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ABSTRACT. The paper deals with topology design of thermomechanical actuators. The goal of shape opti-
mization is to maximize the output displacement in a given direction on the boundary of the elastic body,
which is submitted to a thermal excitation that induces a dilatation/contraction of the thermomechanical
device. The optimal structure is identified by an elastic material distribution, while a very compliant (weak)
material is used to mimic voids. The mathematical model of an actuator takes the form of a semi-coupled
system of partial differential equations. The boundary value problem includes two components, the Navier
equation for linear elasticity coupled with the Poisson equation for steady-state heat conduction. The me-
chanical coupling is the thermal stress induced by the temperature field. Given the integral shape functional,
we evaluate its topological derivative with respect to the nucleation of a small circular inclusion with the
thermomechanical properties governed by two contrast parameters. The obtained topological derivative is
employed to generate a steepest descent direction within the level set numerical procedure of topology opti-
mization in a fixed geometrical domain. Finally, several finite element-based examples for the topology design

of thermomechanical actuators are presented.

1. INTRODUCTION

In this paper the topology design of thermome-
chanical actuators is considered in two spatial dimen-
sions for a linear multiphysics model (Sigmund, 1997;
Kikuchi et al., 1998; Li et al., 2004; Rubio et al.,
2010). The boundary value problem of elliptic type
is given by the linearized elasticity coupled with the
steady-state heat conduction problem. The reference
configuration of the structure is an open and bounded
domain ©Q C R?, with Lipschitz boundary denoted
as 0€). The topology is identified through the dis-
tribution of elastic material within £ and the voids
are mimicked by a very compliant (weak) material.
Therefore, topological changes of the reference do-
main are defined by the nucleation of inclusions with
the thermomechanical properties governed by two
contrast parameters. In order to determine the best
distribution of elastic material the method of topolog-
ical derivatives (Sokotowski and Zochowski, 1999) is
employed. The shape variations of boundaries and in-
terfaces between elastic and compliant materials are
also allowed during the shape-topological optimiza-
tion. The displacement field in the structure is de-
termined within the framework of linearized elastic-
ity with thermally induced stresses. The temperature
field satisfies the steady-state heat conduction equa-
tion. The state variables include the displacement
field u and the temperature field #. The shape func-
tional 2 — J(£2) to be minimized is given by the line
integral of ¢ = —u - e on the portion I'* of the bound-
ary 0f). Hence, the output displacement v on I'* is

maximized in a given direction e. For the sake of mo-
tivation, let us consider an example which shows that
the optimum design of the simple thermomechanical
structure does not follow from an intuitive reasoning,
namely thermal distortion design of switching device.

1.1. Simple example of a bar structure. Con-
sider two bars AP and BP of the length [ = % and
with the joint at P, see Fig. 1. The bars are fixed at
the points A and B. The length AB of the isosceles
triangle APB is 2a, while a is the design variable.
We set 2l = L = const, where a = lcos 3 = %cosﬁ
is varying, and h = [sinf8 = éSiH 5. We want to
specify the configuration of two bars for which %
is maximum within the admissible configurations of
0 < 8 < 5. The structure is uniformly heated up to
the temperature 6, which produces a thermal distor-
tion strain given by €y = afl, where « is the thermal
expansion coefficient. It is easy to derive the expres-
sion for the non-dimensional displacement §, namely

_Ah 1 . o 0p2
6= T =3 [\/sm B+ 2a60 + o0 —Slnﬁ]
and evaluate its derivatives
o [ Ah dcospf3
Sgi=m= | — | =—55—7——
o8\ L 20 + sin 8
and
g . O (AR _1(a+a
oo\ 'L ) 2\25+smnp)’

Since the sensitivity derivative Sg in function of the
angle f3, decreasing in the interval (0, 3], thus the
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maximum is located at § = 3y, where 0 < By <« 1 is
a small value of § inducing an upward displacement.
In particular, 8 = § is actually the worst case. It is
interesting to note that the maximal value of Ah due
to combined rotation and extensionof bars at 5 = 0.
This example provides the insight into the principle
of optimal design, where the thermal strain induces

large rotation of material elements

Ah
h
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®
! !
(b)
FI1GURE 1. Truss subject to thermal
effects: (a) initial guess and (b) opti-
mal layout.
1.2. Topological derivative for inclusions.

