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ABSTRACT. Flow machines are very important to industry, being widely used on various pro-
cesses. Thus, performance improvements are relevant and can be achieved by using topology
optimization methods. In particular, this work aims to develop a topological derivative formu-
lation to design radial flow machine rotors by considering laminar flow. Based on the concept
of traditional topology optimization approaches, in the adopted topological derivative formu-
lation, solid or fluid material is distributed at each point of the domain. This is achieved by
combining Navier—Stokes equations on a rotary referential with Darcy’s law equations. This
strategy allows for working in a fixed computational domain, which leads to a topology design
algorithm of remarkably simple computational implementation. In the optimization problem
formulation, a multi-objective function is defined, aiming to minimize the energy dissipation,
vorticity and power considering a volume constraint. The constrained optimization problem is
rewritten in the form of an unconstrained optimization problem by using the Augmented La-
grangian formalism. The resulting multi-objective shape functional is then minimized with help
of the topological derivative concept. In the context of this article, the topological derivative
represents the exact sensitivity with respect to the nucleation of an inclusion within the design
domain and the obtained analytical (closed) formula can be evaluated through a simple post
processing of the solutions to the direct and adjoints problems. Both mentioned features allow
for obtaining the optimized designs in few iterations by using a minimal number of user defined
algorithm parameters. All equations and the derived continuous adjoint equations are solved
through finite element method. As a result, two-dimensional designs of flow machine rotors are
obtained by using this methodology. Their performance is analyzed by evaluating velocity and
pressure distributions inside rotor.

1. INTRODUCTION

Radial Flow Machines are widely spread over the industry, being used in several applications
from large scale turbines to small scale pumps.

The performance and robustness improvements of these machines depend on all parts of the
flow machine, such as the rotor, internal valves, bearings, nozzle and others. However, it is known
that the rotor presents the largest influence on the overall performance. In an experimental work
[32], estimated losses in the impeller to be about 35% of total losses. There are other design
parameters, such as blade number, blade outlet angle and impeller outlet diameter, that affect
flow machine performance.

In the case of number of blades the intuition suggests that a higher number of blades increases
the fluid interaction and so it would promote a higher energy transmission. In fact, the pump
pressure head rises as the number of blades increases, however, the presence of too many blades
may cause an increase in the blockage and skin friction in the impeller passage decreasing the
efficiency. Notwithstanding, a method to increase the efficiency is the addiction of splitters
between the blades [17]. Thus, the rotor design is an important step of the machine conception.

Flow machine rotor optimization comprehends from material selection to shape and position
definition of the blades. The performance enhancement of these rotors can be achieved by a try-
and-error approach, involving a number of sequential numerical analysis where the parameters
of the rotor are manually changed at each step [21]. However, this methodology is highly
time consuming and does not result, necessarily, in an performance optimization. Blade shape
optimization has been widely studied to design flow machine rotors. A initial shape is given and
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an algorithm performs local shape changes in order to improve some characteristic based on the
flow around the blade [22, 20, 11]. In the literature a number of works have applied different
optimization techniques to design these machines, obtaining significant efficiency gains [31, 12].

The application of topology optimization methods for viscous fluid flow problems is an active
area of research. The objective of optimization is to distribute fluid or solid in a design domain
to extremize a defined objective function subjected to some constraints. Following this way,
we can find many works in the literature that apply topology optimization methods based
on a material model definition to perform optimization of fluid flow channels. We can cite
[9] where the dissipated power is minimized in a flow channel by considering a 2D Brinkman
medium. The flow modelling is restricted to the incompressible Stokes flow, and a porous flow
model is introduced to relax the optimization problem from an integer (black—white) problem,
where either fluid or solid property is allowed in an element, to a continuous problem where
a continuous (grey) permeability design variable for each element is defined. Thus, in the
optimization problem, flow and (almost) non-flow regions are obtained by allowing interpolation
between the upper and lower values of the permeability [15, 16]. A first work applying the
topology optimization method to design flow machine rotors has been developed in [28], where
the fluid flow in the machine is modeled as Navier-Stokes flow with the addition of a rotary
reference system, arising the effects of Centrifugal force and Coriolis force. In their work diverse
configurations are proposed for the machine rotor, exploring the influence of the initial domain
and the effects of changes in the boundary conditions. As a result non-intuitive geometries, that
differs from traditional geometries, are obtained.

