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Abstract. The Griffith-Francfort-Marigo damage model describes the behavior of brit-
tle materials under the quasi-static loading assumption, focusing on the evolution of
damage regions. It is based on the minimization of a shape functional given by the sum
of the total potential energy of the system with a Griffith-type dissipated energy, with
respect to the distribution of the healthy and damaged phases, under an irreversibility
constraint. A natural approach to deal with such a minimization problem consists in
considering the topological derivative concept to nucleate small damaged regions and
the shape gradient to propagate them. In contrast to such an approach, in this pa-
per the Griffith-Francfort-Marigo damage model is revisited by using the sole tool of
topological derivative. In particular, we propose a striking simple numerical scheme
based on the computation of the topological derivative field to determine damage nucle-
ation as well as crack/damage propagation. In other words, the topological derivative
is used as descent direction to minimize the Francfort-Marigo functional indicating, in
each iteration, the regions that have to be damaged. Therefore, the proposed topology
optimization algorithm is able to capture the whole nucleation and propagation damag-
ing process, including important features like kinking and bifurcations. These properties
are confirmed through several numerical experiments and by comparison with available
laboratory experiments.

1. Introduction

Many works in Fracture Mechanics address the issue of microscopic modelling of frac-
tures and the coupling of some defect atomistic models with macroscopic elasto-plastic
models. In this paper, we focus on a purely macroscopic model in the framework of con-
tinuum mechanics. Roughly speaking, continuum models can be classified in two main
categories. On the one hand, there are models of crack growth and propagation which
assume that the crack is a surface evolving in three-dimensional body, with specific evo-
lution laws, which are found innumerable in Fracture literature (often depending on the
body shape and dimensions). On the other hand, one can consider models of fracture,
where the crack is identified with a thin damage. In this case there exists a competition
between the initial healthy elastic phase and another damaged elastic phase. The transi-
tion from healthy to damaged can be smooth or sharp, i.e., there is an interface between
a healthy and a fully damaged zone. Our model belongs to this second class.

The origin of such a model amounts to the British engineer A.A. Griffith in 1921, who
published a paper on fracture of glass. In this work, Griffith assumes that flaws pre-exist
in the body, where stress concentrates, provoking atomic debonding and resulting in crack
propagation, until the body breaks. The pre-existing crack is submitted to an external
load: force or imposed displacement. In Griffith’s model, the system is modeled by two
thermodynamic variables: the area of the crack and the displacement of the loading grips.
The energy of the system is the sum of the elastic energy in the body, and the surface
energy of the crack, and is a function of a single thermodynamic variable: the area of the
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crack. When the crack evolves, the stress in the sample is partially relieved, so that the
elastic energy is reduced. At the same time, the advancing crack creates more surface
area, so that the surface energy increases. Thermodynamics dictates that the process
should go in the direction that reduces the total available free energy. If the decrease
in elastic energy prevails, the crack grows, otherwise the crack heals. Specifically, let U
be the internal energy (i.e., the macroscopic energy of the atoms), P be the work of the
volume and surface forces (i.e., −P is the potential energy), S be the body entropy and
T0 the surface temperature, assumed constant and equal to the ambient temperature.
Let us assume that the process is quasi-static, the kinetic energy and the volume heat
sources are negligible, whereas the surface heat supply must not vanish a-priori (recall
that boundary loads are prescribed). Therefore the combination of the first and second
laws of Thermodynamics yields

d

dt
(U − P − T0S) ≤ 0, (1.1)

where Griffith takes U as the sum of the stored elastic energy E and a surface term
proportional to the crack area, D. Thus, Griffith’s Law (1.1) strictly tells us that the
available free energy must decrease in time, that is that the total energy F := E−P +D
tends to be minimized, while the entropy S increases.

A stronger postulate was considered about 70 years later by Francfort and Marigo [12]
when revisiting Griffith’s model under the framework of global minimization of the energy.
Indeed, the authors, and after them a series of coworkers and contributors did suppose
that at each quasi-static step, the total energy F assumes a global minimum with respect
to the distribution of the healthy and damaged phases. Furthermore, they assumed that
the crack is irreversible, meaning that healing is precluded: at each step, either the crack
is unchanged, and hence load is increased, either the crack advances, and hence its area
is strictly increasing.

