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Abstract. Contact problems with given friction are considered for plane elasticity in
the framework of shape-topological optimization. The asymptotic analysis of the second
kind variational inequalities in plane elasticity is performed for the purposes of shape-
topological optimization. To this end, the saddle point formulation for the associated
Lagrangian is introduced for the variational inequality. The non-smooth term in the
energy functional is replaced by pointwise constraints for the multipliers. The one term
expansion of the strain energy with respect to the small parameter which governs the
size of the singular perturbation of geometrical domain is obtained. The topological
derivatives of energy functional are derived in closed form adapted to the numerical
methods of shape-topological optimization. In general, the topological derivative (TD) of
the elastic energy is defined through a limit passage when the small parameter governing
the size of the topological perturbation goes to zero. TD can be used as a steepest-
descent direction in an optimization process like in any method based on the gradient of
the cost functional. In this paper, we deal with the topological asymptotic analysis in
the context of contact problems with given friction. Since the problem is nonlinear, the
domain decomposition technique combined with the Steklov-Poincaré pseudodifferential
boundary operator is used for asymptotic analysis purposes with respect to the small
parameter associated with the size of the topological perturbation. As a fundamental
result, the expansion of the strain energy coincides with the expansion of the Steklov-
Poincaré operator on the boundary of the truncated domain, leading to the expression
for TD. Finally, the obtained TD is applied in the context of topology optimization of
mechanical structures under contact condition with given friction.

1. Introduction

The optimum design in structural mechanics for problems governed by variational in-
equalities is considered in the literature using the energy functionals. Such variational
problems are non-smooth, therefore one cannot expect the existence of classical shape
gradients for general shape functionals depending on solutions of variational inequalities.
We refer to the monograph [1] for the so-called conical shape derivatives of solutions to
variational inequalities of the second kind. To this end, the solutions are given by the
saddle-points of Lagrangian. The multipliers associated with the nondifferentiable terms
of the elastic energy functional are subject to pointwise inequality constraints. The results
obtained in [1] on shape sensitivity analysis are extended to the framework of topological
sensitivity analysis. Actually, the topological derivatives of the energy functionals for
contact problems with given friction with respect to the singular domain perturbations
by creation of holes or inclusions are obtained. In this way, the asymptotic analysis is
applied to numerical solution of optimum design for contact problems.

The complete theory of topological derivatives for linear elasticity in three spatial di-
mensions from the point of view of asymptotic analysis is given in [2], see also [3, 4, 5] for
further developments on polarization tensors in elasticity or piezoelasticity. The results
obtained for linear elasticity cannot be directly extended to variational inequalities. The
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difficulty, is non-smooth nature of variational inequalities. We refer to [6] for a result ob-
tained in the case of the Signorini problem by using the classical approach of compound
asymptotic expansions under the hypothesis of strict complementarity for the unknown
solution of variational inequality.

In order to circumvent this difficulty, the new method of asymptotic analysis for vari-
ational inequalities based on the domain decomposition technique combined with the
compound asymptotic expansions is proposed in [7] and it is presented with all details in
monograph [8]. In this way, the topological derivatives of the non-smooth energy func-
tional can be obtained. We show also that the theoretical results on asymptotic analysis
are useful for numerical solution of an important optimum design problem.

Located in Florianópolis-Brazil, the Hercílio Luz bridge shown in Fig. 1 is a rare and
significant bridge on many different aspects. It is recognized as the longest suspension
bridge in Brazil. It was also the longest spanning eyebars suspension bridge in the world
when built, between 1922 and 1926. One of the most noteworthy features of Hercílio Luz
bridge is that the main cables are formed by eyebars chain rather than wire cables [9].

The Hercílio Luz bridge links Florianópolis island to the continent. Because of the
very aggressive environment over the ocean, it has started to suffer from a high corrosion
process. In particular, some of the eyebars in the chain have collapsed according to the
red line shown in Fig. 1. Based on safety concerns, the Hercílio Luz bridge was closed for
the first time in 1982, and reopened again in 1988. After a technical report analyzing the
feasibility of keeping the traffic over the bridge, presented 1990, it was completely closed
in 1991. Nowadays there is an effort on the rehabilitation of the bridge. Another famous
bridge of similar design, the Silver Bridge over the Ohio River in the U.S.A., collapsed in
1967 due to a failure of a single eyebar in the suspension chain.