Another general approach to deal with shape and topology optimization design is based on
the topological derivative [30]. In fact, this relatively new concept represents the first term
of the asymptotic expansion of a given shape functional with respect to the small parameter
which measures the size of a domain perturbation, such as hole, inclusion, source-term and
crack. There are two main possible constructions [25]. The first one concerns singular domain
perturbations associated to nucleation of holes. The second case concerns regular perturbation
of the differential operator associated to nucleation of inclusions. The topological asymptotic
analysis has been successfully applied in the treatment of many problems in engineering. In
the field of fluid flow channel design, a first work was published in [19], where the topological
sensitivity analysis with respect to the insertion of a small hole or obstacle inside a domain
has been used to perform the shape optimization considering Stokes equations. This work was
extended in [4] to Navier-Stokes equations considering an incompressible fluid and a no-slip
condition prescribed on the boundary of an arbitrary shaped obstacle. See further improvement
in [18]. For the theoretical development of shape and topology optimization in the context of
compressible Navier-Stokes see, for instance, the book by [27]. These previous works are based on
the topological derivative with respect to singular domain perturbation. That is, the topology is
obtained by nucleating and/or removing holes in the fluid domain, which may create numerical
difficulties to deal with the boundary conditions on these holes. Thus, a recent work [29]
proposed a topological derivative formulation for fluid flow channel design based on the concept
of traditional topology optimization formulations where solid or fluid material is distributed at
each point of the domain. This is achieved by combining Stokes or Navier—Stokes equations with
Darcy’s law as first proposed in [9]. By using this idea, the problem of dealing with the hole
boundary conditions in topological derivatives during the optimization process is solved. In fact,
the asymptotic expansion is performed with respect to regular domain perturbation associated
with the nucleation of inclusions instead of inserting or removing holes in the fluid domain. As a
result the computational implementation of the topology design algorithm becomes remarkably
simple. Finally, in [13] the topological derivative is combined with standard level-set method
for the optimal shape design of Stokes flow.

Thus, this work will focus on developing a topological derivative formulation to design the
radial flow machine rotor by considering laminar flow. Despite our method is based on the
material model formulation used in the standard topology optimization method, it is free of
interpolation strategies. In fact, the steepest-decent direction associated with the topological
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derivative is continuous everywhere - including the interface solid/fluid - and does not require any
interpolation scheme to be evaluated, so that the grey density scale is here naturally avoided. In
addition, the topological derivative represents the exact sensitivity with respect to the nucleation
of an inclusion within the design domain and the obtained analytical (closed) formula can be
evaluated through a simple post-processing of the direct and adjoint solutions. All these features
together leads to a very simple and robust topology design algorithm, where the topologies with
well-defined solid/fluid interfaces are obtained in few iterations, with a minimal number of user
defined algorithm parameters.

The rotor optimization is obtained by optimizing the channel shape between two of its blades.
Thus, the numerical analysis considers the flow field between two blades of a rotor without
considering the influence of the volute. Losses due to the interaction between the impeller and
the volute are related to fluid leakage occurring when part of the fluid exits the impeller outlet
and returns to the inlet of the impeller through the opening in the volute reducing the pump
efficiency. This is a three-dimensional phenomenon and since in this work a two-dimensional
model is adopted, the axial velocity component can be neglected in comparison to the radial and
tangential components, thus, these specific losses cannot be taken into account. It is assumed
that the flow pattern in all sectors of the impeller is qualitatively similar to each other which
implies that the interaction between the volute and the flow inside the impeller channel may not
be significant at the operating point. Based on previous work [28], a general multi-objective is
defined by involving the minimization of the energy dissipation, the minimization of vorticity,
and minimization or maximization of power in the case of pump or turbine design, respectively,
considering a volume constraint.

Following the original ideas presented in [29], in the adopted topological derivative formu-
lation, solid or fluid material is distributed at each point of the domain to optimize the cost
function and satisfy constraints by combining Navier—Stokes equations with Darcy’s law equa-
tions. These equations and the derived continuous adjoint equations are solved through finite
element method. In contrast to the work [29] where only the energy is considered in a sta-
tionary frame, here a multi-objective cost function taking into account energy, vorticity and
power is considered on a rotary referential. In addition, the constrained optimization problem
is implemented in the form of an unconstrained optimization problem by using the Augmented
Lagrangian formalism. As a result, two-dimensional (2D) designs of rotors are presented and
compared.

The paper is organized as follows. In Section 2, the laminar flow machine rotor design problem
is defined and the topological derivatives with respect to the nucleation of a circular inclusion
of the energy, vorticity and power shape functionals associated with the Navier-Stokes systems
combined with Darcy’s law equation are obtained in their closed form. In Section 3, the topology
optimization algorithm is described and in Section 4, its numerical implementation is presented.
In Section 5, some numerical results of laminar flow machine rotor designs obtained by us-
ing topological derivatives are presented. Finally, in Section 6, some concluding remarks and
perspectives are inferred.