Without loss of generality the topological sensitivity
analysis of the given shape functional Q — J(Q)
can be performed for a single circular inclusion
€ — B.(Z). Here B.(z) = {|Jt—Z| < £} is a ball with
the fixed centre T € 2, so the location of the ball in
the reference domain is uniquely determined by its
centre. The insertion of inclusion B, into the refer-
ence domain results in the local perturbation of ma-
terial properties of the reference domain and it makes
the shape functional dependent on the small parame-
ter € — 0. In particular, the topologically perturbed
counterpart of the shape functional € — B, +— J.(Q)
is given by the line integral of g. = —u. - e on the
portion I'* of the boundary 0f). Hence, the output
displacement u. depends on the inclusion B, with the
centre ¥ and such that ¢ — 0. The dependence of

the shape functional results from the state equation,
where the small inclusion makes the coefficients of
Navier and Poisson equations dependent on the char-
acteristic function of B.(Z), with ¢ — 0 used for the
asymptotic analysis. Thus, the interesting question
from the point of view of shape-topological optimiza-
tion is the existence of the asymptotic expansion at
e = 07 for the function € — J.(Q). Such an as-
ymptotic expansion is established in the paper. The
first term of obtained asymptotic expansion is the
so-called topological derivative of the shape func-
tional. The topological derivative depends on the
solutions u and #, as well as on their corresponding
adjoint states p and ¢, all of them evaluated at the
centre 7. It also depends on the material parameters
of the background as well as on v and ~T, which
are called the contrast for mechanical and thermal
material properties of B., respectively. In this way
an optimal location of a small inclusion and its prop-
erties can be determined in order to minimize the
shape functional associated with the model. The
topological derivative of the elastic energy associated
with such a thermomechanical model has been de-
rived by Giusti et al. (2013). However, to the best
of our knowledge the topological sensitivity analysis
of a shape functional specially designed for topology
optimization purposes of thermomechanical actua-
tors cannot be found in the literature. Therefore,
we derive with all details the topological asymptotic
expansion of the adopted shape functional and per-
form a complete mathematical justification for the
obtained formulas.

The paper is organized as follows. In Section 2
the topological derivative concept is introduced in
the framework of asymptotic analysis of a singulary
perturbed domain. The semi-coupled system mod-
eling the thermomechanical actuator as well as the
adopted shape functional are presented in Section 3.
The associated topological asymptotic expansion is
rigorously derived in Section 4. In Section 5 some
numerical experiments of topology optimization of
thermomechanical actuators are presented. Finally,
the concluding remarks and perspectives are given in
Section 6.

2. TOPOLOGICAL DERIVATIVE CONCEPT

The mathematical model of the actuator is given
by coupled linear equations of elliptic type. Hence, it
can be shown by the standard procedure of the speed
method (Sokotowski and Zolésio, 1992) that the el-
liptic boundary value problem under consideration is



well posed from the point of view of shape optimiza-
tion. In particular, it means that by the elliptic reg-
ularity of the weak solutions to the model, the exis-
tence of the shape and material derivatives is ensured.
This fact implies the existence of the shape gradi-
ent for the boundary shape functional. Therefore,
the classical shape optimization method by bound-
ary variations can be applied for numerical solution of
the shape optimization problem. We are interested,
however, in modern approaches to shape-topological
optimization, i.e., we want to admit a broader fam-
ily of admissible domains obtained by non smooth
perturbations of regular domains. In other words,
we perform the asymptotic analysis of solutions to
the state equation in the singularly perturbed geo-
metrical domains. The non smooth domain pertur-
bations can be analyzed only in the framework of
asymptotic analysis (Novotny and Sokotowski, 2013)
because such perturbations cannot be described by
bilipschitzian mappings of the speed method. The
singular perturbations include the insertion of holes
or cavities into the reference domain. It is known
(Novotny and Sokotowski, 2013) that the holes or
cavities can be considered as the limit case of inclu-
sions for the limit passage of the so-called contrast
parameters. For numerical solution of optimum de-
sign problems it is useful to insert inclusions made
of a different material characterized by two contrast
parameters for elastic and thermal properties.