In this paper, we are interested in the redesign of an eyebar belonging to the eyebars
chain of the Hercílio Luz cable bridge. The eyebars are linked through pin-joints, which
are under contact condition with friction. There is a vast literature dealing with con-
tact problems in elasticity. For the mathematical and numerical analysis of variational
inequalities, see for instance the following monographs [10, 11, 12].

In order to deal with the design problem, the topology optimization of elastic structures
under contact condition with given friction (stick-sleep condition) is considered. From
mathematical point of view the model considered takes the form of a variational inequality
of the second kind. The convenience for topological sensitivity analysis is an equivalent
variational formulation as a saddle point of the Lagrangian. Such a formulation is already
analyzed in [1] for the purposes of the shape sensitivity analysis. In this article new results
on the existence of topological derivatives for the energy functional are derived. What is
also important, the results obtained by the asymptotic analysis are used for the numerical
solution of the shape-topological optimization problem. The paper is written in such a
way that it is also accessible to the engineering community. We combine the asymptotic
analysis in singularly perturbed geometrical domains which belongs to pure mathematics,
with the numerical methods of shape-topological optimization which belongs to applied
mathematics.

Optimization of structures submitted to contact boundary conditions has received con-
siderable attention in the last decades [14, 15, 16, 17, 18]. In particular, we are interested
in the topological derivative concept [8], which is defined as the first term (correction) of
the asymptotic expansion of a given shape functional with respect to a small parameter
that measures the size of singular domain perturbations, such as holes, inclusions, defects,
source-terms and cracks. The topological derivative can naturally be used as a steepest-
descent direction in an optimization process like in any method based on the gradient of
the cost functional. Therefore, this relatively new concept has applications in many differ-
ent fields such as shape and topology optimization, inverse problems, imaging processing,
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Figure 1. Hercílio Luz bridge in Florianópolis, Brazil. In highlight an
eyebar chain (adapted from [13]).

multi-scale material design and mechanical modeling including damage, fracture evolution
phenomena and control of crack propagation. See, for instance, [19, 20, 21, 22, 5, 23]. See
also recent papers [24, 25, 26, 7] dealing with topological asymptotic analysis in the con-
text of contact problems. An application of the same technique in the context of coupled
electro-mechanical system can be found in [27]. These results are here extended to the
case of given friction condition.

The asymptotic analysis of linear elasticity system in truncated domain has been per-
formed in [28] by an application of the Green’s function technique. In particular, the
statement on a spherical hole can be found in Section 3.3, page 1766. In contrast to [28],
the method developed in [7] has been designed for the purpose of asymptotic analysis in
singularly perturbed domains for a class of nonlinear elasticity systems. It relies on the
knowledge of the explicit solution of an auxiliary elasticity problem posed in a subdomain
of simple geometry. In the ring in two spatial dimensions it is obtained by the complex
Kolosov potentials [29]. By a result from the functional analysis on positive, self-adjoint
operators, the expansion of the elastic energy in the ring gives rise to the expansion of
the Steklov-Poincaré operator on the boundary of the topologically perturbed truncated
domain, with the remainder uniformly bounded in the operator norm. In addition, the ex-
plicit solution allows us to replace the expression of the topological derivative unbounded
in the energy norm by its equivalent form which is bounded in the energy norm. In this
way, the truncated domain technique proposed in [28] was extended to the nonlinear con-
tact problems in elasticity fully developed in [7]. We refer also [30] for the general case
of elliptic systems and for the self-adjoint extensions of elliptic operators in punctured
domains.

Therefore, following the original ideas presented by [7], in this paper the topological
derivative is extended to the context of topology optimization of elastic structures under
contact condition with given friction. Since the problem is nonlinear, the domain de-
composition technique combined with the Steklov-Poincaré pseudo-differential boundary
operator is used in the asymptotic analysis with respect to the small parameter associated
with the size of the topological perturbation. As a fundamental result, the expansion of
the strain energy coincides with the expansion of the Steklov-Poincaré operator on the
boundary of the truncated domain, leading to the associated topological derivative. Fi-
nally, the obtained result is used in the redesign of the eyebar from Hercílio Luz cable
bridge.