There are several ways to compute the minimum of the energy in order to provide a
computational algorithm of fracture/damage propagation (see, e.g., [11]). One minimiza-
tion scheme suggested in [1] relies on shape optimization principles. It consists of a descent
method driven by the shape gradient of the energy functional, i.e., the energy decreases
in the normal direction to the boundary of the damage region with a magnitude given
by the shape derivative of F . Furthermore, in order to nucleate new damage regions, the
so-called topological derivative of F was also considered in [1]. Let us emphasize that
in theory the concepts of shape and topological derivatives are distinct, and the latter is
computed in the undamaged part of the body, in order to determine if it is energetically
worth to create some new damage away from the existing one. One drawback of using the
shape gradient approach, is in fact that it is a vector field concentrated on the boundary
of the damage, as opposed to the topological derivative which is a scalar field distributed
in the whole domain. Therefore, one needs a very good computation of the normal vec-
tor to the damage region, because this vector will determine the crack/damage path. It
turns out that the shape optimization method of [1] was promising, but computationally
expensive.

Topological sensitivity analysis may be considered for a pure fracture model as in [19, 16]
as for a damage model with crack-like damage regions. It is the purpose of the present
work to revisit Griffith-Francfort-Marigo damage model by using solely the topological
derivative concept, that is, the computation of this scalar quantity should allow us to
determine damage nucleation as well as crack/damage propagation, relying on the con-
tour lines of the topological derivative field. It can be proven, but is not the aim of this
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work, that from a theoretical standpoint the concepts of shape and topological deriva-
tives do coincide on the boundary of the damage region [6]. In this work, we present a
simple numerical scheme that was able to improve the results of [1], not only in terms
of computational cost but also in terms of successful crack propagation assessment tests.
The interest of this method is its striking simplicity: to achieve minimization, a single
scalar field is computed from which nucleation and propagation of damages are deter-
mined. In particular, the topological derivative is used as descent direction to minimize
the Francfort-Marigo functional indicating, in each iteration, the regions that have to be
damaged. Therefore, the proposed topology optimization algorithm is able to capture the
whole nucleation and propagation damaging process, including important features like
kinking and bifurcations. These properties are confirmed through several numerical ex-
periments, whose results are compared with real laboaratory tests when available. Let us
emphasize however that being a descent method, what is actually achieved is local rather
than global minimization, which is also more sound from a Physical perspective. In this
respect, our choice has been to refine the mesh at the crack tip as soon as a local advance
is made. In such a way, according to our numerical results, bifurcation and kinking are
rather well captured.

The paper organized as follows. The Griffith-Francfort-Marigo damage model is re-
visited in Section 2. Its associated topological derivative is presented in Section 3. The
resulting topology optimization algorithm is shown in all its details through Section 4.
The obtained numerical results are presented in Section 5, where the whole nucleation
and propagation damaging process is observed, together with important features such
as kinking and bifurcations. Finally, the paper ends with some concluding remarks in
Section 6.

2. Mechanical Model

The Griffith-Francfort-Marigo damage model describes the behavior of brittle materials
under the quasi-static loading assumption, focusing on the evolution of damage regions
[12]. Unlike ductile materials, perfectly brittle materials show no irreversible deformation
and no energy dissipation immediately before the crack propagation, and thus the failure
is usually brutal. Based on this evidence, the damage model of Francfort-Marigo asserts
that an abrupt change in the material behavior takes place pointwisely.

The main idea behind this type of damage model is to introduce an elastic body made
of two distinct materials, here represented by the parameter ρ0 ≪ 1. The change from
the original material to the damaged one occurs only if the elastic energy released by
this transition overcomes a certain material-dependent threshold. In other words, the
occurrence of the damage is determined by the relation

1

2
Cε · ε−

1

2
ρ0Cε · ε > κ , (2.1)

where C is the fourth-order elasticity tensor, ε is the second order strain tensor and κ is
a material property that represents the damage toughness.

Two conditions are expected for this model. Firstly, the health material should be more
stiffer than the damaged material, i.e.,

(1− ρ0)Cε · ε > 0 ∀ε , (2.2)

to characterize the stiffness loss associated with the damage. Secondly, the damage (C→
ρ0C) is permanent, i.e., the material is unable to return to its original state (ρ0C 6→ C).
Thus, irreversibility imposes a constraint on the evolution of the phenomenon.
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More precisely, let us consider an open and bounded geometrical domain Ω ⊂ R2, with
Lipschitz boundary Γ := ∂Ω, and a sub-domain ω of the form ω ⊂ Ω. Francfort and
Marigo proposed a functional that should be minimized at each time instant ti, whose
arguments are the displacement field ui and the damage distribution ρ : Ω → {1, ρ0}
defined as

ρ(x) :=

{

1, if x ∈ Ω \ ω,
ρ0, if x ∈ ω.

