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Abstract

An optimum hp adaptive mesh design is accomplished by minimizing the number of
equations for a specified error limit. This new approach leads to a problem in which
the h and p mesh parameters appear explicitly in the formulation. The optimal
conditions yields to a non-linear equation for each element which simultaneously
supplies the optimum values for the h and p parameters. The methodology here
developed is applied in the numerical solution of several unidimensional elliptic
boundary value problems.
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1 Introduction

Despite of the high degree of development reached by the Finite Element Method in
terms of mathematical theory and algorithms, the ability of defining an appropriate level
of discretization for a given problem usually depends on the judgement of the analyst
and on his previous experiences with similar problems. If the results are considered
unsatisfactory, the discretization should be redone. Thus, it is reasonable to admit that
if in the first try the expertise of the analyst failed, similar situation may happen when
the results are being analyzed, that is, he/she may also fail in perceiving the quality of
the results, or lack of it.

Due to such uncertainties, the possibility of automatically improving the numerical
solution quality became an attraction center in Computational Mechanics. The approxi-
mated solution obtained by the Finite Element Method can be improved by adaptive or
feedback strategies which modify the solution representation where it is unsatisfactory.
Such techniques are based on: node repositioning without affecting the mesh topology
(7); mesh superposition (s); mesh refinement by change of element size (h); increase in
the interpolation function orders (p); or combinations of them, mainly the last two (hp).
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When the h and p strategies are combined, it is obtained the most efficient method
for a wide class of problems [2]. However, this strategy has as a main problem the degree
of complexity of the codes for supporting this type of refinement [4, 8.

There exist several alternatives for starting an hp procedure in a finite element mesh.
One of them, perhaps the most used, consist on performing an h refinement in order
to capture the eventual singularities present in the problem. Next, a p refinement is
performed until a desired precision is reached. This technique, despite of being simple,
demands a high computational cost due to the considerable number of iterations usually
required.

Another possible operational sequence is, based on some criterion, to make at each
iteration a computation of new values for h and p parameters until an acceptable precision
is reached. Among many works that follow this idea it is worth mention the papers of
Guo & Babuska [6] and Rachowicz et al. [11].

The first one proposes a p adaptive refinement for smooth solution regions and an
hp mesh sequence for regions containing singularities (see refer. [1]): The meshes are
geometrically graded toward the singular point with element degrees which are described
by a nearly linearly increasing function starting in the second element away from the
singularity. Further, the degree of the first element next to the singular point is greater
than or equal to the degree of the second element. This technique is known as: true optimal
hp mesh [1]. An inconvenience of this methodology is that in the region of the domain
where the solution is regular, a p refinement may not be the best strategy option. Besides,
since the mesh topology is preserved in this region, the possible solution to be obtained
is strongly dependent on the initial discretization because it is not practicable to enrich
the finite element spaces by increasing the polynomial order indefinitely due to numerical
instabilities.

The second mentioned work [11] is based on the error minimization for a fixed number
of equations, where the h and p parameters are evaluated independently, following a
convergence error analysis. This last strategy can be synthesized in the following con-
jecture [1]: Between any two meshes in a sequence of optimal meshes, the change of the
error per change in number of degree of freedom is maximized. It is worth to mention that
in some circumstances this methodology leads to the so called true optimal hp meshes of
Babuska et al. [1]. Nevertheless, the main inconvenience of this method is that a great
number of iterations are needed in order to obtain a desired error level.

In this work, a simultaneous computation of A and p parameters is proposed. The
formulation is based on the minimization of the number of equations for a constrained
error level. The optimal conditions of this problem yield to a non-linear equation for each
element where h and p parameters are found in an explicit form. The solution of this
equation gives the optimal h and p mesh values (see the original work [7]).

Thus, under the proposed approach the user specifies an approximation error value
and a short iterative process is started in order to find an optimal or quasi-optimal mesh
where the number of degrees of freedom are minimum for the specified error.

In adaptive methods, it is implicit the availability of local error estimation as a measure
of the approximated solution quality [10]. Since this topic is presently out of the purpose,
only problems having analytical solutions are solved, being the error exactly computed,
for illustrating the type of achievements that the proposed methodology can provide.



2 Elliptic boundary value problems

Consider an open bounded domain € in RY with boundary I' = I'yUI'p, where [yNIT'p =
(). Assume that I' is smooth enough, i.e. a normal vector n exist almost everywhere (a.e.)
in I'. It is assumed there are displacement constraints on the boundary I'p, surface forces
t € L*(T'y) and body forces f € L?*(Q), where L?(Q) and L*(T'y) are the space of
Lebesgue square-integrable functions over {2 and I' 5, respectively.