The paper is organized as follows. In Section 2 the mechanical problem we are dealing
with is stated. The domain decomposition technique and the Steklov-Poincaré operator
are presented in Section 3. The topological asymptotic analysis of the problem under



4

Figure 2. Domain representation.

consideration is developed in Section 4. The associated topological derivative, obtained
in its closed form, is presented in Section 5, which represents the main theoretical result
of the paper. In Section 6 the optimization problem we are dealing with is formulated
and the redesign of the eyerbar under contact condition with given friction (stick-sleep
condition) is presented. Finally, the paper ends with some concluding remarks in Section
7.

2. Problem formulation

Let us consider an open and bounded domain Ω ⊂ R2 with Lipschitz boundary Γ,
as shown in the sketch of Fig. 2. The boundary Γ consists of three mutually disjoint
parts, namely, Γ = ΓD ∪ΓN ∪ΓC . Displacements and boundary tractions are respectively
prescribed on ΓD and ΓN , while on ΓC there is a possible contact condition over a rigid
foundation. We assume that the normal vector on ΓC of both elastic and rigid surfaces
are collinear, allowing to set just one normal vector n on the potential contact region
ΓC . Therefore, the mechanical problem consists in finding the minimizer u ∈ K of the
following functional

J (v) :=
1

2

∫
Ω

σ(v) · ∇sv −
∫

ΓN

q · v + µa

∫
ΓC

|v · τ |, ∀v ∈ K, (2.1)

where σ(v) is the Cauchy stress tensor, q ∈ H1/2(ΓN ;R2) is a given boundary traction
and µa is a known friction coefficient. In addition, τ denotes the tangential vector on Γ
and K is a convex and closed cone defined as

K := K(Ω) = {v ∈ H1(Ω;R2) : v = 0 on ΓD and v · n ≤ 0 on ΓC}. (2.2)

In particular, the unique minimizer u ∈ K of (2.1) is solution of the following variational
inequality∫

Ω

σ(u) · ∇s(v − u)−
∫

ΓN

q · (v − u) + µa

∫
ΓC

(|v · τ | − |u · τ |) ≥ 0, ∀v ∈ K. (2.3)

From the inequality (2.3) it follows that the strong form of the elasticity equilibrium
problem under contact and stick-sleep conditions is stated as [31]: Find u : Ω→ R2 such
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Figure 3. Domain decomposition representation.

that, 

−div(σ(u)) = 0 in Ω,
σ(u) = C∇su in Ω,

u = 0 on ΓD,
σ(u)n = q on ΓN ,
u · n

σnn(u)
σnn(u)(u · n)

σnτ (u)(u · τ) + µa|u · τ |
−µa ≤ σnτ (u)

≤
≤
=
=
≤

0
0
0
0
µa

 on ΓC .

(2.4)

Some terms in the above expressions still require explanation. The strain tensor ∇su is
given by

∇su := (∇u)s =
1

2
(∇u+ (∇u)>). (2.5)

The fourth order elastic tensor C = C> is written as

C = 2µI + λ(I⊗ I), (2.6)

with I and I representing the fourth and second order identity tensors, respectively, while
µ, λ are used to denote the Lamé’s coefficients. In addition, the normal component σnn(u)
of the stress tensor is defined as

σnn(u) := σ(u)n · n, (2.7)

while the shear component on the tangential plane σnτ (u) is given by

σnτ (u) := σ(u)n · τ. (2.8)

Note that the contact problem we are dealing with is a simplified model where the friction
coefficient is assumed to be known. The reader may refer to the papers [32, 24, 33, 16]
and the book [34] for an account on similar as well as more sophisticated models.

3. Domain Decomposition Technique

We start by decomposing Ω into two parts, namely Ω = ΩR ∪BR, where ΩR := Ω \BR

and BR, with boundary ΓR, is used to denote a ball of radius R > 0 centered at an
arbitrary point x̂ ∈ Ω. See sketch in Fig. 3. Then, we consider the following linear
elasticity system in BR: Given ψ ∈ H1/2(ΓR;R2), find the displacement w : BR 7→ R2,
such that  −div(σ(w)) = 0 in BR,

σ(w) = C∇sw in BR,
w = ψ on ΓR.