(2.3)

Since ρ0 ≪ 1, Ω\ω and ω are used to represent the health and damage parts of the elastic
body, respectively. That is, if ρ(x) = 1 one recovers the health material C, otherwise, if
ρ(x) = ρ0 one obtains the damaged material ρ0C.

The Francfort-Marigo functional Fω(ui) is defined as the sum of the total potential
energy and an energy dissipation term, namely

Fω(ui) = J (ui) + κ|ω|, (2.4)

where |ω| is the Lebesgue measure of ω and J (ui) is the total potential energy defined as

J (ui) =
1

2

∫

Ω

σ(ui) · ε(ui) dΩ . (2.5)

Note that there are no body forces, nor surface tractions. Indeed, we are going to impose
a nonhomogeneous Dirichlet boundary condition, i.e., a prescribed displacement. Some
term in the above equation require explanation. The stress tensor σ(ϕ) is defined as

σ(ϕ) = ρCε(ϕ) , (2.6)

while the strain tensor ε(ϕ) is given by the symmetric part of the gradient of ϕ, namely

ε(ϕ) =
1

2
(∇ϕ+ (∇ϕ)⊤) . (2.7)

We restrict ourselves to isotropic material, so that the elasticity tensor C can be repre-
sented by the Lamé’s coefficients µ and λ in the following form

C = 2µI+ λ(I⊗ I) , (2.8)

where I and I are the second and fourth identity tensors, respectively. Finally, the dis-
placement field is solution to the following boundary value problem: Find ui, such that















divσ(ui) = 0 in Ω,
σ(ui) = ρCε(ui),

ui = gi on ΓD,
σ(ui)n = 0 on Γ0.

(2.9)

where gi = gi−1 + ∆gi is used to denote a prescribed displacement on the boundary
ΓD ⊂ Γ depending on the time instant ti and the increment ∆gi. Thus, the total applied
displacement g is computed as the sum

g = g0 +

N
∑

i=1

∆gi , (2.10)

where N is the total number of increments. Finally, Γ0 ⊂ Γ is used to denote a traction
free boundary. Therefore, Γ = ΓD ∪ Γ0, such that ΓD ∩ Γ0 = ∅.

Now, we have all elements to state the Francfort-Marigo damage model, which consists
in minimizing the functional Fω(ui), for each time increment ti, with respect to the set
ω ⊂ Ω. That is

Minimize
ω⊂Ω

Fω(ui), subject to (2.9) . (2.11)
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This model is purely energetic in the sense that damage evolution is based just on the
energy density distribution. As a direct consequence, it is not able to distinguish the
difference between traction and compression stress states and thus not suited to describe
the crack closure phenomenon.

Another important feature of the model concerns the characterization of a critical
load. In problems without singularities, critical load is the one that allows local strain-
energy density to achieve a critical value. In problems with stress singularities, however,
the strain energy density rises locally to unbounded values and consequently above any
finite threshold. Nevertheless, experiments like those of Griffith indicate the existence of a
critical nonzero load even in the presence of such singularities, which reveals a limitation on
the straightforward application of the Francfort-Marigo model in these cases. An existing
remedy in the literature proposes a modification in the (discrete) numerical scheme of
the model by introducing a new material property κs used in conjunction with a scaling
factor associated with a mesh size measure [1]. Here, we replace κ by a modified energy
release parameter κδ (see (2.1)) defined by the ratio

κ = κδ :=
κs

δ
, (2.12)

where δ is a scaling factor associated with the width of the initial damage. From the
physical point of view, when δ becomes smaller, the parameter κδ increases in a similar
way as the energy density, so that the critical load converges to a finite nonzero value. This
strategy has shown to be effective in problems of crack propagation where the fracture is
represented by a damaged region of small width δ, since letting δ → 0 forces the damage
region to be crack-like. In the original Bourdin, Francfort and Marigo work [11], the
crack was approximated by a smeared region by Ambrosio and Tortorelli functional [2],
whereas in our approach the contrary is done: a damage converges to a crack. In the
anti-plane case theoretical results in this respect were derived by Dal Maso and Iurlano
[17]. Note the use of κs is explicitly taken into account in these approximations. See also
[15], where a phenomenological continuum model for mode III dynamic fracture based on
the phase-field approach is proposed.