2. TorPOLOGY OPTIMIZATION PROBLEM

Let us consider an open and bounded domain D C R? with Lipschitz boundary dD. The
domain D is split into two subdomains D \ Q and Q, with Q C D. In addition, the boundary
0D is also split into two disjoint boundaries I';, and I'oyt, such that 0D = I'y, UT'gyt. The main
constitutive equation is given by the Navier-Stokes system, stated as: Find (u,p) € U x P, such
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that
/ uw(Vu)® : (Vo)® +/ p(Vu)u - v +/ au - v+
D D D
/ 2p(w><u)-v—/pdiv(v):/ b-v YveV,
D D D
/ gdiv(u) =0 VYqgeP. (2.1)
D
The set U and the space V are given by
u = {()0 € Hl(D;R2) : le((p) =0, 90|pin - uO} ) (22)
V = {peH(D;R?):div(p) =0, =0}, (2.3)
whereas P is defined as
PZ{QDELQ(D):/go:O}. (2.4)
D
In addition, b = p(by — w X (w x 7)) and
s 1
(V) =5 (Ve + (Vo)) (2.5)

The coefficient « is the inverse permeability. The viscosity pu and the mass density p are assumed
to be constant throughout the domain D. The angular velocity w is also constant. The vector r
is perpendicular to the axis of rotation. The source by is a body force, 2p(w X u) is the Coriolis
acceleration and w x (w x r) is the centripetal acceleration. Therefore, u represents the relative
velocity field of the rotating system and p the pressure. In particular, the inverse permeability
a = ax) is written as

_foay ifxeD\Q
o(z) '_{ ap ifxref ' (2:6)

where oy and ay are the upper and lower limits for the inverse permeability. Thus, D\ Q and
Q) are used to represent the solid and fluid phases, respectively. See sketch in Fig. 1.

p=0

FIGURE 1. Rotor sketch.

The optimization problem we are dealing with is stated as follows:
Minimize J(u),
QcD (2.7)
Subject to |Q2] < M,

where M represents a given amount of material and the shape functional J(u) is defined as
J(u) = welog(E(u)) + wy log(V(u)) £ wplog(P(u)), (2.8)
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with + used to denote minimization/maximization of the power P(u). The log function is used
to reduce the difference in magnitude order between the objective functions.

The constrained optimization problem (2.7) can be re-written in the form of an unconstrained
optimization problem by using the Augmented Lagrangian formalism adapted to the context of
topological derivative-based topology optimization method by [6], namely:

Minimize Fo(u) := J(u) + \ht + A (h1)? (2.9)

A2
QCD 2

where \; and )\ are positive parameters and the function h™ is defined as

A
Kt = max{h, -1} , (2.10)
A2
with function A given by
€
h:=——-1. 2.11
- (211)

For the particular case associated with volume constraint in the form |[Q| < M, see [10].

Some terms in the above minimization problem still require explanations. The shape func-
tional J(u) takes into account the contributions of the energy E(u), vorticity V(u) and power
P(u), so that the parameters we, w, and wy, with w.+w,+w, = 1, are the weighting coefficients
associated with energy, vorticity and power, respectively. In addition, the quantities F(u), V (u)
and P(u) are respectively defined as [28]

Mm::/mwwwwm+4mwﬁ (2.12)

D
Viu) = A [rot(w)[|* (2.13)
P(u) = /F (p(r><u)~<u)(u‘n)—i—/F (p(r x wxr) -w)(u-n), (2.14)

where u is solution to the Navier-Stokes system stated in Eq. (2.1) and |¢|| := (/¢ - ¢ is used
to denote the point-wise Euclidean norm of the vector function ¢.

In order to simplify further analysis, three adjoint problems are introduced. The first one is
stated as: Find (ug,pg) € V x P, such that

/ w(Vug)® : (Vv)? —i—/ p((Vu)Tug — (Vug)u) - v+
D D

/auE-v—/Qp(wqu)-v—l— (u-n)ug-v—
D D Tout

/ pr div(v) = 2/ w(Vu)? - (Vu)’ +2 [ au-v YveV,
D D D

/ qdiviug) =0 VYqeP, (2.15)
D

The second adjoint problem reads: Find (uy,py) € V x P, such that

/ u(Vuy)® : (Vo)* +/ p(Vu) "uy — (Vuy)u) - v+
D D

/ auv-v—/ 2p(wxuv)-v+/ (u-n)uy -v—
D D 1—‘out
/ py div(v) = 2/ rot(u) - rot(v) Yv eV,
D D