(3.1)
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Using (3.1), we can define the Steklov-Poincaré pseudo-differential boundary operator:

A : ψ ∈ H1/2(ΓR;R2) 7→ σ(w)η ∈ H−1/2(ΓR;R2) (3.2)

where η is the outward normal vector to the boundary ΓR. Observe that by the definition
of the operator A, the solution w of (3.1) satisfies:∫

BR

σ(w) · ∇sw =

∫
ΓR

A(ψ) · ψ. (3.3)

That is, the energy inside BR is equal to the energy associated with the Steklov-Poincaré
operator on the boundary ΓR. In addition, by setting ψ = u|ΓR

, we have w = u|BR
and

uR = u|ΩR
. Thus,

J (u) = J R(uR), (3.4)

where the functional J R(uR) is defined as

J R(uR) :=
1

2

∫
ΩR

σ(uR) · ∇suR −
∫

ΓN

q · uR + µa

∫
ΓC

|uR · τ |+ 1

2

∫
ΓR

A(uR) · uR, (3.5)

with the minimizer uR ∈ KR := K(ΩR) solution to the following variational inequality∫
ΩR

σ(uR) · ∇s(v − uR)−
∫

ΓN

q · (v − uR) + µa

∫
ΓC

(|v · τ | − |uR · τ |)

+

∫
ΓR

A(uR) · (v − uR) ≥ 0, ∀v ∈ KR. (3.6)

4. Topological asymptotic analysis

We are interested on the topological derivative of the energy shape functional (2.1)
with respect to the nucleation of a small inclusion. Therefore, let us consider that the
domain Ω is subjected to a topological perturbation confined in a small arbitrary shaped
set ωε(x̂) of size ε and center at an arbitrary point x̂ of Ω, such that ωε(x̂) ⊂ Ω. In
the case of a perforation, for example, the topologically perturbed domain is obtained as
follows Ωε(x̂) = Ω\ωε(x̂). Then, we assume that a given shape functional J(Ωε(x̂)), asso-
ciated to the topologically perturbed domain, admits the following topological asymptotic
expansion [8]

J(Ωε(x̂)) = J(Ω) + f(ε)DTJ(x̂) + o(f(ε)), (4.1)

whereDTJ(x̂) is the topological derivative of the shape functional J at x̂, f(ε) is a positive
function such that f(ε)→ 0 when ε→ 0 and ε is the parameter governing the size of the
perturbation. According to the classical definition of the topological derivative [35], from
(4.1) we have

DTJ(x̂) := lim
ε→0

J(Ωε(x̂))− J(Ω)

f(ε)
. (4.2)

In this work, the topological perturbation is characterized by the nucleation of a small
circular inclusion Bε of radius 0 < ε < R and center at x̂ ∈ Ω, which is assumed to be
far enough from the potential contact region ΓC . This inclusion is filled with different
material property from the background represented by a piecewise constant function γε
defined as

γε = γε(x) :=

{
1, if x ∈ Ω \Bε,
γ, if x ∈ Bε,

(4.3)
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with γ ∈ R+ used to represent the contrast on the material properties. Then, the corre-
sponding perturbed problem consists in finding the minimizer uε ∈ K of the functional

Jε(v) :=
1

2

∫
Ω

γεσ(v) · ∇sv −
∫

ΓN

q · v + µa

∫
ΓC

|v · τ |, ∀v ∈ K. (4.4)

The element uε ∈ K is solution of the following perturbed variational inequality∫
Ω

γεσ(uε) · ∇s(v − uε)−
∫

ΓN

q · (v − uε) + µa

∫
ΓC

(|v · τ | − |uε · τ |) ≥ 0, ∀v ∈ K. (4.5)

The associated strong system reads: Find uε : Ω→ R2 such that,

−div(γεσ(uε)) = 0 in Ω,
σ(uε) = C∇suε in Ω,

uε = 0 on ΓD,
σ(uε)n = q on ΓN ,

JuεK = 0 on ∂Bε,
Jγεσ(uε)Kn = 0 on ∂Bε,

uε · n
σnn(uε)

σnn(uε)(uε · n)
σnτ (uε)(uε · τ) + µa|uε · τ |

−µa ≤ σnτ (uε)

≤
≤
=
=
≤

0
0
0
0
µa

 on ΓC .