3. Topological Derivative

In order to solve the minimization problem (2.11), we use the topological derivative
concept [18]. The idea is to evaluate the topological derivative of the shape functional
(2.4) with respect to the nucleation of a small circular inclusion. Such a topological
derivative is know in the literature. For the sake of completeness, we state the main
result to be used in this paper, which is given by the following theorem [18, Ch. 5, pp.
158]:

Theorem 1. The topological derivative of the shape functional (2.4) with respect to the

nucleation of a small circular inclusion with different material property from the back-

ground, represented by a contrast γ, is given by the sum

DTFω(x) = DTJ (x) + κδDT |ω|(x) ∀x ∈ Ω . (3.1)

The last term DT |ω|(x) is trivially given by

DT |ω|(x) =

{

+1, if x ∈ Ω \ ω,
−1, if x ∈ ω,

(3.2)

while the first term DTJ (x) is known, whose closed formula is written as

DTJ (x) = −Pγσ(ui(x)) · ε(ui(x)) , (3.3)
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where the polarization tensor Pγ is given by the following fourth order isotropic tensor

Pγ =
1

2

1− γ

1 + γa2

(

(1 + a2)I+
1

2
(a1 − a2)

1− γ

1 + γa1
I⊗ I

)

, (3.4)

with the parameters a1 and a2 given by

a1 =
λ+ µ

µ
and a2 =

λ + 3µ

λ+ µ
, (3.5)

and the contrast γ is defined as follows

γ(x) =

{

ρ0, if x ∈ Ω \ ω,
ρ−1

0
, if x ∈ ω.

(3.6)

See also [3, 5] for details on the formula derivations. The same formula (3.3) holds true for
heterogeneous medium [13], provided that the heterogeneity is locally Lipschitz continuous.

Let us remark that we have here chosen the same contrast for each of the two Lamé’s
coefficients. For the expression of the topological derivative with a distinct contrast,
we refer to [1]. In this reference it is also proven that DTJ (x) < 0 if x ∈ Ω \ ω and
DTJ (x) > 0 if x ∈ ω (see [1, Theorem 4.1]).

4. Resulting Algorithm

The topological sensitivity analysis provides a first order correction for the shape func-
tional when an infinitesimal perturbation is introduced in the domain. Therefore, it is
possible to decrease the value of the shape functional by introducing infinitesimal inclu-
sions at the regions where the topological derivative is negative. Since due to practical
reasons only finite size perturbations can be created, we propose an algorithm based on
the introduction of an inclusion of finite size at the region where the topological derivative
is negative. If the size of the inclusion is small enough, but at the same time large enough
to be treated numerically, it is expected that the Francfort-Marigo functional decreases.
The size of inclusion is associated with the region ω∗ where the topological derivative field
is negative, i.e.,

ω∗ := {x ∈ Ω : DTFω(x) < 0} . (4.1)

In principle ω∗ must not be a connected subset, that is, there might be nucleation of
damage in front of the previously damage zone, but also elsewhere in the body. In the
former case, nucleation of damage yields evolution of the damage set, whereas in the
latter it means genuine damage nucleation. Let us emphasize that from a theoretical
point of view, the topological derivative holds away from the damage region and for an
infinitesimal inclusion only. On the other hand, the topological derivative can be used as
a steepest-descent direction in the optimization process like in any method based on the
gradient of the objective functional. Therefore, for practical purposes, since the numerical
method introduces a grid of finite size, we will consider nucleation of inclusions of finite
sizes but small enough such that a decreasing of the Francfort-Marigo functional in each
iteration is ensured. It should also be noted that it can be proved that the topological
gradient can be used in place of the shape gradient (as done in [1]) to compute the time
evolution of the damage region.

Having said that, at this stage, we are free to design our algorithm either by nucleating
only at those points where the topological derivative achieves its minimum, or at all
points were it is negative, while an intermediate choice would be to calibrate the size of
the inclusion to be nucleated according to the characteristic size of the previously damaged
region. This choice will be provided by the model parameter β ∈ (0, 1), with the extreme
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choices given by β = 0 (minimum points only), and β = 1 (the whole negative region),
respectively. To this aim, let us introduce the quantity

DTF
∗

ω := min
x∈ω∗

DTFω(x) , (4.2)

which allows us to define the inclusion to be nucleated ωβ ⊂ ω∗ as follows

ωβ := {x ∈ ω∗ : DTFω(x) ≤ (1− β)DTF
∗

ω} , (4.3)

where β ∈ (0, 1) is chosen such that |ωβ| ≈ πδ2/4 (and |ωβ| ≤ πδ2/4), so that the
size of the inclusion to be nucleated is here related to the width of the initial damage δ.
Therefore, if the initial damage is crack-like (δ small), β will be taken as small as to satisfy
|ωβ| ≤ πδ2/4. By this choice, a damage will evolve like a crack. As a matter of fact, the
parameter β induces a threshold for the topological derivative DTFω(x) and the volume
of the inclusion will only depend on δ, while its shape will depend on the contour lines
(level-sets) ofDTFω. We will show through some numerical experiments that this strategy
ensures a decreasing of the Francfort-Marigo functional in each iteration, provided that
the size of the inclusion to be nucleated ωβ is small enough.