When equilibrium statements are described in their variational form, it is possible to
use weaker topological spaces than the ones used for strong formulations. Also, existence
and uniqueness conditions are easier to be established, as well as a prior: and a poste-
riort error estimators. Using formal mathematical expressions, elliptic boundary value
problems may be written as follows:

Find u € U, such that
B(u,v)=1(v) Vvelv, (1)

where B : U x V' — R is a bilinear symmetric operator and [ is a linear functional such
that [ : V — R, that is, [ € V' where V' is the dual space of V. The trial function space
U, also called admissible functions space, is defined as

U={ueH (Q)|u=g in I'p}, (2)

where g defines the function of prescribed values on I'p and H! (Q) is a Hilbert space of
order one on 2. The test functions space, or admissible variations space, is defined by

V={veH (Q)|v=0 in I'p}. (3)

3 Finite element approximation

Most of the numerical methods used to solve boundary value problems rely on the defini-
tion of a finite dimensional subspace Uy, of the space of admissible functions U, in which
the approximate solution uy, is searched for. The Finite Element Method is nothing more
than a systematic and general procedure for constructing subspace families Uy, C U and
Vip C V. In other words, it consists on solving the following approximated problem:

Find up,€ Uy, C U, such that
B (Uhp, Vhp) = l (vhp> v Vhp € Vhp C V (4)

In this case, the finite dimensional space of admissible variations V}, and the finite
dimensional space of admissible functions Uy, are equivalents, that is Uy, and V}, are
composed of identical collections of functions. By using this approach, the problem leads
to a set of linear algebric equations commonly written as

Kﬁhp = F7 (5>



where K is the global stiffness matrix, F is the generalized force vector and uj, the
discrete solution vector. The components of U, represent the parameters of the linearly
independent basis functions spanning Uy,,.

According to the mathematical theory of the Finite Element Method, the discretization
error e depends on the domain partitioning and the choice of the Finite Element spaces
[12], and may be defined as the difference between the exact value of u and the one
numerically obtained uy,, i.e.

e = u—uy,,. (6)

Thus, the possibility of automatically improving the approximation uy, through adap-
tive strategies is focus of special attention. Up to now, the most efficient way of error
control for a wide class of problems is the hp adaptive technique.

4 An optimum hp mesh design

In this Section, a technique to perform a simultaneous computation of A and p parameters
is shown. The idea is based on the minimization of the number of linear equations for a
given value of error. Mathematically, this can be written as

Minimize :  Naos (hn, pn) = C / p (s ) A2, (7)

Subject to : e (P, pn) 11 () = l€adll g1y » (8)

where h,, and p,, are the parameters of the new mesh, e,q is the admissible approximation
error, Nyor (hn,pn) is the total number of degrees of freedom, C' is a positive constant
value depending on the domain geometry, p (h,,p,) is the density of degrees of freedom
(d.o.f. density) and ||-[| ;1 () denotes the norm in the H* (2) space, which is equivalent to
the energy norm in this context.

In the optimization problem it was believed convenient to work with equality con-
straints in order to allow both refinement as well as unrefinement of the mesh. Moreover,
this approach substantially simplifies the formulation for this case.

Numerical experiments indicate that the d.o.f. density p (h,,p,) is related to the h,
and p, parameters as follows:

p (Mo, pn) = (i—:)a, (9)

where o = 1,2 for 1D and 2D problems, respectively.

Rachowicz et al. [11] proved that, in some cases, an optimal point in h refinement
(p = const), is reached through uniform distribution of the error over the domain (.
Although this condition may not be related to optimality of Ap meshes in the sense of
problem (7, 8), it is often recognized as a very advantageous feature of the discretization.
Therefore, such equidistribution of the error will be considered as a basic premise, acting
as an equality constraint. Let m denote the total number of finite elements and K the
K-th element of the mesh, the constraint (8) is now substituted by

le (ons pa) 310y = ZH ()|

21 :m‘
HY(K)

HY(K)
2
HY(K)

K

= mHeK (hnapn)H €.d

(10)
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where, for each element K,

K
€ud

" (. pa)| (11)

H'(K) - ‘ HYK)'

Analogously, the objective function shown in Eq. (7) may also be stated in terms of
the K-th element as follows:

Niog (s ) = CZ/K,O(hn,pn)K K. (12)

The constant C' and the parameters h,, and p,, are strictly positive and so is p (hy, p,).
Thus, for sake of simplicity, the nontrivial global optimization problem (7, 8) is now
substituted by the set of local optimization problems

Minimize : p (P, Pn) e = (%) : (13)
Subject to: HeK (h”’pn)HHl(K) = ‘eﬁil ) (14)

Hence, the proposed procedure consists in looking among the several possibilities of
hp enrichment for the one which aggregates the least amount of additional degrees of
freedom. Of course, these two optimization statements (7, 8) and (13, 14) are distinct
and the relationship between their optimal solutions, if it exists, is an open question.