(4.6)

Now, we apply the domain decomposition technique to the above topologically per-
turbed problem, as shown in the sketch of Fig. 4. This decomposition allows us to
proceed with the topological asymptotic analysis in a simple geometrical domain, which
is separated from the analysis of the shape function (4.4) endowed with a nondifferen-
tiable term. Therefore, in the ball BR we consider the following linear elasticity system
associated with the perturbed domain: Given ψ ∈ H1/2(ΓR;R2), find the displacement
wε : BR 7→ R2, such that

−div(γεσ(wε)) = 0 in BR,
σ(wε) = C∇swε in BR,

wε = ψ on ΓR,
JwεK = 0 on ∂Bε,

Jγεσ(wε)Kn = 0 on ∂Bε.

(4.7)

Using problem (4.7), we define the topologically perturbed counterpart of the Steklov-
Poincaré boundary operator Aε : H1/2(ΓR;R2) 7→ H−1/2(ΓR;R2) as follows

Aε(ψ) = σ(wε)η on ΓR. (4.8)

By the definition of the operator Aε, the solution wε of (4.7) satisfies:∫
BR

γεσ(wε) · ∇swε =

∫
ΓR

Aε(ψ) · ψ. (4.9)

That is, the energy inside the ball BR ⊃ Bε is equal to the energy associated with the
Steklov-Poincaré operator Aε on ΓR. We observe that by setting ψ = uε|ΓR

we have
wε = uε|BR

and uRε = uε|ΩR
, which implies the equality

Jε(uε) = J R
ε (uRε ), (4.10)

where the functional J R
ε (uRε ) is written as

J R
ε (uRε ) :=

1

2

∫
ΩR

σ(uRε ) · ∇suRε −
∫

ΓN

q · uRε + µa

∫
ΓC

|uRε · τ |+
1

2

∫
ΓR

Aε(uRε ) · uRε , (4.11)
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Figure 4. Perturbed domain decomposition.

with the minimizer uRε ∈ KR given by the unique solution of the variational inequality:∫
ΩR

σ(uRε ) · ∇s(v − uRε )−
∫

ΓN

q · (v − uRε ) + µa

∫
ΓC

(|v · τ | − |uRε · τ |)

+

∫
ΓR

Aε(uRε ) · (v − uRε ) ≥ 0, ∀v ∈ KR. (4.12)

Before evaluate the topological derivative, we present two important results. The first
one ensures the existence of the topological derivative associated with the problem under
analysis. The second result proves the topological differentiability of the energy shape
functional.

Proposition 1. Let uR and uRε be solution to (4.5) and (4.12), respectively, and assume
that

Aε = A− ε2B +Rε, (4.13)

in the operator norm L(H1/2(ΓR;R2);H−1/2(ΓR;R2)), with B used to denote a bounded
linear operator and

‖Rε‖L(H1/2(ΓR;R2);H−1/2(ΓR;R2)) = o(ε2). (4.14)

Then, the following estimate holds true:

‖uRε − uR‖H1(ΩR;R2) ≤ Cε2. (4.15)

Proof. By taking v = uRε in (4.5) and v = uR in (4.12), we obtain:∫
ΩR

σ(uR)·∇s(uRε −uR)−
∫

ΓN

q·(uRε −uR)+µa

∫
ΓC

(|uRε ·τ |−|uR·τ |)+
∫

ΓR

A(uR)·(uRε −uR) ≥ 0

(4.16)
and∫

ΩR

σ(uRε )·∇s(uR−uRε )−
∫

ΓN

q·(uR−uRε )+µa

∫
ΓC

(|uR·τ |−|uRε ·τ |)+
∫

ΓR

Aε(uRε )·(uR−uRε ) ≥ 0.