The algorithm can be outlined as follows. Given the solution of the linear elasticity
system (2.9), the associated topological derivative field (3.1) is evaluated. If the field is
positive everywhere or |ω∗| < πδ2/4, a perturbation of size πδ2/4 at any point of the
domain is likely to increase the value of the functional. In this case, the algorithm will
not propagate the damage, and it is possible to increase the load gi further and run a new
analysis. On the contrary, if the topological derivative field is negative in some undamaged
region and the condition |ω∗| ≥ πδ2/4 is fulfilled, a damage ωβ will be nucleated inside ω∗,
with β : |ωβ| ≈ πδ2/4 (and |ωβ| ≤ πδ2/4). Schematically, one can see the newly-damaged
region as an half-disk of radius δ/2 located at the tip of the pre-existing damage. Since
the nucleation of a new damage ωβ modifies the problem, the solution to the elasticity
system associated with the new topology have to be computed again. Finally, the new
topological derivative field is evaluated and the process is repeated until the condition
|ω∗| ≥ πδ2/4 is not fulfilled anymore for any load increment. The elasticity system is
solved by the Finite Element Method. In order to improve the numerical results, the
mesh at the crack tip is intensified in each iteration of the optimization process. The
above procedure written in the form of pseudo-code is given in Algorithm 1.

5. Numerical Experiments

The elasticity problem is discretized by using linear triangular elements only. It should
be emphasized that the boundary conditions induces a stress concentration and it is there-
fore natural to expect damage initiation at these locations. However, in order to compare
our results with those found in the literature, the regions near to the boundary conditions
were ignored. The damage evolution are represented by black and red lines. The black
trajectories represent the damage evolution in a material traction state, tr(σ(ui(x))) > 0,
whereas the red trajectories represent the damage evolution in a compressive (unphysical)
state tr(σ(ui(x))) < 0.

5.1. Mode I Opening. The first example considers the Mode I crack opening. This case
will be used as a reference to calibrate the necessary parameters and check the overall
performance of Algorithm 1. The domain consists of a unit square Ω = (0, 1)× (0, 1) with
unit thickness (units are in m) with an initial damage of length h and width δ located in
the center of the left side of the domain, as shown in Figure 1. A vertical displacement
was imposed on the bottom and top sides of the domain with a total intensity g, which
has been divided into 100 uniform load increments. The material properties modulus of
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Algorithm 1: The damage evolution algorithm.

input : Ω, ω, δ, N , g0, ∆gi
output: The optimal topology ω⋆

1 for i = 1 : N do

2 solve elasticity system (2.9);

3 evaluate the topological derivative DTFω according to (3.1);
4 compute the threshold ω∗ from (4.1);

5 while |ω∗| ≥ πδ2/4 do

6 intensify the mesh at the crack tip;

7 solve elasticity system and evaluate DTFω;
8 compute the threshold ω∗ from (4.1);

9 compute the threshold ωβ from (4.3);

10 nucleated new inclusion ωβ inside ω∗;

11 update the damaged region: ω ← ω ∪ ωβ;
12 solve elasticity system and evaluate DTFω;

13 compute the threshold ω∗ from (4.1);
14 end while

15 end for

elasticity E, Poisson ratio ν, and energy release rate κs correspond to the high-strength
concrete. The inclusion is made of a material with an elasticity modulus ρ0E and its
diameter is specified by the parameter l. All these data are summarized in Table 1.

Figure 1. Mode I. Geometry and boundary conditions.

Table 1. Mode I. Parameters.