At this point, it is necessary to associate restriction (14) to the h,, and p,, parameters in
order to obtain an expression relating them explicitly. An a priori estimate of interpolation
error on element K is given by Theorem 2.1 in the work of Oden et al. [10]. Moreover, it
is well known that discretization errors in Finite Elements behave like interpolation errors
except for pollutions and a constant value, also independent of control A and p parameters.
Thus, an a prior: discretization error can be expressed by the following Theorem:

Theorem 4.1 There exists a constant Cy (r) > 0, independent on element size h, order
approximation p and solution uw € H" (K), with r > 1, such that as h — 0

|e* ()

) < Cy (r) R tp= =Y ||u||HT(K) + pollutions, (15)

where p=min (p+ 1,7).

Eq. (15) can also be written in terms of the error energy norm for the new h,, and p,
mesh parameters as

e o)

Hy S Cy (r) W p, OV [l o) + pollutions, (16)
where 1, = min (p, + 1,7) and L denotes the L-th element of the new mesh.

If the mesh is fine enough, then the [[ul| ., and HeL (hn,pn)‘ may be approxi-

HY(L)
mated, respectively, as

lall ey = v llrey amd [l (Gap)]| ) = [ Banpa)| ey O7)



where the factor v is given by v = (hn/h)N/Z.
By substituting Eqgs. (17) in Eq. (16), the admissible error energy norm for the
element K, takes the form

K
€ud

v HeK (hn,pn)‘ =y ‘ : < Cy (r) Wi =Tp =1y [all s gy + pollutions, (18)

HY(K) HY(K

Disregarding the pollutions and dividing Eq. (15) by the Eq. (18), results

o o, [ O h“_l(pﬁ)“”:g, 19)

X (s Pl sy leqalliney 7" hi T

where ((r) is a constant of proportionality that depends on the regularity r. This pa-
rameter was introduced in order to allow the quotient between two convergence behavior
(upper bounds of Eqs. 15 and 18). Parameter £ relates the current error energy norm

" (h,p)

over the element K,

, to the desired error energy norm over the same
H'(K)

subdomain K, |ek,

HU(K)'

Note that the constants C; (r) and Cy (r) independ on the mesh parameters h, p, h,
and p,, but they depend on distortions of individual elements. Even so, they have been
simplified in Eq. (19), i.e. it was assumed that C; (r) = Cy (r). From Eq. (19):

. [5 . i1 <&>(r1)] 1/(Mn—1). 0

§ \p

Finally, since the constraint uses parameters h,, and p,, explicitly, the constrained opti-
mization problem of two variables may be rewritten as an one-dimensional unconstrained
problem just by substituting Eq. (20) into the objective function (13). This operation
leads to

«

Dn ,  where s =71 —1. (21)

sy ()"

The first order necessary optimality condition is that the first derivative of Eq. (21)
with respect to the variable p,, must be zero [3], i.e.

Minimize : p(p,)x =

d
b, (Pn)g = 0. (22)
However, it is still impossible to obtain the derivative in Eq. (22) because of the
dependency of u, with regard to the regularity » and the polynomial order p, for each
different problem and the existence and intensity of singularities. Thus, some specific
cases are now discussed, focusing different types of refinement, that is h, p or hp, and also
different regularity levels.



4.1 h meshes

In this case, the polynomial order is considered constant, 7.e. p, = p, and an h refinement
is performed on the mesh. Therefore, Eqs. (19, 20) take the forms:

i- If p>s, then u= s+ 1, therefore

=50 (,%) or hn—h (W”)US. 23)

£ =p3(r) (%)p or hn=h <ﬁér)>1/p. (24)

This result was already obtained by Zienkiewicz & Zhu [13]. In fact, the optimization
problem disappears because, satisfying simultaneously both conditions, p, = p and Eq.
(19), variables

h, and p, are uniquely determined. Therefore, to obtain an error equidistribution
over the domain is enough to satisfy one of Eqgs. (23 or 24) depending on the regularity
of the problem.