/ gdiv(uy) =0 VYqeP, (2.16)
D
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Finally, the third adjoint problem is stated as: Find (up,pp) € V x P, such that

[ uFup)* s (V0 + [ p((T0)Tup ~ (Vup)u) - o+
D D

aup-v— [ 2p(w X up)-v+ (1) up - v—
S 8
/DPP div(v) = /Fout(p(r X u) - w)n - vt

/(p(rxwxr)-w)n-v—i—/ (plwxr)@un-v YveV,
Cout

1_‘out

/ gdiv(up) =0 VYqeP, (2.17)
D

According to (2.1), on the inlet Ty, the velocity is given by ug and on the outlet 'y the
resulting pressure is zero (see Fig. 1). Note that these conditions induce a homogenous Dirichlet
boundary condition on I'j;, and a Robin boundary condition on I'yyt in the adjoint equations. In
particular, the Robin boundary conditions on I'o,y comes out from the variational forms (2.15),
(2.16) and (2.17), which are respectively given by

w(Vug)® + (u-njug = 2p(Vu)’n, (2.18)
u(Vuy)® + (u-n)uy = 2rot(u) xn, (2.19)
w(Vup)® + (u-n)up = (p(rxu) - wn+ (p(r xwxr) -wn+ (p(w xr)@u)n . (2.20)

The topological derivative of the multi-objective shape functional Fq(u) with respect to the
nucleation of a small inclusion with a contrast on the inverse permeability « is given by a sum
of the topological derivatives of each term in (2.9), namely

DrFq = DrJ(z) + k(z) max{0,\1 + \ah}, VxeD. (2.21)

where DrJ(x) = DrE(x) + DrV (xz) + DpP(z). In particular, the topological derivatives asso-
ciated with the energy DrFE(x), vorticity D7V (z) and power Dy P(x) can be deduced following
exact the same steps as presented in the paper [29]. They are given, respectively, by

DrE(x) = wiu(z)- (ug(x) —u(x)), (2.22)
DrV(z) = wiu(z)- uy(x), (2.23)
DrP(x) = Fwyu(r)-up(z), (2.24)
where the weights w;, wy and wy are defined as
* _ ay — oy,
wy = k:(x)weiE(u) , (2.25)
* ay — of
- S —ar 2.2
wp = kM (2.26)
* ay —og,
with the signal function k(z) defined as
[ +1 ifzeD\Q

Finally, u is solution to the direct problem (2.1), whereas ug, uy and up are respectively
solutions to the adjoint problems (2.15), (2.16) and (2.17), all of them associated with the
unperturbed domain D.



3. TorPOLOGY OPTIMIZATION ALGORITHM

For the sake of completeness, the topology optimization algorithm proposed in [7] is presented.
Its basic idea consists in achieve a local optimality condition for the minimization problem (2.9),
written in terms of the topological derivative and a level-set domain representation function.
Therefore, the fluid 2 as well as the solid D\ are characterized by a level-set function ¢ € L?(D)
of the form:

Q = {¢Y(z) <0, forx € D} (3.1)

D\Q = {¢¥(z)>0, forz € D}, (3.2)

where 1) vanishes on the interface 9. A local optimality condition for problem (2.9), under the
considered class of domain perturbation given by circular inclusions, can be stated as [5]

DrFox (.T) >0 VxeD. (33)
where Q* is a local optimizer for problem (2.9). Therefore, let us define the quantity

—DT]:Q(:E), if T[)(l‘) < O,

g(x) = { +DpFo(z), if p(z) >0, (3.4)
allowing for rewrite the condition (3.3) in the following equivalent form
o(z) <0, if () <0, 55
g(x) >0, if¢(x)> 0. '

We observe that (3.5) is satisfied whenever the quantity g coincides with the level-set function
1 up to a strictly positive number, namely 37 > 0 : g = 71, or equivalently [5]

<97¢>L2(D)
=0,
gl 20y 1] L2 (D)

6 := arccos [ (3.6)

which shall be used as optimality condition in the topology design algorithm, where 6 is the
angle between the functions ¢ and 1 in L?(D).