Parameter Value Parameter Value

h 0,25 m E 30 GPa
δ 0,01 m ρ0 10−6

l 2δ/3 m ν 0,20
g 0,01 m κs 3.2 ×106 J/m
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5.1.1. Critical Load. The Francfort-Marigo damage model is not suited for the determi-
nation of a critical load in problems with singularities, such as the limiting case when
δ → 0 of the Mode I example. In this case any non-null load is sufficient to raise infinitely
the value of the energy density at the crack tip. When it is of interest to characterize a
critical load in problems that have initial damage, a strategy can be chosen in a similar
manner as in [1]. As discussed in Section 2 instead of using the mesh size, we chose to
use as a scale factor a dimension associated with the geometry of the problem, given by
the initial width δ of the damaged region. Hence, as the width δ of the initial damage is
reduced, the parameter κδ grows in order to compete against the increase of the elastic
energy density at the damage tip. To verify this assertion, five tests were made with
different values for the initial width, namely δ ∈ { 1

20
, 1

40
, 1

80
, 1

160
, 1

320
}[m]. The parameters

were maintained according to Table 1.
The critical load gc was selected as the value of the displacement boundary condition

which allows the nucleation of the first inclusion, that is, when the condition |ω∗| ≥ πδ2/4
holds for the first time. Figure 2 illustrates the critical load obtained for the different
experiments, which are normalized according to the first estimate found for the critical
load g0c . Therefore, the introduction of the ad hoc parameter κδ through (2.12) allows
for dealing with a feasible critical loading for δ > 0, as shown in Figure 2 (dashed-bullet
line). We claim however that the limiting case δ → 0 is much more involved and has been
considered in [19], for instance.

with correction

without correction

0 50 100 150 200 250 300 350
0

0.5

1

1.5

Figure 2. Mode I. Convergence analysis for the critical load.

As expected, with the decrease of the width δ, the energy density at the damage
endpoint increases. Note that without a scale factor correction, the critical load decreases
towards zero. On the other hand, the use of the factor δ leads to an asymptotic behavior
for the critical load. Therefore, to describe completely the model, it remains to calibrate
the parameter κs according to experimental data.

5.1.2. Damage Evolution. After this preliminary analysis, the experiment was simulated
using the parameters shown in Table 1. The topological derivative at the crack tip at the
precise time before the propagation can be seen in details in Figure 3(a). The distribution
of damage at the end of the optimization process can be seen in Figure 3(b).

The result is similar to those obtained in [1], and as expected the damage growth took
place in traction (see the damage in black). The history of the strain energy can be
seen in Figure 4(a). It is observed that the damage region remains unchanged until the
increment i = 80. Therefore, damage propagation took place between the load increments
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(a) topological derivative (b) final damage path

Figure 3. Mode I. Damage evolution.

80 and 81. Note the abrupt drop in the strain energy between these two load increments.
In the following load increments (81 − 100), the material also acquires a strain energy
due to the residual material stiffness, though not noticeable due to its low value. The
topology optimization processes starts in the load increment 80, whose history of the
shape functional can be seen in Figure 4(b). Note that the model dissipates energy in all
iterations.

(a) strain energy J (ui) from (2.5) (b) total energy Fω(ui) from (2.4)

Figure 4. Mode I. Obtained histories.

The initial mesh has 47746 elements and 24076 nodes, while the final mesh has 121160
elements and 60797 nodes. The total CPU time of the whole process was 1h and 7min in
a PC endowed with 3.4GHz processor and 16GB of RAM memory.

5.2. Nucleation Phenomenon. This example has the same geometry end boundary
conditions of the Mode I case. The parameters are the same observed in Table 1 except
by κs, which is set as κs = 1.0 × 106J/m. However, a hole of radius r = 0.1m located in
the center of the square is introduced, as shown in Figure 5. The obtained result can be
seen in Figure 6(a). It can be verified that the proposed algorithm was able to activate
the mechanism of damage nucleation, independently of any initial damaged region on
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Figure 5. Nucleation phenomenon. Geometry and boundary conditions.

the boundary of the hole. Note that the strain energy increases before the nucleation
phenomenon, Figure 6(b).

(a) final damage path
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(b) strain energy J (ui) from (2.5)

Figure 6. Nucleation phenomenon.

5.3. Mode II Opening. The next case aims at revealing the capability of Algorithm 1
to create branches of damaged regions. The mode II test case has a similar geometry as
that of mode I, differing only in the type of boundary condition. In this case, there are
opposite and tangent displacement conditions at the top and bottom faces, as shown in
Figure 7. In a similar manner to the first case, the parameters used are given in Table 2.