4.2 p meshes

In this case, the element size is fixed: h,, = h. Then, a p adaptive refinement is done and
Egs. (19, 20) take the following forms:

i-Ifp>sandp,>s, then pu=s+1and p, = s+ 1, therefore

s 1/s
£:ﬁ<r><%> or pn:p< : ) . (25)

B(r)
ii- If p<sandp,>s,then, u =p+1and u, = s+ 1, thus
s /s
B(r) (pa N
= — = Rls=P)/s, 26
iii - If p <sandp, <s, then p=p+1 and p, = p, + 1, therefore
s /s
_ 80) (P (N e
&= o \ or p,=2p 50 h : (27)
iv- If p>sandp, <s, then p =s+1 and u, = p, + 1, since
s /s
B(r) (pn EN
_ Pn = BPn—=s)/s 28

It is easy to see that in this case, as well as in the last one, the almost constant distri-
bution of error is guaranteed by satisfying one of the Eqs. (25, 26, 27 or 28), depending
upon the problem under analysis. Once again, the feasible region of the optimization
problem has been reduced to a fixed point h, and p, satisfying constraint conditions.
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4.3 hp meshes

Here, the hp refinement is finally discussed. In this case, variables h,, and p,, do not suffer
another additional restriction unless the original constraint of the optimization problem.
Thus, from Egs. (19, 20) one has:

i-Ifp>sandp,>s, then pu=s+1and p, = s+ 1, therefore

s , 1/s
E=p0(r) <%> or h, = (52 )> p%h (29)

ii- If p<sandp,>s,then p=p+1and p, =s+ 1, since

E)l/s D

£=3(r)h? <p—"> or h, = (ﬁ(r) o (30)

hnp

In these first two cases, where the solution regularity is low (s < p,,), it is not possible
to solve the optimization problem as proposed because when constraints (29) and (30) are
substituted into the objective function (13) the result is an expression independent on the
h, and p, variables. For these cases it is suggested, depending on the solution regularity;,
to fix variable p,, and perform an h refinement (Section 4.1) or vice-versa, i.e. to fix the
element size h,, and perform a p refinement (Section 4.2).

iii - If p <sandp, <s, then p=p+1 and p, = p, + 1, therefore

S S 1/pn
WP (Pn h? (Pn
E=08(r n(—) or hnzlﬁr—<—>] . 31
) (2 m e (" G
By substitution of these constraints in the objective function (13), one has
Dn
p(Pn)g = (32)

s ()T

iv- If p>sandp, <s, then p =s+1 and p, = p, + 1, thus

s s s s11/pn
s=ﬁ<r>hh—%n(%> or hnzlff(r)%(%)] | (33)

Repeating the same procedure as before,




In the last two cases, it is possible to obtain the derivative of the objective functions
(32) and (34) with regard to p,, by using Eq. (22) in order to obtain a first order necessary
condition for the optimal value of p,,. After identifying p,,, it may be substituted in Egs.
(31) and (33), depending on the case, and the new element optimal size h,, is obtained.

One of the limitations of this procedure (and of others based on FEM convergence
properties) is that the characteristics of the space to which the solution belongs should
be known a priori. This enforces a strong dependence with the previous knowledge of the
problem from the point of view of the user. In order to eliminate this recursive problem,
it is possible estimate the regularity r by analysis of the FEM convergence properties
(see refer. [9]), that may be easily combinated with the method here in development.
However, an alternative technique is proposed as:

Lemma 4.1 Let bep=s, (r)=1, u=p+1, g, = pp + 1 and consider Eqs. (19, 20).

Then, one has
1 (pah\” 1 (pah\"""

Proof. Immediate O

Note that this modification on the problem constraint is quite severe. Strictly speaking,
the assumptions of Lemma 4.1 enforce the condition p,, < p. This means that, under the
adopted hypothesis, the new value of h,, in Eq. (35) is consistent with only p unenrichment
process. This drawback is a consequence of fixing values for u and p,, due to the lack of
knowledge of the regularity r. Despite of this limitation, numerical tests will be performed
using the procedure also in p enrichment. Further, the hypothesis here adopted lead to
the following Lemma:

Lemma 4.2 Consider the objective function (13), the result of Lemma 4.1 described by
Eq. (35) and let bep=s, B(r) =1, pu=p+1, pt, = p, + 1. Then, the d.o.f. density can
be determined by

N N
p () = - (L),,/,,n - (J;J)p/,,n - (36)
&t/pn p D

Proof. Immediate O

The objective function given by Eq. (36) establishes a relationship between the new
polynomial order p,, and the d.o.f density p (p,,), which can be better understood through
Figs. 1a and 1b, for refinement and unrefinement, respectively.
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Figure 1: Objective function for various values of £ and h = 1.

