually ensuring that the
worst case scenario will not violate the original constraint of the problem.

3.3. Decoupling Strategy. From (3.4), we note that it is necessary to solve an optimization
problem (the inverse reliability analysis problem) in order to evaluate the constraint. We thus
have two nested optimization problems. Solving the nested optimization problem directly can
lead to very demanding computational routines and convergence difficulties, and is not an effi-
cient approach in most cases. For this reason, several FORM based decoupling approaches have
been proposed over the years [8, 26, 19].

In this paper we adopt the SORA approach [9], since it is flexible and easy to employ together
with existing deterministic optimization algorithms. We first define the solution of problem (3.4)
as the pair (Ωp,xp). We note that, x∗ is defined as the Worst Case Scenario obtained for an
arbitrary topology, while xp is defined as the special Worst Case Scenario obtained with the
optimum topology Ωp.

If, for some reason, xp was known beforehand, it would not be necessary to solve problem (3.5)
before solving problem (3.4). In this case, the optimum topology Ωp would be found directly
by taking the Worst Case Scenario xp in problem (3.4). This puts in evidence that, once the
Worst Case Scenario xp is known, problem (3.4) becomes a deterministic topology optimization
problem. On the other hand, if the optimum topology Ωp is known, the Worst Case Scenario
xp can be found directly by solving (3.5) point-wisely with the optimum topology Ωp.

In practice, neither Ωp nor xp are known beforehand. However, it is possible to start from
initial approximations and iterate until accurate solutions are found. In fact, let us indicate
some iteration number with (k). Then an iterative algorithm for solving the RBTO problem
can be summarized as presented in Algorithm 1. The procedure is started with an arbitrary
topology Ω(0). With this topology we find the Worst Case Scenario x(0) at each point of interest
by solving (3.5) with Ω(0). From the Worst Case Scenario x(0) we find a new topology Ω(1) and
so on, until convergence is achieved.

Algorithm 1: Reliability Based Topology Optimization Algorithm

input : Initial topology Ω(0)

output: (Ωp, xp)

1 Set k ← 0;

2 Compute x(0) by solving (3.5) with Ω = Ω(0);

3 while convergence is not achieved do

4 Make k ← k + 1;

5 Compute Ω(k) by solving (3.4) with x∗ = x(k−1);

6 Compute x(k) by solving (3.5) with Ω = Ω(k);

7 end while

8 Return (Ωp, xp) as solution.

We also point out that problem (3.5) can be solved by efficient schemes already developed
in the literature. This problem is here solved by using the Advanced Mean Value algorithm,
originally proposed in [31]. Besides, in this work the interest points of the structure (the points
where we find the Worst Case Scenarios) are taken as Gauss nodes inside the finite elements.

4. Structural Topology Optimization Problem

The RBTO we are dealing with consists in solving problem (3.4) with the Worst Case Scenarios
found from problem (3.5). Without loss of generality, we restrict ourselves to uncertainties on
the intensity of the applied loads and the stress limit σ (note that problem stated through (3.5)
and (3.4) is general and can be applied when other parameters are random variables). The vector
of random variables is then composed by load scale factors of the applied loads and a scale factor
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for the stress limit (yielding stress). Considering that q1, q2, ..., qm−1 are the expected values of
the applied loads, we then write the total uncertain applied load q as

q =

m−1∑

i=1

xiqi, (4.1)

where x1, x2, ..., xm−1 are load scale factors. The stress limit, on the other hand, is written as

σ = xmσd, (4.2)

where xm represents the stress limit scale factor and σd is the expected value of the stress limit.
In this case, we can use linear superposition of the effects in order to save computational

effort. The stress σ and strain ε tensors at each point can be written as

σΩ :=

m−1∑

i=1

xiσ(ui) and εΩ :=

m−1∑

i=1

xiε(ui). (4.3)

The canonical strain ε(ui) and stress σ(ui) tensors are obtained from each individual load qi.
For this purpose, we must solve the following set of canonical variational problems related to
the structural response when each load qi is applied: Find ui ∈ V such that





∫

D
σ(ui) · ε(η) =

∫

ΓN

qi · η ∀η ∈ V,

with σ(ui) := ρCε(ui),
(4.4)

(4.5)

where

ε(ϕ) =
1

2
(∇ϕ+ (∇ϕ)⊤). (4.6)

The space V is defined as

V := {ϕ ∈ H1(Ω;R2) : ϕ|Γ
D

= 0}. (4.7)

The piecewise constant function ρ, is defined such as:

ρ(x) :=

{
1, if x ∈ Ω,
ρ0, if x ∈ D \ Ω,

(4.8)

with ρ0 ≪ 1 used to mimic voids. That is, the structure itself consists of the domain Ω with
elastic properties and the remaining part D \ Ω, is approximated by means of the two-phase
material distribution given by (4.8) over D. The empty region D \Ω is filled by a material (the
soft phase) with Young’s modulus, ρ0E, much lower than the given Young’s modulus, E, of the
structure material (the hard phase).