As discussed, the Francfort-Marigo model is energetic and for this reason it does not
distinguish between states of traction and compression. It is nevertheless possible to
adopt a heuristic numerical scheme to test different damage evolutions according to this
procedure. To this aim, a test which checks if the trace of the stress tensor is positive,
namely tr(σ(ui(x))) > 0, can be made. If negative, the damage will not be created even
if the topological derivative is negative. Unlike [4], where the functional is modified to
incorporate the distinction between traction and compression, our approach is purely
algorithmic and investigative. However for clarity, the two approaches – the original



12

energetic model and the heuristic one – have been tested and their results presented
separately.

Figure 7. Mode II. Geometry and boundary conditions.

Table 2. Mode II. Parameters.

Parameter Value Parameter Value

h 0,25 m E 30 GPa
δ 0,01 m ρ0 10−6

l 2δ/3 m ν 0,20
g 0,01 m κs 4.5 ×105 J/m

It is interesting to note that one of the characteristics of this problem lies in the sym-
metry of the strain energy density. Being the Francfort-Marigo model based solely on
the energy density values, it is evident that damage shows two symmetric branches, one
(spurious) in compression and one in traction. Figure 8 shows the topological derivative
at the crack tip in the exact moment before the damage propagation.
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-0.5

0

x10
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Figure 8. Modo II. Topological derivative.

It can be seen that there are two distinct regions ahead of the damage where the
topological derivative is negative, what confirms the expectations. The final distribution
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of damage can be seen in Figure 9(a), where the red spurious branch was created in a
compression state, and the black one in a state of traction. This result agrees with the
available results in the literature [1, 10] regarding the damage model of Francfort and
Marigo. On the other hand, in Figure 9(b), the propagation is allowed to occur only
when the trace of the stress tensor is positive. In this case, the damage propagation is
physically consistent.

(a) original model (b) modified model

Figure 9. Modo II. Final results.

5.4. Fiber Reinforced Matrix. This case presented in [10] consists of a rigid fiber
embedded in a deformable matrix. In particular, we consider a carbon’s fiber embedded
in a region composed by epoxy. It is assumed that the structure is under plane strain
assumption and two different situations are considered. In the first one, the matrix is
pulled in the upper face, then the deformable matrix is under traction state. In the
second one, the matrix is pushed in the upper face inducing compression state in the
matrix. The others boundaries are free. In both cases the midpoint of the fiber remains
clamped to avoid translations and rotations, see Figure 10. All parameters are summarized
in Table 3 where E0 is the Young’s modulus of the epoxy and E1 the Young’s modulus of
the carbon’s fiber. In order to avoid unrealstic damage propagation under compression
state, the damage is nucleated if the condition tr(σ(ui(x))) > 0 is fulfilled, provided that
the topological derivative is negative. We stress however that it can be seen as a purely
heuristic strategy with no theoretical foundation.

Table 3. Fiber reinforced matrix. Parameters.

Parameter Value Parameter Value

E0 3,0 GPa E1 230,0 GPa
δ 0,0 m ρ0 10−6

l 0,02 m ν 0,30
g 0,1 m κs 1,0 ×106 J/m

Figures 11(a) and 11(b) shows the damage evolution for the traction and compression
tests, respectively. In these examples, the propagation is allowed to occur only when the
trace of the stress tensor is positive. In this case, the damage propagation is physically
consistent. Note that, in both tests, the phenomenon of debonding between the fiber and
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(a) traction test (b) compression test

Figure 10. Fiber reinforced matrix. Geometry and boundary conditions.

the matrix is captured. It is important to note that no region was previously damaged,
and hence Algorithm 1 is able to nucleate and propagate damage zones simultaneously.
Note that it is not clear to us if in the literature [11, 10] the damage was allowed to
nucleate in the interface between the fiber and the matrix. Thus, the results obtained
by other methods are not equal to those obtained by our approach, since in [11, 10]
the damage was initiated and spread toward the sides. However, similar results from
our approach can be observed in [1] and in the most recent reference [4] considering
compression. We claim however that the result present in Figure 11(b) is just speculative,
since the specimen is under compression and no eventual contact condition on the created
crack lips is considered. Instead, the black branch representing the cracked zone in Figure
11(b) is filled by a damaged material, with very low Young modulus. Nevertheless, the
obtained result taking into account these simplifications is promising and motivates further
improvement on our model.

(a) traction test (b) compression test

Figure 11. Fiber reinforced matrix. Final results.

5.5. Experimental Results. Some available experimental results used to test Algorithm
1 can be found in [14]. The geometry of interest for these experiments, sometimes called
Bittencourt’s experiments [8], is shown in Figure 12 where all dimensions are given in
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inches. In particular, we highlight the three holes located between the load and initial
crack. Thus, the scope is now the study of the influence of these holes on the crack
trajectory.