(4.17)
Then, after adding (4.16) and (4.17), we write∫

ΩR

σ(uRε − uR) · ∇s(uRε − uR) +

∫
ΓR

[Aε(uRε )−A(uR)] · (uRε − uR) ≤ 0. (4.18)

Now, assuming (4.13), we have that∫
ΩR

σ(uRε −uR)·∇s(uRε −uR)+

∫
ΓR

A(uRε −uR)·(uRε −uR) ≤ ε2

∫
ΓR

B(uRε )·(uRε −uR)+o(ε2),

(4.19)
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and by the coercivity of the bilinear form on the left-hand side of (4.19) it follows

C0‖uRε − uR‖2
H1(ΩR;R2) ≤ ε2

∫
ΓR

B(uRε ) · (uRε − uR) + o(ε2). (4.20)

And also,

‖uRε − uR‖2
H1(ΩR;R2) ≤ C1ε

2‖B(uRε )‖H−1/2(ΓR;R2)‖uRε − uR‖H1/2(ΓR;R2)

≤ C2ε
2‖uRε − uR‖H1(ΩR;R2). (4.21)

Finally, we obtain (4.15) with C = C2/C0 independent of the small parameter ε. �

Lemma 2. The perturbed energy shape functional J R
ε (uRε ) in (4.11) is differentiable with

respect to ε→ 0. In particular, it admits the asymptotic expansion

J R
ε (uRε ) = J R(uR)− ε2

2
〈B(uR), uR〉ΓR

+ o(ε2), (4.22)

where 〈φ, ϕ〉ΓR
is used to denote the inner product on ΓR, that is

〈φ, ϕ〉ΓR
=

∫
ΓR

φ · ϕ. (4.23)

Proof. By taking into account that uRε ∈ KR is the minimizer of (4.11) and uR ∈ KR is
the minimizer of (3.5), the following inequalities hold true

J R
ε (uRε )− J R(uRε ) ≤ J R

ε (uRε )− J R(uR) ≤ J R
ε (uR)− J R(uR). (4.24)

Using the definitions of J R
ε and J R, considering the expansion (4.13) and after organizing

all the terms, we have

J R
ε (uR)− J R(uR)

ε2
= −1

2
〈B(uR), uR〉ΓR

+ 〈Rε(u
R), uR〉ΓR

. (4.25)

Thus, it follows that

lim
ε→0

(
J εR(uR)− J R(uR)

ε2

)
= −1

2
〈B(uR), uR〉ΓR

. (4.26)

Similarly, we write

J R
ε (uRε )− J R(uRε )

ε2
= −1

2
〈B(uRε ), uRε 〉ΓR

+ 〈Rε(u
R
ε ), uRε 〉ΓR

. (4.27)

Now, taking into account the strong convergence of the minimizers in the energy space,
Proposition 1, we obtain

lim
ε→0

(
J R
ε (uRε )− J R(uRε )

ε2

)
= −1

2
〈B(uR), uR〉ΓR

. (4.28)

From the above limits and (4.24) we conclude that

lim
ε→0

(
J R
ε (uRε )− J R(uR)

ε2

)
= −1

2
〈B(uR), uR〉ΓR

. (4.29)

Therefore, we can write (4.22). �
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5. Topological Derivative Formula

In this section, the topological derivative associated with the problem under analysis is
obtained in its closed form. Before proceeding, let us state the following important result,
whose proof can be found in [8]:

Lemma 3. The energy inside BR admits the asymptotic expansion:∫
BR

σε(wε) · ∇s(wε) =

∫
BR

σ(w) · ∇s(w)− ε2Pγσ(w) · ∇sw + o(ε2), (5.1)

where the polarization tensor Pγ is given by the following fourth order isotropic tensor

Pγ =
π(1− γ)

1 + γa2

(
(1 + a2)I +

1

2
(a1 − a2)

1− γ
1 + γa1

I⊗ I

)
, (5.2)

with 0 < γ <∞ and the parameters a1, a2 given by

a1 =
λ+ µ

µ
and a2 =

λ+ 3µ

λ+ µ
. (5.3)

Now, note that by Proposition 1 we write
〈Aε(φ), ϕ〉 = 〈A(φ), ϕ〉 − ε2〈B(φ), ϕ〉+ o(ε2), ∀φ, ϕ. (5.4)

Then, from Lemma 3 and expansion (5.4) we conclude that the expansion of the strain en-
ergy in BR coincides with the expansion of the Steklov-Poincaré operator on the boundary
ΓR. Therefore, it follows that∫

ΓR

B(φ) · ψ = Pγσ(φ) · ∇sϕ, ∀φ, ϕ. (5.5)

Thus, by Lemma 2 together with equation (5.5) we have

Jε(uε)− J (u) = −1

2
ε2Pγσ(u) · ∇su+ o(ε2), (5.6)

where we have also considered the equalities (3.4) and (4.10). Finally, by choosing f(ε) =
ε2, we have the main result of the paper, namely:

Theorem 4. The topological derivative of the shape functional J (u), defined in (2.1), is
given by

DTJ (x) = −1

2
Pγσ(u(x)) · ∇su(x), ∀x ∈ Ω. (5.7)

6. Numerical application

In this section the obtained topological derivative (5.7) is applied in the context of
topology optimization of structures under contact condition with given friction. The idea
is to redesign an eyebar belonging to the eyebars chain of the Hercílio Luz cable bridge,
as presented in Section 1.