Finally, it can be shown that the optimization problem here analyzed consists on
solving a non-linear equation, independent of s and «, in order to obtain optimal values
for p, and h,. This result is stated by the following Theorem:

Theorem 4.2 Let be p=s, B(r) =1, p=p+1 and p, = p, + 1. Then, a necessary
and sufficient optimality condition of Eq. (36) is given by the following equations

prh
pn—p—lanrpln(?):O or pn=¢ (pn), (37)

where ¢ (p,) is given by

©(pn) =p+In¢—ph <p%i>. (38)

Moreover, this optimality condition is independent of the reqularity r (or s) of the solution
and the parameter a related to the physical dimension of the problem.

Proof. By substituting the Eq. (36) in the Eq. (22), one has

«

d _ a pngl/pn pnh B
@P( n) g = l(pn)zl <%)p/pn [pn—z?—lnf—i—pln (7” =0. (39)

Note that the first as well as the second factor of Eq. (39) provide a trivial solution
for optimization problem, that is p, — oo or & — 0. Thus, only the third factor, which is
independent on o and r, allows the identification of a non-trivial solution, shown by FEq.

(37).
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Deriving Eq. (37) with respect to p, results in

1+ 2 >0 (40)

Pn

Therefore, due to convexity of Eq. (36), the Theorem is proved O

From this result, one can conclude that the polynomial order p,, may be characterized
as a fixed point of ¢ (p,). Thus, the optimization problem may be stated as solving the
non-linear equation for each finite element

Pn— @ (Pa) = 0. (41)

This result suggests the use of numerical methods in order to obtain a polynomial
order p,, which should be used later to compute a new size h,, of the element through Eq.
(35). A possible procedure to obtain p, is applying a relaxation method leading to the
following algorithm:

Fixed Point Algorithm

Let be p an initial polynomial order, tol a tolerance criterion and maxiter a maximum
number of iterations. Then, for a given relaxation factor w > 0, the estimative for p,, in
the iteration j + 1 is

pa = (1= w) p? +we (pa’) . (42)

The stop criterion is satisfied when the tolerance tol is achieved or when j = maxiter.
End of Algorithm

As a matter of fact, this is an integer optimization problem. However, parameter p,,
is defined as the integer number which is closest to the real value p,. This number is
effectively used for the p enrichment of the interpolation functions on each element and
also for the computation of h,. This assumption is quite acceptable due to the smooth
behavior shown by the objective function (see Fig. 1).

The optimal values of p,, D, and h, for some values of £ and h = 1 are shown in
Table 1. It may be noted that when ¢ > 1, the refinement is provided by appreciable
variations of p,, while h,, is maintained around 0.43. In the case of unrefinement (£ < 1),
the values of p,, diminish slowly. Otherwise h,, shows greater variations when compared
with the case of refinement (£ > 1). Thereafter, the methodology here proposed has a
marked tendency of producing accentuated p refinements. This fact runs accordingly with
mathematical theory of FEM for regular problems [12].

Table 1: Optimal values of p,,, p,, and h,,, for various £ and h = 1.

refinement (£ > 1 and p = 1) unrefinement (£ <1 and p = 8)
13 1 10 100 1000 10000 | 1 0.1 0.01 0.001 0.0001
pn | 1.00 242 418 6.10 812 |8.00 6.89 5.87 4.94 4.11
ol o1 2 4 6 8 8 7 6 5 4
h, | 1.00 0.447 0.447 0.426 0.410 | 1.00 1.19 1.47 1.88 2.50
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A last detail deserves special attention. The error energy norm is not the most con-
venient argument to work with error control because it is an absolute quantity. A more
useful quantity is the relative error 1,4, defined as [13]

ewdlligo

Nad (43)

a ||u||H1(Q) '

As the energy norm of the solution is usually not known, it must be written in terms
of |[wpll 1 (- From Egs. (6 and 1), the norm of the exact solution |[ul| ;o) may be
written as

||u||§{1(ﬂ) = ”uhp‘f‘eH?ql(Q)
B (up, + e,uy, +e€)
= B (upp,up,) + B(e,e) + 2B (up,e). (44)

Due to the orthogonality of the error e with respect to the discrete space of variations
Vhp =U hps
B (up,,e) =0 YV upy € Upp = Vi (45)

Hence, the norm of the exact solution is given by the following expression:
1/2
”u”Hl(Q) = (B (unp,upp) + B (e,€)) /

= (Il + lellfng) - (46)