The starting point of the numerical procedure for
structural optimum design is numerical evaluation of
the topological derivative. Actually, the topological
derivative formula is obtained at the continuous level.
In order to use this information for the purposes of
identifying local minima or maxima in a numerical
optimization procedure we need the discrete values
of the topological derivative. The precision of nu-
merical evaluation of topological derivatives should
be sufficient for such an identification procedure. In
the case of minimization problems, we select the neg-
ative part of the level-set function associated with the
topological derivative evaluated in the reference do-
main. Therefore, we are looking for the local minima
of the topological derivative for one isolated circular
inclusion B.(Z), for all ¥ € Q. Let us recall that
the topological derivative for one circular inclusion
B. — J.(Q) is a function T — T () defined in
such that the following asymptotic expansion holds
for e = 0,

J: () = J(Q) + f(e)T (&) + o(f(¢))- (2.1)

The function f(¢), such that f(g) — 07 withe — 07T,
can be specified from the asymptotic analysis with
respect to the small parameter € — 0.
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The insertion of one inclusion results in pertur-
bations of the coefficients of the elliptic operators.
For one inclusion, we perform the sensitivity analysis
of the perturbed coupled equations with respect to
the small parameter ¢ — 0. Such an analysis gives
rise for ¢ > 0 of the shape gradient of the specific
shape functional € — J-(€2). By the limit transition
e — 07 the topological derivative of the functional
is obtained as a function of the point z € €. This
means that for fixed € there are known two expan-
sions of the cost & — j(e) := J-(€), with respect to
the small parameters § — 0 and € — 07, respectively

e for e > 0,

jle+8) =j(e) +85'() +O(8%),  (2:2)
e fore =0T,

J(e) = 30) + f(e)T (@) +o(f(e).  (2.3)

By j'(¢) is denoted the classical shape derivative of
the cost functional J-(€2) with respect to the shape
perturbations of the boundary of inclusion B.(Z).
The second formula of asymptotic type is established
for the radius € = 07 of the inclusion. Therefore, we
are going to determine the unknown function

7o T(3), (2.4)

by the method of asymptotic analysis. We recall
(Zochowski, 1988) that there is a relation between
the two formulas (2.2) and (2.3), namely:

A G

7@ = el—l>%l+ &)
In addition, we point out that the topological deriv-
ative, whenever it does exist, can be considered as
an extension of the shape derivative of the cost func-
tional, since the topological derivative can be eval-
uated in the domain Q as well as on its boundary
0f). See for instance applications of the topologi-
cal derivative concept in the context of inverse prob-
lems (Hintermiiller et al., 2012), structural topology
optimization (Mréz and Bojczuk, 2012), image pro-
cessing (Hintermiiller and Laurain, 2009), multi-scale
material design (Amstutz et al., 2010) and mechani-
cal modeling including damage (Allaire et al., 2011)
and fracture (Van Goethem and Novotny, 2010) evo-
lution phenomena.

(2.5)

3. PROBLEM FORMULATION

Let us now introduce the thermomechanical semi-
coupled model. The displacement field is deter-
mined within linear elasticity with thermally induced
stresses for isotropic materials. The temperature
field is described by the steady-state heat conduction
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equation. The state variables include the displace-
ment field and the temperature field.

3.1. Unperturbed Problem. The shape func-
tional to be minimized is given by a line integral

§(0) = J(Q) = Talu) = - /

where I'* is a part of the boundary 9f2 and the struc-
tural displacement v has to be maximized in a given
unity direction e.

The vector function u solves the following thermo-
mechanical equilibrium problem:

(3.1)

e-u,

*

weV(Q) : /Q S(u) - (Vo) =0 YoeV(Q). (3.2)

Some terms in the above equation require explana-
tion. The Cauchy stress tensor S(u) is given by

S(u) =C((Vu)® —abl) = o(u) — 1, (3.3)

where (Vu)® is used to denote the symmetric part of
the gradient of the displacement field u, i.e.