Therefore, let us consider a hold-all domain D ⊂ R2 such that Ω ⊂ D. The topology
optimization problem we are dealing with consists in minimizing the total potential energy
for a given amount of material, that is:{

Minimize
Ω⊂D

J (u)

subject to |Ω| ≤M,
(6.1)

where |Ω| is the Lebesgue measure of Ω and M is the desired volume at the end of the
optimization process. To deal with the volume constraint we use the Linear Penalization
Method. Thus, problem (6.1) is rewritten as following:

Minimize
Ω⊂D

FΩ(u) := J (u) + β|Ω|, (6.2)
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where β = β?/V0 is a penalization parameter with β? > 0, and V0 denotes the initial
volume of the structure. The optimization problem (6.2) is solved by using the topology
optimization algorithm proposed in [36], which relies on the topological derivative concept
and a level-set domain representation method. In particular, the topological derivative is
used as a feasible descent direction to minimize the cost functional (6.2). The reader may
refer to [27, 36, 37] for more details and applications of this algorithm.

The numerical implementation was performed by using FEniCS software [38]. Once we
are interested in redesigning the eyebar shown in Fig. 1, we consider as original design the
domain shown in Fig. 5(a). On the other hand, the initial guess is given by a rectangle
of dimensions 400 × 1651 mm2 with a semicircular hole of radius r1, as shown in Fig.
5(b). See also [13]. We consider vertical symmetry conditions, represented by dashed
lines. The potential contact region is given by the boundary of the semicircle of radius
r1. The structure is submitted to a distributed load q as shown in the sketch of Fig 5,
whose resultant is denoted by Q = 24000N . In addition, the eyebar is made with steel,
whose Young’s modulus E, Poisson ratio ν, friction coefficient µa and stress limit of the
material σ are given in Table 1, together with additional geometrical properties. Finally,
we set the volume penalization parameter β? = 4× 104.

(a) (b)

Figure 5. Original design (a) and initial guess (b).

Table 1. Material properties and geometrical parameters.

ν µa E σ Q a b c d r1 r2

0.3 0.2 210× 103 440 24000 152 850 127 451 146 350
− − MPa MPa N mm mm mm mm mm mm

The obtained result is presented in Fig. 6. The normalized von Mises stresses distri-
bution are shown in Fig. 7. Note that in both cases the maximal value is bounded by
one. However, the original design has approximately 46.08% (orange area) while the ob-
tained optimized eyebar has approximately 38.62% of volume fraction, which corresponds
to more than 16% of volume reduction without violate the stress limit of the material.
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(a) (b)

Figure 6. Original design (a) and obtained result (b).

Figure 7. Stresses distributions: original design (left) and optimized result (right).

7. Conclusion

In this paper, the topological derivative concept has been applied in the context of
contact problems in elasticity with given friction. Since the problem is nonlinear, the
domain decomposition technique together with the Steklov-Poincaré pseudo-differential
boundary operator were used in the topological asymptotic analysis of the energy shape
functional with respect to the nucleation of a small circular inclusion. From such an
analysis, the associated topological derivative has been derived in its closed form. The
obtained result has been applied in a case study concerning the redesign of an eyebar
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belonging to the eyebars chain of the Hercílio Luz cable bridge. As a result, the obtained
optimal design is much more efficient from the mechanical point of view in comparison
with the original one, since its volume has been reduced about 16% while the maximal
von Mises stress does not exceed the stress limit of the material.

The proposed method is general and it can be applied for numerical solution of shape-
topology optimization of contact problems in three spatial dimensions. On the other
hand, the topological sensitivity analysis of contact with the Coulomb friction is still an
unsolved and difficult problem.
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