Substituting Eq. (46) into Eq. (43), it is obtained the maximum global relative error
as
”eadHHl(Q)

2 2 1/2‘
(Il 0y + llelln o)

Assuming that the error is uniform over all the elements of the mesh, Eq. (47) may

be written as
9 1/2
(m] )
H(K)
2 9 1/2
(Inpl3s ) + llellZney)
\/ﬁ‘ H(K)
2 2 1/2’
(Ianpll31 gy + el g))

2 9 1/2
(Inpl3s ) + llellZney)
‘ HY(K) = Tlad N : (48)

Finally, the admissible error energy norm of the K-th element ‘

Nad = (47)

K
€ud

TNad =

K
€ud

K
€ud

K
€.y may be

H'(K)
computed from the value of the 7,; parameter, usually provided by the user.
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5 An hp adaptive refinement

One of the tasks of the hp adaptive refinement is the definition of convenient meshes, which
relates adaptivity with automatic mesh generation methods [5]. Two main branches are
found in adaptive mesh generation techniques. One of them is based on element partitions
[11] and the other one is focused on partial and even total mesh regeneration [13]. The
former techniques have, as advantage, a low cost for mesh construction and solution
projection from previous iterations. On the other hand, the geometry approximation is
fixed by the first discretization and, in the case of having low levels of error, unrefinement
is usually avoided.

Remeshing techniques have opposite properties. Geometry approximation improves as
well as the mesh and unrefinement is easily performed. Meshing cost increases but, taking
into account the performance of actual meshing algorithms this drawback may sometimes
be accepted. From these considerations, total remeshing technique is here proposed as an
appropriate choice within this context, although the present formulation is not restricted
to this scheme.

It is important to mention that the primal variable u is here approached by using
hierarchical base built from the integral of Legendre polynomials [12]. However, this
technique usually produce non-conforming meshes in 2D and 3D problems that must be
conveniently treated a posteriori, restraining the use of conventional FEM codes [§].

The choice of the strategy to be used for an hp refinement basically depends on the
regularity of the solution u. For singular solutions, the value of s is assumed to exist within
the range 0 < s < 1. For smooth solutions, the s parameter takes the value s =p > 1
(see Theorem 4.2).

5.1 Regular problems (s > 1)

In this case, an algorithm for total remeshing is used (see refer. [5]). A new polynomial
order p, (Eq. 37) and a new element size h, (Eq. 35) is associated to each element of the
old mesh. From this information a new number N; > 1 of elements within the domain is
computed. This is performed by obtaining the closest integer to the real value A;, that is

L |
A= dz. 19
l o hn(2) z (49)
The position of the new nodes 7, with 1 < ¢ < N;, may be determined by finding \;
such that
- / Ly 50)
T (x) o (

where the nodes i = 0 and ¢ = N, are initial and final nodes, respectively.

Once the new mesh is defined, a projection of the polynomial order p, from each
element of the old mesh to the new one, is done.

Adaptive remeshing has the drawback that it is not possible to reuse the linear equation
system from one iteration to the other. However, this situation is counterbalanced by the
fact that only few iterations are needed to reach an error level when using the hp calculus
technique here proposed. This statement is further discussed in Section 6, with the aid
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of some numerical results. But one must remark that the scheme here proposed is also
applicable to nested meshes in order to take advantage of previous computation.

5.2 Singular problems (0 < s < 1)

Singular problems usually solved with conventional FEM codes is such that 0 < s < 1.
The proposed formulation can not be directly applied to this kind of problems, like as
cracks, vertexes, discontinuous loads, geometrical property variations, etc. Therefore,
some special treatment is needed for these cases. This happens due to the hypothesis of
Theorem 4.2, i.e. p = s, is too strong.

Thus, a direct approach is to use the so called true hp optimal meshes [1] on the point
singularity, which is certainly the best error control technique for this class of problem.
The meshes are based on a geometrical growth of the elements from the singular point.
Thus, the mesh used here follows this refinement criterion:

e (14Q+Q*+ ..+ QY) =h. (51)

being h the actual size of the element next to the singular point, h,, the new element size
on the singularity and N, the number of geometrical layers. In this context, h,, is evaluated
by considering a pure h refinement (Eq. 23) and, for a given geometric progression ratio
Q@>1,
B log{l+%(@—1)}
c log @)

As it is intended to extend these results for two and three dimensional problems, a fixed
ratio () = 4 is adopted for preventing high mesh distortion, although the ratio () = 5.88
[2]would be preferable if a robust mesh generation program were available. Further, the
regularity of the solution s (or 7) is fixed in s = 1/2 < p. This last important assumption
comes from a pragmatic reasoning: it is assumed that the engineer analyst will know
where the singularity is but not its intensity.