Since the topology optimization problem (3.4) is ill-posed, a regularization term given by
the strain energy stored in the structure is included [1]. The resulting constrained topology
optimization problem is written as follows: Find Ωp ⊂ D, such that

{
Minimize

Ω⊂D
JΩ := |Ω|+ κKΩ,

subject to: gΩ(x
∗) ≤ 0,

(4.9)

with κ > 0 and the functional KΩ defined as

KΩ =

∫

Ω
σΩ · εΩ, (4.10)

where σΩ and εΩ is obtained from (4.3). In addition, the stress constraint in problem (4.9)
is imposed by using an efficient class of von Mises stress penalty functional introduced in [6].
Before defining the corresponding penalty functional, let us define the nominal stress S as follows

S :=
σΩ
σ

. (4.11)
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Then, the von Mises stress constraints in terms of normalized stresses are stated as:

S2
M (x∗) := S2

M =
1

2
BS · S ≤ 1. (4.12)

Now, let Φ : R+ → R+ be a nondecreasing function of class C2. We assume that the derivatives
Φ′ and Φ′′ are bounded. Then, the penalty functional is defined as:

GΩ :=

∫

Ω⋆

Φ(S2
M ). (4.13)

In particular, we shall adopt a function Φ of the following functional form:

Φ(t) ≡ Φp(t), (4.14)

where p ≥ 1 is a given real parameter and Φp : R+ → R+ is defined as [3]

Φp(t) = [1 + tp]1/p − 1. (4.15)

Therefore, the constrained optimization problem (3.4) with point-wise constraints can be ap-
proximated by the following penalized optimization problem:

Minimize
Ω⊂D

J α
Ω := JΩ + αGΩ, (4.16)

with the scalar α > 0 used to denote a given penalty coefficient. Following the original ideas
presented in [6], the local stress constraints in (4.9) are replaced by the penalty functional (4.13).
It has been shown in [6] that the unconstrained problem (4.16) is a good approximation to the
original constrained problem (4.9) provided that the two following conditions are fulfilled:

• α is large enough in (4.16);
• Φ′

p admits a sharp variation around t = 1 in (4.15).

In practice, we chose α as large as possible according to each problem under consideration and
p is set as 32, which produces the desired sharp variation of Φ′

p around t = 1. See [3] for more
details.

In order to simplify further analysis, let us introduce an adjoint state, which is solution of the
following boundary value problem:





−div(σ(v)) = div(χ
Ω⋆k1(S)B̃S) in D,

σ(v) = ρCε(v)
v = 0 on ΓD,

σ(v)n = −χ
Ω⋆k1(S)B̃Sn on ΓN ∪ Γ0,

(4.17)

where the tensor B̃ is given by

B̃ = 6µI+ (λ− 2µ)I⊗ I. (4.18)

The characteristic function χ
Ω⋆ is written as

χ
Ω⋆ =

{
1, in Ω⋆,
0, otherwise.

(4.19)

Finally, the function k1(S) is defined as

k1(S) = Φ′(S2
M ). (4.20)

The deterministic structural optimization problem (4.16) is solved by using the topological
derivative concept, which has been shown to be robust with respect to uncertainties on the data
[15]. The topological derivative measures the sensitivity of a given shape functional when the
topology of the domain is perturbed by insertion of holes, inclusions or source-terms [24]. It is
defined through a limit passage when the small parameter governing the size of the topological
perturbation goes to zero. Therefore, the topological derivative can be used as a steepest-
descent direction in an optimization process like in any method based on the gradient of the cost
functional. In contrast to traditional topology optimization methods, the topological derivative
formulation does not require a material model concept based on intermediary densities. Thus,
interpolation schemes are unnecessary. In addition, it has the advantage of providing an analytic
form for the topological sensitivity which allows to obtain the optimal design in few iterations.
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In fact, the resulting approach leads to a topology design algorithm of remarkably efficiency and
of simple computational implementation, which features only a minimal number of user-defined
algorithmic parameters.