Let us now explain the algorithm. We start by choosing an initial level-set function ¥y €
L?(D). In a generic iteration n, we compute function g, associated with the level-set function
Yy, € L*(D). In order to evaluate g,, according to (2.21), it is necessary to solve (2.1) and then
the corresponding adjoint systems (2.15), (2.16) and (2.17) to obtain w,, uf, uy, and u}p, all
of them associated with ¢,,. Thus, the new level-set function ¥, is updated according to the
following linear combination between the functions g, and ¥,

o € L*(D), (3.7)

. . gn
- sin((1 — k)0,)Yy + sin(kb,) —— |,
sin 6, (( )6n) ( )HgnHL2(D)

¢n+1 =

where 0,, is the angle between g, and 1,, and x is a step size determined by a line-search
performed in order to decrease the value of the objective function 7, := Fq, (u,) associated
with ,,, where €,, is used to denote the region in D filled by the fluid and wu,, is solution to the
Navier-Stokes (2.1) system. The line-search algorithm reduces the value of x until a lower value
for the objective function is achieved, namely J,41 < Jn, where Jpy1 := Fq,,, (unt1). The
optimization process ends when the condition 0, < ¢y is satisfied in some iteration, where ¢y is
a given small numerical tolerance. In particular, we can choose

Yo € 8 ={p € L*(D) : [l r2(p) = 1}, (3-8)

and by construction ¢,11 € §, Vn € IN. If at some iteration n the line-search step size k is
found to be smaller then a given numerical tolerance €, > 0 and the optimality condition is not
satisfied, namely 0,, > €y, then a uniform mesh refinement of the hold all domain D is carried
out and the iterative process is continued.



Finally, the parameter Ao, which is kept fixed throughout the optimization procedure, is used
to update the parameter Ay according to the following rule:
AT = max|[0, \] + X\oh"] Vn €N, (3.9)

where AT and A" are the values of the parameter A\; and the function h evaluated at the iteration
n.
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F1GURE 2. Flow chart of the topological derivative algorithm.

Currently, the algorithm solves the governing equations (Navier-Stokes) every function eval-
uation which is not so efficient if a nonlinear governing equation (such as Navier-Stokes) is
considered. This limits the application of this algorithm for large computational problems.
Thus, as a future work, it can be implemented a onestep approach where the governing equa-
tions and line search would be solved simultaneously [26, 14]. The optimization algorithm is
illustrated in the flow chart from Fig. 2.

4. NUMERICAL IMPLEMENTATION

The FEniCS environment and its Python interface are used herein. The FEniCS system [24]
is a free collection of software components for automating the solution of PDEs by using the
finite element method. It has as input the weak formulation of the problem, in a language very
similar to the math syntax. It is thus, necessary to use a software capable of interpreting this
high-level language and to transform it into a numerical routine. This interpretation software
is the FEniCS Form Compiler (FFC), that receives a discrete form of the weak variational
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equation given in Unified Form Language (UFL) [1], similar to the mathematical formulation,
and generates a C++ code of the finite element assembly in the format of the Unified Form-
Assembly Code (UFC) [2]. This assembly is an optimised low-level code that evaluates the local
element tensors.

The local tensors are used by DOLFIN [23], a library that handles the communication between
all the FEniCS modules. This library also provides various data structures to interface meshes,
function spaces, functions and solvers. The FEniCS environment allows using many linear
algebra backends, such as PETSc used in this work.

To solve the Navier-Stokes problem, the FEniCS system offers pre-installed support to meth-
ods such as Generalized Minimal RESidual (GMRES). However, some external solvers can be
used, and the MUltifrontal Massively Parallel Sparse direct solver (MUMPS) [3] was chosen
here because it offers features such as input of the matrix in assembled format (distributed or
centralized), error analysis and parallel analysis.

5. NUMERICAL RESULTS

The topology optimization method is used by considering only the flow field between blades,
without considering the volute influence. Even though the fluid in a real flow machine is three-
dimensional, for the case of radial centrifugal impellers, the axial velocity component can be
neglected in comparison to the radial and tangential components, hence the flow path can be
approximated as a two-dimensional problem [28].

The rotor is modelled as a half-circumference, given that the it has a radial symmetry, with
the blade geometry being repeated in a radial pattern. Thus, for all cases shown in next sections,
the design domain and boundary conditions presented in Figure 3 are used. The finite element
problem is implemented by using triangular Taylor-Hood elements, which have a quadratic
degree of interpolation for the velocity and linear degree for the pressure. Arbitrary dimensions
are used to define the domain, thus, the domain D has an inner radius of 0.4 and an outer
radius of 1.0. The fluid properties used are density equal to 1.0 and viscosity equal to 0.1. The
angular velocity w used is 500rpm, unless specified other value. The external force by is equal
to zero (Eq. 2.1). According to [9], the inverse permeability « is set as apy = 2.51/0.01% and
ap, = 2.5;1/1002 for all the examples. Note that the limit cases a;, — 0 and oy — oo have to
be justified. Since it is out of the scope of this work, we refer to [8], where these limit cases are
discussed together with the concept of degenerated topological derivative.