The polynomial order distribution around the singular point is

defined by a linear growth law starting from the second element adjacent to the sin-
gularity, such that {p,} = {1,2,..., N.}. For the closest element to the singular point the
value p, = N, + 1 is chosen. In other words, the polynomial distribution on the singular
region is {p,} = {N.+1,1,2,..., N.}.

~1. (52)

5.3 An hp refinement algorithm

The hp refinement strategy here proposed allows refinement as well as unrefinement. In
the latter case, the polynomial order may vary between the range 1 < p, < 8 within
one iteration. On the other hand, the element size has a growth limit to avoid mesh
distortions. When h,, > 1.3 h, the following projection is used [5]

2hh,
hy, = . 93
h+ hy (53)
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A possible way to achieve the admissible error 7,4 (Eq. 43) in the optimization problem
consists on dividing 7,4 in a set of incremental steps. Thus, a new parameter, 7,,, is

defined as
ﬁad _ (nad)\/zter/nzter : (54)

being niter the total number of iterations within the adaptive procedure and iter the
iter-th iteration. Therefore, 7,, is considered as the limit of the admissible error on each
iteration ¢ter. In short, the proposed procedure may be summarized on the following
steps:

1. Definition of 7,4 and niter.

2. While iter < niter, start adaptive procedure, i.e. while 7,; > 144 :

(a) The elements in connection with singular points are identified and a true opti-
mal hp mesh refinement is performed on them, as presented in Section 5.2.

(b) On the other regions, a regular solution is assumed to exist. Thus, a direct
and simultaneous computation of A and p parameters is done for each element
following the technique developed in Section 4.3.

(c) Finally, a total remeshing procedure in accordance with new values of h and p
is started as proposed in Section 5.1.

3. When iter = niter, one has 7,; = n.q and, after a last analysis, the process stops.
At this point, it is expected that the specified error level has been reached.

6 Numerical results

Some numerical tests were used to analyse the performance of the proposed technique.
To this aim, the following elliptic boundary value problem is solved

d*u

@jtf(:v):(), reQ=1(0,1), u(0)=go and u(l)=g¢ (55)
where f () is specially chosen in order to produce great local variations on the solution
u () due to singularities or high gradients. Smooth solutions, as it is well known, lead to
pure p refinement.

All cases start from a uniform mesh with 10 linear elements, and the hp adaptive
process is carried out considering that the exact solution w (x) is known in advance in
order to compute the error exactly.

In each of the following examples the proposed hp strategy is compared with the one
proposed by Rachowicz et al. [11] as far as convergence rates and number of iterations to
achieve a given level of error are concerned.
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6.1 Example 1
In this example it is considered gy = 0, g; = 0 and f (x) is done by

1 o (r—x) (1 —x
Flo) =20 |—— bty O 0o (56)
1+ a?(z — x) [1—1—042(95—3:0)}
Then, the exact solution u () is given by
u(z)=(1-x) {tan_1 a(z — x0) + tan™* ozxo} . (57)

For o = 4/9 and « = 50 the function u (z) is smooth, but presents high gradients
near r = .

The convergence rates of the present formulation for 3, 4 and 5 iterations and the
ones described in [11] for about 18 iterations are shown in Fig. 2. Comparing the curves,
a similar convergence rate is observed. However, in this work only a few iterations are
needed to reach a similar error level.

10.00 ~  Rachowicz, et al. (1989)

niter=3 M, =0.050%
''''' X piter=4 M, =0.038%
"""""" niter=5 M, =0.040%

| \\HH‘
>

1.00

| \\HH‘

|

e
—
(e
Lol

|

| \\HH‘

T ' T T [ ‘

10 N, 100
Figure 2: hp convergence (Example 1).

In Fig. 3, the hp mesh obtained after an iterative procedure with niter = 4 is shown.
In this case, the refinement, as expected, is concentrated around the point x = 4/9 where
high solution gradients are found.
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1 T 0.2
0 L L 2 000000 0 & L L L 2 L 2 L 2 *—@ 0 O
0 Coordinate x 1

Figure 3: Final hp mesh for niter = 4 (Example 1).

6.2 Example 2

The same problem presented in Example 1 is here analysed, but with « being equal to
200. The solution u(z) is still smooth but presents higher gradients on z = 4/9.