For the sake of completeness, the topological derivative associated with the shape functional
J α
Ω , derived in [6], is stated here in its closed form. Since we are using a very compliant material

to mimic voids, the topological derivatives are presented in their limit cases versions when the
contrast parameter governing the material properties of the topological perturbations goes to
zero or infinity. Finally, the results are written in terms of the Lamé’s coefficients, so that they
can be used either in plane stress or plane strain assumptions. In particular, the topological
derivative of the shape functional J α

Ω is given by the sum

DTJ
α
Ω (x) = DT |Ω|(x) + κDTKΩ(x) + αDTGΩ(x), ∀x ∈ D. (4.21)

We are interested into two particular cases, which are:
Case 1. Let us consider x ∈ Ω. In this case ρ = 1 and the contrast on the material property
goes to zero since ρ0 ≪ 1. Then the topological derivative DTGΩ of the von Mises penalty
functional reads

DTGΩ = −P0S · ε(v) − χ
Ω⋆k1(S)TBS · S +

1

4
χ

Ω⋆k1(S)(10S · S − 2tr2S)

+ χ
Ω⋆Ψ(S)− χ

Ω⋆Φ(S
2
M ), (4.22)

where v solves the adjoint problem (4.17). The polarization tensor P0 is given by [2]

P0 =
λ+ 2µ

λ+ µ

(
2I−

µ− λ

2µ
I⊗ I

)
, (4.23)

while the fourth order tensor T is written as

T = a2I+
a1 − a2

2
I⊗ I, (4.24)

with

a1 =
λ+ µ

µ
; a2 =

λ+ 3µ

λ+ µ
. (4.25)

The function Ψ(S) can be written as

Ψ(S) =
1

π

∫ 1

0

∫ π

0

1

t2
[
Φ(S2

M + Λ(t, θ))−Φ(S2
M )− Φ′(S2

M )Λ(t, θ)
]
dθdt, (4.26)

where

Λ(t, θ) = −
t

2

[
5(S2

I − S2
II) cos θ + 3(SI − SII)

2(2− 3t) cos 2θ
]

+
t2

4

[
3(SI + SII)

2 + (SI − SII)
2(3(2 − 3t)2 + 4cos2 θ) + 6(S2

I − S2
II)(2− 3t) cos θ

]
, (4.27)

with SI and SII used to denote the eigenvalues of S. Finally, the topological derivative of KΩ is
given by

DTKΩ = −P0σΩ · εΩ, (4.28)

and the topological derivative of the volume reads

DT |Ω| = −1. (4.29)

Case 2. Now, let us consider x ∈ D \ Ω. In this case x /∈ Ω⋆ by definition and ρ = ρ0 ≪ 1.
Therefore, the contrast on the material property goes to infinity. Then the last term in (4.21),
namely DTGΩ, is given by

DTGΩ = −P∞S · ε(v), (4.30)

with v solution (4.17). The polarization tensor P∞ is written as [2]

P∞ = −
λ+ 2µ

λ+ 3µ

(
2I+

µ− λ

2(λ+ µ)
I⊗ I

)
. (4.31)
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The topological derivative of KΩ is given by

DTKΩ = −P∞σΩ · εΩ, (4.32)

and, finally, the topological derivative of the volume assumes

DT |Ω| = 1. (4.33)

The topological derivative with respect to the nucleation of a small circular inclusion with
different material property from the background governed by a general contrast can be found in
[6].

In fact, the above result (4.21) together with a level-set domain representation method pro-
posed in [4] (see also [7] for more details) is used for solving the deterministic topology opti-

mization problem (3.4) with x∗ = x(k) fixed, necessary in step (3) of the algorithm proposed in
Section 3.3.

5. Numerical Examples

In this section we present some numerical results showing the effectiveness of the proposed
methodology. In all numerical examples we assume that the structures are under a plane stress
state. The Young’s modulus and the Poisson ratio are respectively given by E = 21000kN/cm2

and ν = 0.3 while the strength limit of the material is σ = 21kN/cm2. Furthermore, p = 32 in
(4.15) and the contrast on the material property is given by ρ0 = 10−4.

The mechanical problem is discretized into linear triangular finite elements and two steps of
uniform mesh refinement were performed during the iterative process. In addition, we consider
load intensities and/or stress limit of the material as random variables and linear superposition
of effects is used. We also take a target reliability index equal to βt = 2.0.