Finally, the thresholds for the external topology optimization and internal line search loops,
described in the algorithm of Section 3, are respectively given by ey = 0.1° and €, = 10~*. These
parameters were fixed after some trials allowing to represent a good compromise between the
quality of the results and the computational cost. The volume ratio is defined as the fraction of
the fluid volume relative to the total domain volume, namely [Q|/|D|.

The results presented in the following sections are computed with a Linux machine with an
Intel Core i7 (3.7GHz) processor and 64Gb of memory.

p=0

FicURE 3. Design domain and boundary conditions.

Different initial guesses are used for the optimization process such as: a domain entirely fluid,
a domain composed of solid material, a straight blade and an involute blade. However, for effect
of comparison the involute blade is used as a benchmark, in order to evaluate the objective
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functions values (energy dissipation, vorticity and power). The involute blade is shown in Fig.
4, in which the gray domain is fluid and the black region is solid. The corresponding velocity

and pressure fields are shown in Fig. 5, respectively.

FIGURE 4. Involute blade defined for comparison.
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FIGURE 5. Involute blade reference: (a) Relative Velocity Field, (b) Pressure Field.
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FIGURE 6. Topology optimization results for energy dissipation functional con-
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Ficure 8. Corresponding entire rotors for topology optimization results of Fig.6.

5.1. Energy dissipation. The first set of results consider the pump optimization and the
energy dissipation functional for minimization, i.e., w. = 1.0 and focus on the difference between
the initial guesses: an entire solid, a straight blade and an involute blade. The rotation of 500
[rpm] is used. The final topologies are shown in Fig. 6, the sequential steps of the optimization
for the straight blade case is illustrated in Fig.9, and the respective convergence curve is shown
in Fig.10. The convergence curves for other results are similar to these curves, thus, they are
not shown. This case took 5 hours to complete. The starting mesh has 3,000 elements and it is
refined until 72,000 elements as the algorithm progresses. In addition, 221 FEM system and 76
adjoint computations are performed.

The corresponding velocity fields for the optimized blades are shown in Fig. 7 and the
corresponding entire rotors are shown in Fig. 8. The pressure fields are quite similar to the field
shown in Fig. 5, thus, they are not shown. The values of the objective functions are shown in
Table 1.

The small peaks in the convergence curve occur when the mesh is refined by the algorithm
during the linesearch operation. During the refinement, the interpolator, which defines the
material distribution for the new mesh, deforms the topology, causing a deterioration in the
functional value and an increase of 8 value for convergence.

The results from Fig. 6 are quite similar to the results presented in [28]. These results also
shown a decrease in the vorticity value, even though it is not included in the objective function.
The power value has slightly increased for all of them. The result from Fig. 6(b) presents
a blade splitter concept to increase the efficiency which has already been realized in [17]. To
reduce the energy dissipation the optimization tries to reduce the flow path between inlet and
outlet. This happens in results shown in Figs. 6(a) and 6(b) and it is less pronounced in Fig.
6(c), however, the fluid path for Fig. 6(c) is still smaller than the involute blade reference. The
short channel also contributes to reduce the vorticity, and this effect is more pronounced with
the blade splitter concept (Fig. 6(b)) because it reduces also the space for recirculation. In the
case of Fig. 6(c) the optimization generates a more straight channel than the involute blade
reference design and creates a blade splitter which reduces the velocity in one of the sub-channels
as mentioned before, and these both effects contribute to decrease the vorticity. The increase of
power is related to the increase of the outlet velocity component parallel to the normal of outlet
section. Thus, the higher this component, the higher the power, and the result from Fig.6(b)
has the outlet velocity most parallel to the outlet section normal among the three results.

5.2. Energy dissipation and Vorticity. The second set of results considers the energy dissi-
pation and vorticity functionals for minimization. Two initial guess, one of entire solid domain
and other of entire fluid domain, are considered with a rotation 500 [rpm]. The volume ratio
is adjusted to 0.25. The weights for the multi-objective function are defined as w. = 0.7 and
w, = 0.3 for energy dissipation and vorticity, respectively. The results are shown in Figs. 11
and 12. Also, the corresponding velocity field and entire rotor are shown in the same figures.
The pressure field is quite similar to the field shown in Fig. 5, thus, it is not shown. The values
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Ficure 9. Topology changes during optimization process with straight blade
initial guess and energy dissipation functional.
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Ficure 10. Convergence curve for optimization process with straight blade ini-
tial guess and energy dissipation functional.