Convergence rates of Rachowicz et al. [11] for about 18 iterations and of the present
formulation for 3, 4 and 5 iterations are shown in Fig. 4. It can be noted that, on the
beginning of the process, convergence rates are similar. However, due to the remeshing
strategy, there exist a strong tendency of locating nodes near to the point x = 4/9 as it
happened. Therefore, higher convergence rates appears. Finally, it must be mentioned
once again that those values of error were obtained with only a few iterations.
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10 Rachowicz, et al. (1989)
N A ity =3 My =0.028%

XN K niter=4 M, =0.044%
| ‘\"\ ‘ N, 2 @ niter=5 M, =0.052%

I ' T T '
10 Nay 100

Figure 4: hp convergence (Example 2).

The final hp mesh for niter = 4 is shown in Fig. 5. In this case, a concentration of
nodes near z = 4/9 is evident. Note that this technique has positioned a node close to
the point = = 4/9 and this carried out such high convergence rates shown in the Fig. 4.
16
14
12
10
— 08
06
— 04
02
0.0

Solution u

Coordinate x

Figure 5: Final hp mesh for niter = 4 (Example 2).
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6.3 Example 3

In this last example, go = 0, g3 = 1 and the source term f (z) is
f(z)=ala—1)z*2 (58)

Hence, the exact solution is
u(x) = z°. (59)

Here « is selected to be 0.6 and a singular point is located at x = 0. Nevertheless, the
energy norm of the solution is limited, i.e.

1 2 1
% = /()(%) d:v:\/%<oo, ifoz>§. (60)

Being a singular solution, the Babuska et al. [1] technique is used next to the singular
point as detailed in Section 5.2. On the remaining domain, the methodology here proposed
is applied.

A comparison between the results obtained by Rachowicz et al. [11] for about 60
iterations and by the present formulation for 3, 4 and 5 iterations are presented in Fig.
6. It can be noted, once again, similar convergence rates, but an important difference in
the required number of iterations to achieve a similar accuracy level.

||U||H1(Q) = ‘
L2()

1.0 —  Rachowicz, ct al. (1989)
] — A iter=3 M, =0.60%
R w 7 e niter=4 M, =1.2%
- ) - TeT niter=5 M, =1.1%

10 Nay 100

Figure 6: hp convergence (Example 3).

The final mesh for niter = 4 is depicted in Fig. 7. A detail of the refinement close the
singularity is shown in Figs. 8 and 9.
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Figure 7: Final hp mesh for niter = 4 (Example 3).
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Figure 8: Final hp mesh for niter = 4: Zoom of 4 x 10® times (Example 3).
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Figure 9: Final hp mesh for niter = 4: Zoom of 6.67 x 107 times (Example 3).
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7 Conclusions

A new hp adaptive strategy based on the local minimization of the number of equations for
a given error level is here proposed. This formulation leads to a non-linear one-variable
equation for each element that may easily be solved by a fixed point algorithm. As a
result, the new h and p parameters are simultaneously obtained at each element of the
mesh for the next iteration.

Since the proposed formulation is independent on the adopted mesh refinement scheme,
a remeshing procedure was here chosen. Remeshing allows a complete independence of the
discretization at each iteration. This strategy diminishes the responsibility of the analyst
with regard to the previous knowledge of the problem behavior. On the other hand,
computational costs are greater than the ones obtained with, for example, nested meshing
because, in this last option, it is possible to reuse information of previous iterations. The
disadvantage of nested schemes is that the new mesh strongly depends on the initial one
and that unrefiments are not easy to be performed.

The goal of this work is to propose a formulation applicable to 2D and 3D boundary
value problems with the minimum previous knowledge about the topology of the spaces
in which the solution is inserted. In order to satisfy these requirements, many hypothesis
are assumed. Therefore, the result of Theorem 4.2 may not coincide with the optimal
meshes in the sense of Babuska et al. [1]. In fact, numerical experiments have shown
that the algorithm usually leads to a mesh where the error is overestimated. Despite of
this problem, the obtained results are quite satisfactory in relation to the independence
of the analyst in the adaptive process, to the convergence rates and, above all, to the
reduction of the number of iterations to achieve an specified error level. In addition, the
numerical results obtained with only 4 iterations are as good as those obtained through
the conventional procedure by using 4 or 5 times more iterations for the regular problems
(see Examples 1 and 2) and 10 or 12 times more iterations for the singular case (see
Example 3).

Finally, it is worth mention that the necessary and sufficient optimality conditions
(Theorem 4.2) are stated in a local sense, that is, at each element. The consideration of
these conditions in a global sense, that is for all the mesh, is a question that still remains
open. Moreover, other cost functions could have been considered instead and are currently
under investigation.
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