The numerical realizations are driven as follows. We set the hold-all domain as initial guess,
namely Ω = D. The domains Ω⋆ and ω are represented by dark and light grays, respectively.
The thick lines represent clamped boundary conditions, while dashed lines means symmetry
conditions. If nothing is specified, there is homogeneous Neumann boundary condition.

5.1. Example 1. Let us consider a square panel of size 100×100cm2 submitted to a distributed
loading q, in region of size 50cm, whose resultant is denoted by Q = 21kN , see Fig. 1 for details.
The hold-all domain, modeled by using vertical symmetry conditions, is discretized into an initial
uniform mesh with 6400 elements and 3281 nodes. The final mesh has 102400 elements and 51521
nodes. Finally, we choose κ = 10 and α = 1.

Figure 1. Example 1. Initial guess and boundary conditions.

If topology optimization is made considering all parameters as deterministic, the optimal
topology is that presented in Fig. 2(a). In this case, the final result after 27 iterations of the
topology optimization algorithm has approximately 51% of volume fraction. Now, we consider
the stress limit of the material as a random variable. In particular, we assume that the stress
limit scale factor is a Gaussian random variable with unitary mean, namely x = 1.0. In the
first case, the standard deviation is given by s = 0.20. The optimal topology in this case was
obtained after 26 iterations of the topology optimization algorithm and it is presented in Fig.
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2(b). As expected, the volume of the structure was slightly increased and we have 53% of
volume fraction. Next, we repeat the same experiment by setting s = 0.35. In this case the final
topology, obtained at iteration 32 of the topology optimization algorithm, can be seen in Fig.
2(c). Once again, we observe that the final volume of the structure is increased and we have
57% of volume fraction. Figure 3 shows the obtained stress distributions for all cases at the end
of the optimization process. In addition, as can be seen in Table 1, the stress remains under
control in all cases.

(a) (b) (c)

Figure 2. Example 1. Optimal topologies: (a) deterministic optimization s = 0,
(b) optimization under uncertainties s = 0.20, (c) optimization under uncertain-
ties s = 0.35.

(a) (b) (c)

Figure 3. Example 1. Stress distributions: (a) deterministic optimization s = 0,
(b) optimization under uncertainties s = 0.20, (c) optimization under uncertain-
ties s = 0.35.

Table 1. Example 1. Maximal normalized stress obtained at the end of the
iterative process.

max
Ω

(SM ) vol(%)

s = 0.00 1.03 50.75
s = 0.20 0.99 52.77
s = 0.35 0.97 57.09
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5.2. Example 2. Let us consider a square panel of size 100 × 100cm2 clamped on its top
and submitted to a pair of loads, as shown in Fig. 4. The loading consists of two forces
q1 = (160.0,−160.0)kN and q2 = (−160.0,−160.0)kN applied on the middle of the bottom
edge. No correlation among the random variables is assumed. The stress constraint is not
enforced in the light gray region around to the point where the load is applied (see Fig. 4).
The hold-all domain is discretized into an initial uniform mesh with 6400 elements and 3281
nodes. The final mesh has 102400 elements and 51521 nodes. In addition, we choose κ = 100
and α = 10.

Figure 4. Example 2. Initial guess and boundary conditions.

The optimal topology considering all parameters as deterministic was obtained after 25 it-
erations of the topology optimization algorithm and has 24% of volume fraction. Figure 5(a)
shows the solution which is a benchmark to this problem. Next, we consider the load intensities
as random variables. In fact, we assume that the load scale factors are represented by Gaussian
random variables with unitary mean, namely x1 = x2 = 1.0. In a first moment we define the
standard deviations as s1 = s2 = 0.07. The optimum topology obtained at iteration 24 of the
topology optimization algorithm is presented in Fig. 5(b). The volume of the structure has
34% of volume fraction. As expected, the optimum solution of this case leads to a V-bracket
structure, able to handle the horizontal components of the loads that result for cases where the
two forces do not have the same intensities. Now, we repeat the same experiment by setting
s1 = s2 = 0.15. In this case the optimal result was obtained after 20 iterations of the topology
optimization algorithm with 41% of volume fraction. Figure 5(c) shows the final topology. We
observe that the resulting topology also has a V shape with more volume than in the previous
case. The stress distributions for all cases at the end of the optimization process are presented in
Fig. 6. We note that in all cases under study, the maximum stress does not exceed the threshold
within Ω⋆ represented by dark gray color in Fig. 4 .