The different cases treated by this geometry differ by the position of the crack with
respect to the applied load, given on the one hand by the distance c, and on the other
hand by the dimension of the initial crack length denoted as h, which are shown in Table
4. The additional parameters used to test the algorithm are shown in Table 5.

Table 4. Bittencourt’s experiments. Position and length of the initial damage.

c (in) h (in)

Bittencourt 1 5,0 1,5
Bittencourt 2 6,0 1,0

Table 5. Bittencourt’s experiments. Parameters.

Parameters Value Parameters Value

N 100 E 4,5 ×105 psi
δ 0,005 in ρ0 10−6

l 2δ/3 in ν 0,35
g 0,20 in κs 15 (in-lbf)/in

Figure 12. Bittencourt’s experiment. Geometry and boundary conditions.

In the first case (h = 1, 5 in and c = 5, 0 in) the experimental trajectory does not
reach the first hole, but it is immediately oriented toward the second one. The proposed
algorithm was able to reproduce (almost exactly) this experimental result, as shown in
Figure 13(a). In the second case (h = 1, 0 in and c = 6, 0 in) the experimental trajectory
is oriented directly toward the second hole. Again, the proposed algorithm was able to
reproduce the experimental results, as presented in Figure 13(b). Here, there the results
were obtained without any heuristic approach, since the crack tip is always under traction
during the whole damage processing. Similar results have been obtained in [7, 9].
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(a) case 1 (b) case 2

Figure 13. Bittencourt’s experiment. Final results.

5.6. Heterogeneous Medium. In this last example we consider a heterogenous medium.
The idea is to corrupt the Young modulus E with White Gaussian Noise (WGN) of zero
mean and standard deviation η. Therefore, E is replaced by Eη = E(1 + sη), where
s : Ω → R is a function assuming random values in the interval (0, 1) and η = 2 corre-
sponds to the noise level. The domain consists of a rectangle Ω = (0, 1.5) × (0, 1) with
unit thickness (units are in m) with an initial damage of length h and width δ located at
the center of the bottom side of the domain, as presented in Figure 14. The parameters
used in this example are summarized in Table 6.

0.25

1.5

0.25

Figure 14. Heterogeneous case. Geometry and boundary conditions.

Table 6. Heterogeneous case. Parameters.

Parameter Value Parameter Value

h 0,2 m E 30 GPa
δ 0,01 m ρ0 10−6

l 2δ/3 m ν 0,20
g 0,01 m κs 5.0 ×103 J/m
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The corrupted Young modulus Eη(x) and the final result can be seen in Figures 15(a)
and 15(b), respectively. It is interesting to note that due to the medium heterogeneity,
we can observe kinking and bifurcations phenomena, which is in agreement with what it
is spected from the physical point of view.

(a) corrupted Young modulus (b) final result

Figure 15. Heterogeneous case.

6. Concluding Remarks

In this study, we proposed an algorithm for the Francfort-Marigo damage model based
solely on the topological derivative concept, which naturally allows for both nucleation
and propagation of damage zones. The devised algorithm incorporates a sequence of finite
perturbations according to the contour lines of the topological derivative field, which can
be seen as a direct extension of the concept of infinitesimal perturbation for numerical
purposes. It is important to emphasize that the topological derivative is obtained by post
processing and has no significant computational cost. Indeed, as far as computational
cost is concerned, the process of mesh intensification at the crack tip becomes the main
bottleneck of our algorithm.

Several benchmark numerical experiments found in the current literature have been
reproduced, including real life Bittencourt’s experiments. It is worth to note that the
present approach was able to capture important features of fracture modelling in brittle
materials such as nucleation and propagation, together with kinking and bifurcations. In
addition, some numerical tests using a heuristic propagation approach were presented,
which allows for the distinction between states of compression and traction. While this
approach is not completely novel (cf. [4]) the results are promising and encourage the
development of the topological derivative for functionals which specifically would consider
distinct criteria in traction and in compression.

However, it is well-known that such a modelling leads to a class of non-linear elastic-
ity systems. The extension to non-linear problems in general can be considered as the
main challenge associated with the theoretical development of the topological derivative
method. The difficult arises when the non-linearity comes out from the main part of the
operator, which at the same time suffers a topological perturbation. It is the case of nu-
cleation of holes in plasticity and finite deformations in solid mechanics, for instance. This
will be the aim of future work. Finally, we would like to highlight the striking simplicity
of the proposed topological derivative-based fracture modelling summarized in Algorithm
1.
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