TABLE 1. Functional values results by considering a solid and fluid initial guesses
for energy dissipation functional and rotation of 500[rpm)].

Reference Initial Guess
Involute blade | Solid  Straight blade Involute blade
Fig. 4 Fig.6(a) Fig. 6(Db) Fig.6(c)
|Q2]/|D] 0.29 0.30 0.28 0.30
E(u) 5.19 2.83 3.32 3.30
V(u) 71.62 39.1 29.16 52.07
P(u) 821.56 843.75 844.61 829.88

of the objective functions are shown in Table 2. The convergence curves for these examples are
similar to the curves shown in (Fig.10).

The vorticity and energy dissipation values are smaller and larger, respectively, than values
from the results presented in Table 1, as expected. The power values are larger than the reference
values. The result from Fig. 11 is quite similar to the result obtained in [28], however, the
grayscale presented in their result was substituted by a non smooth boundary in the upper part.
Essentially, the strategy to reduce the vorticity values even more in relation to previous example
is to keep channels straight and to increase the energy dissipation (losses) which decreases the
velocity.

5.3. Energy dissipation and Power. This set of results considers a pump model and the
energy dissipation and power minimization. The initial guesses of entire fluid domain and
straight blade are considered with a rotation 500 [rpm]. The volume ratio is adjusted to 0.33.
The weights for the multi-objective function are defined as w. = 0.7 and w, = 0.3 for energy
dissipation and power, respectively. The results are shown in Figs. 13 and 14. Also, the
corresponding velocity field and entire rotor are shown in the same figures. The pressure field
is quite similar to the field shown in Fig. 5, thus, it is not shown. The values of the objective
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TABLE 2. Functional values results by considering pump optimization with en-
ergy dissipation and vorticity functionals and rotation of 500[rpm].

Reference Initial Guess
Involute blade Solid Fluid
Fig. 4 Fig. 11(a) Fig. 12(a)
1Q/ID] 0.29 0.26 0.26
We - 0.7 0.7
Wy - 0.3 0.3
E(u) 5.19 4.67 4.42
V(u) 71.62 22.34 22.68
P(u) 821.56 851.75 850.19

zwf

Velocity

1.00
LT [

(a) (b) (c)

Ficure 11. Topology optimization results for energy dissipation and vorticity
functionals considering solid domain as initial guess: (a) Topology, (b) Relative
Velocity Field and (c) Entire rotor

Velocity

(a) (b) (c)

Ficure 12. Topology optimization results for energy dissipation and vorticity
functionals considering fluid domain as initial guess: (a) Topology, (b) Relative
Velocity Field and (c) Entire rotor

functions and a comparison with the values of involute blade and optimized for energy dissipation
results are shown in Table 3. The convergence curve for the straight blade initial guess is shown
in Fig. 15. This case took 7.5 hours to complete. The starting mesh has 9,000 elements and it
is refined until 74,000 elements as the algorithm progresses. In addition, 201 FEM system and
75 adjoint computations are performed.

Comparing with the values for energy dissipation and power consumption presented in Ta-
ble 1, the current results present smaller energy dissipation and power consumption, with the
exception of the involute initial guess where the power from results of Table 3 are larger, how-
ever, the energy dissipation values are smaller. Comparing with the reference values of Table
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Ficure 13. Topology optimization results for energy dissipation and power func-

tionals considering fluid domain as initial guess: (a) Topology, (b) Relative Ve-
locity Field and (c) Entire rotor
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FIGURE 14. Topology optimization results for energy dissipation and power func-
tionals considering straight blade domain as initial guess: (a) Topology, (b) Rel-
ative Velocity Field and (c) Entire rotor
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Ficure 15. Convergence curve for optimization process with straight blade ini-
tial guess and a combination of energy dissipation and power functionals.

3, the optimized results present a smaller energy dissipation with a slightly increase of power
consumption.

The reasons for decreasing the energy dissipation are the same as discussed in the first ex-
ample, calling attention that the optimization makes use of the blade splitter concept which
is more pronounced in the result shown in Fig. 14. The blade splitter decreases the velocity
in one of it sub-channels which contributes to the power decrease in relation to results of first
example. The maximum velocity is higher in relation to previous examples which contributes to
increase the vorticity, however is still smaller than involute blade reference value. Finally, the
power decrease in relation to previous examples because the outlet velocity component parallel
to the normal of outlet section is smaller in relation to these examples, however not enough to
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beat the involute blade reference design. Reminding that the optimization has prioritize more
to minimize energy dissipation than power due to specified weights (0.7 and 0.3, respectively).
The result from Fig. 13 is quite similar to result from Fig. 6(c).