5.3. Example 3. Let us consider the topology design of a tower as shown in Fig. 7. The hold-
all domain is given by a T-bracket structure, composed by two rectangles of sizes 200× 400cm2

and 400 × 200cm2, clamped on the bottom. It is discretized into an initial mesh containing
34412 elements and 17511 nodes. The mesh is intensified at the re-entrant corner in order to
capture the stress singularities. The final mesh has 583208 elements and 292845 nodes. The
loading consists of a pairs of forces q1 = q2 = (0.0,−120.0)kN applied at the two opposites
bottom corners of the horizontal branch. The stress constraint is not enforced in the light gray
regions of radius 40cm centered at the points of load application (see Fig. 7). In addition, we
choose κ = 1.5× 103 e α = 105.

In this last example uncertainties are considered during optimization by taking load intensities
and stress limit of the material as random variables. No correlation among the random variables
is assumed. Therefore, we assume that the load scale factors and stress limit scale factor are
represented again by Gaussian random variables with unitary means, namely x1 = x2 = x3 = 1.0
and identical standard deviations given by s1 = s2 = s3 = 0.10.
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(a) (b) (c)

Figure 5. Example 2. Optimal topologies: (a) deterministic optimization s1 =
s2 = 0, (b) optimization under uncertainties s1 = s2 = 0.07, (c) optimization
under uncertainties s1 = s2 = 0.15.

(a) (b) (c)

Figure 6. Example 2. Stress distributions: (a) deterministic optimization s1 =
s2 = 0, (b) optimization under uncertainties s1 = s2 = 0.07, (c) optimization
under uncertainties s1 = s2 = 0.15.

Figure 7. Example 3. Initial guess and boundary conditions.

Figure 8(a) presents the optimal topology considering all parameters as deterministic. It was
obtained after 82 iterations of the topology optimization algorithm and has 37.5% of volume
fraction. Now we consider the uncertainty case. The resulting structure was obtained after 34
iterations of the topology optimization algorithm and it is presented in Fig. 8(b), it has 45.5%
of volume fraction.

Figure 9 shows the stress distributions at the end of the optimization process. We observe
that in both cases under study, the maximum stress does not exceed the threshold within Ω⋆

represented by dark gray color in Fig. 7. We also highlight that the design obtained considering
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(a) (b)

Figure 8. Example 3. Optimal topologies: (a) deterministic optimization s1 =
s2 = s3 = 0, (b) optimization under uncertainties s1 = s2 = s3 = 0.10.

uncertainties is significantly different from the deterministic one. The distributions of the scale
factors in the worst case scenario x1, x2 and x3 are shown in Fig. 10. It is interesting to note
that the point-wise worst case scenarios present significant variation over the structural domain.
The reliability index of the optimum design obtained with Monte Carlo Simulation [21, 23] using
105 samples was β = 2.3174. This reliability index is higher than the target value because the
objective function of the topology optimization problem also takes into account the structural
compliance, leading to more reliable structures. See discussion in the previous sections.

(a) (b)

Figure 9. Example 3. Stress distributions: (a) deterministic optimization s1 =
s2 = s3 = 0, (b) optimization under uncertainties s1 = s2 = s3 = 0.10.

6. Conclusion

In this paper an approach for reliability based topology optimization under stress constraints
has been presented. Using the Sequential Optimization and Reliability Assessment approach the
problem can be rewritten as a deterministic optimization problem with modified parameters,
that are obtained with inverse reliability analysis as in the Performance Measure Approach.

This procedure allows us to easily adapt existing deterministic optimization algorithms for the
case of reliability based optimization. Here, the deterministic structural topology optimization
problem subject to stress constraints has been addressed with an efficient algorithm based on
the topological derivative concept and a level-set domain representation method. The examples
presented here considered load magnitude and stress limits uncertainties.
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(a) x1 (b) x2 (c) x3

Figure 10. Example 3. (a) and (b) load scale factors, (c) stress limit scale factor.

The examples presented show that our approach is able to obtain optimum solutions that
take into account data uncertainties. Most important is the fact that the designs obtained
considering uncertainties are significantly different – and more acceptable from the physical
point of view – than the ones obtained with deterministic optimization only. This indicates
that deterministic optimization may not be able to obtain efficient designs in cases subject to
significant uncertainties, such as those frequently encountered in practical applications. However,
it should be noted that structural topology optimization based on volume minimization under
stress constraint is an ill-posed problem. In particular, there is a lack of sufficient optimality
conditions for such a topology optimization problem. Therefore, the numerical results presented
in this paper are just local minimizers. Finally, we remark that the extension of these ideas
to real world problems into three spatial dimensions is not trivial at all and requires further
investigation.
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