TABLE 3. Functional values results by considering pump optimization with en-
ergy dissipation and power functionals and rotation of 500[rpm)|.

Reference Initial Guess
Involute blade Fluid Straight b.
Fig. 4 Fig. 13(a) Fig.14(a)
12|/|D| 0.29 0.34 0.32
We - 0.7 0.7
wp - 0.3 0.3
E(u) 5.19 3.16 2.65
V(u) 71.62 49.3 38.58
P(u) 821.56 825.73 840.01

5.4. Turbine optimization for Power. The fourth set of results considers the turbine domain
and only the power functional for maximization. For this example only the flow direction is
changed on the inlet boundary condition, i.e. the flow now exits the domain at the smaller arc,
as shown in Fig. 16. The initial guess of the involute blade is considered with rotations of 100
and 300 [rpm]. The volume ratio is adjusted to 0.3. The final topologies are shown in Figs. 17
and 18. Also, the corresponding velocity field and entire rotor are shown in the same figures.
The pressure field is quite similar to the field shown in Fig. 5, thus, it is not shown. The values
of the objective functions are shown in Tables 4 and 5. As expected, vorticity and power values
increase with angular rotation.

These results are quite similar to the results obtained in [28]. Essentially, the method decreases
the cross section area which increases the flow speed, changes its direction, and tries to make
the outlet velocity as parallel as possible to the outlet section normal. These combinations are
quite effective to increase the generated power. However, the two first actions also contribute
to increase the vorticity and energy dissipation.

FIGURE 16. Design domain and boundary conditions for turbine.

6. CONCLUSIONS

In this work, we have developed a topological derivative formulation for flow machine rotor
design based on the concept of traditional topology optimization formulations, where solid or
fluid material are distributed at each point of the domain, instead of inserting or removing holes.
This strategy allows for working in a fixed computational domain, which leads to a topology
design algorithm of remarkably simple computational implementation.

The problem is posed as optimizing the channel between the blades of pump and turbine
rotors under volume constraint and considering a multi-objective shape functional defined by
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TABLE 4. Functional values results for turbine by considering power maximiza-
tion with rotation of 100[rpm].

Reference Initial Guess
Involute b. Involute b.
(Turbine) Fig.4 | Fig.17(a)
|Q/|D] 0.29 0.3
E(u) 3.54 12.22
V(u) 56.87 67.68
P(u) 37.46 38.55

TABLE 5. Functional values results for turbine by considering power maximiza-
tion with rotation of 300[rpm].

Reference Initial Guess
Involute b. Involute b.
(Turbine) Fig.4 | Fig.18(a)
|2|/|D] 0.29 0.3
E(u) 4.67 11.23
V(u) 71.62 104.25
P(u) 318.34 338.622
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FiGure 17. Corresponding rotors for topology optimization results for turbine
power maximization considering involute blade as initial guess and 100[rpm]: (a)
Topology, (b) Relative Velocity Field and (c) Entire rotor

Velocity

(a) (b) (c)

Ficure 18. Corresponding rotors for topology optimization results for turbine
power maximization considering involute blade as initial guess and 300[rpm)] :
(a) Topology, (b) Relative Velocity Field and (c) Entire rotor

the energy dissipation, the vorticity, and the power generated or absorbed for turbines and
pumps, respectively.
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Results obtained by considering Navier-Stokes equations for two spatial dimensions are pre-
sented and compared. The influence of initial guess, weighting coefficients, and angular velocity
values in the optimized results are analysed, confirming the generality of the method.

An advantage of using the proposed method to design flow machine rotors is that the topo-
logical derivative represents the exact sensitivity with respect to the nucleation of an inclusion
within the design domain and the obtained analytical (closed) formula can be evaluated through
a simple post-processing of the direct and adjoint solutions. In addition, the steepest-decent
direction associated with the topological derivative is continuous everywhere - including the in-
terface solid/fluid - and does not require any interpolation scheme to be evaluated, so that the
grey density scale is here naturally avoided. Thus, all these features together leads to a very
simple and robust topology design algorithm, where the topologies with well-defined solid/fluid
interfaces are obtained in few iterations, with a minimal number of user defined algorithm pa-
rameters.

As future work, authors suggest to consider flow with high Reynolds number, turbulence
models, and non-Newtonian fluid flows.
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