1
(Vu)* = 5(Vu + (Vu) ). (3.4)
In addition, C denotes the fourth-order elasticity ten-
sor, which for isotropic materials is given by

C=2ul + \I®T), (3.5)

where p and A are the Lamé coefficients. The second
order tensor o(u) is related to the total displacement
field by the Hooke’s law

o(u) :== C(Vu)?, (3.6)
while the coefficient 5 is given by
B =a2u+ 3N), (3.7)

where « is the thermal expansion coefficient. In terms
of Young’s modulus E and Poisson ratio v, there are
E vE
p= ) A= .
2(1+v) (I+v)(1-—2v)
For plane stress assumption A and S must be replaced
respectively by A* in (3.5) and 8* in (3.7), where
x _ 20\ _ vE

A+2pn  1—v2%
The space of kinematically admissible displacements
is defined as

V(Q) = {qﬁ cHY(Q): ¢, = o} ,

with HY(Q) := H'(Q;R?) and I',, is used to denote
a part of the boundary 92 where the displacement u
is prescribed.

(3.8)

B* =2a(p+ X9). (3.9)

(3.10)

From these elements, the equilibrium equation
(3.2) leads to the following variational problem: Find
the displacement field v € V(Q2), such that

/a(u) (Vo)® = / pOdiv(v) Yv e V(Q), (3.11)
Q Q

where the scalar function 6 is the solution to the

following variational problem: Find the temperature
field 6 € H(S2), such that

/ q(0)-Vn —I—/ bn=0 VneHo), (3.12)
Q Q

with b used to denote a heat source in 2. The heat
flux vector field is defined as
q(0) = —KV4, (3.13)
where K is a second order tensor representing the
thermal conductivity of the medium. In the isotropic
case, the tensor K can be written as
K=EI, (3.14)
being k the thermal conductivity coefficient. The set
H(2) and the space Ho(€2) are respectively defined
as

HEQ) = {¢6H1(Q):¢|F9:§}, (3.15)

Ho(Q) = {¢ € HY(Q) : ¢, = o}, (3.16)
with T'yp used to denote a part of the boundary 02
where the temperature 6 is prescribed by a given
function 6.

Let us also introduce two adjoint auxiliary prob-
lems in order to simplify further analysis. The me-
chanical auxiliary problem reads: find the adjoint dis-
placement field p € V(Q2), such that

/ a(p) - (Vv) = / e-v YoeV(Q). (3.17)
0 x

The thermal auxiliary problem is stated as: find the
adjoint temperature field ¢ € Ho(€2), such that

/ a(p) - Vi = / Bdiv(p)y Vi€ Ho(Q). (3.18)
Q Q

These adjoint problems result from the Lagrangian
formalism, where the associated augmented La-
grangian is minimized with respect to the states u
and 6.



3.2. Perturbed Problem. The perturbation to the
basic problem is now introduced by considering a pair
of piecewise constant functions v and 4, which re-
spectively affect the constitutive tensors C and K in
some small subdomain of the initial structure. In
particular, the topologically perturbed counterpart
of the shape functional is given by

50 = 1) = o) =~ [ eoue (319)

The vector function wu. is the solution to the per-
turbed coupled system, namely: Find the displace-
ment field u. € V(Q), such that

/ o.(1) - (Vo)* = / B.0.div(v) Vo e V(Q),
Q Q
(3.20)

where
o-(us) == YMC(Vue)* = vMo(u.), (3.21)
with the contrast on the elastic properties defined as
1 in Q\B:
M in B, '
Based on the above definition, the perturbed coeffi-
cient f3; in (3.20) takes the form

Be :=~MB. (3.23)

The scalar function 6. solves the following perturbed
variational problem: Find the temperature field 6. €
H(2), such that

/Q 4:(0.) - Vi + /Q by =0 Ve Ho(), (3.24)
where
g=(0.) .= —7TKVh., b=~ (3.25)

with the contrast on the thermal properties defined

as o
T { 1 in Q\B.
Ve = T .

M= (3.22)

o B, (3.26)

Finally, the topologically perturbed counterpart of
the mechanical adjoint problem (3.17) reads: Find
the adjoint displacement field p. € V(2), such that

/ oe(pe) - (Vo) = / e-v YoeVQ), (3.27)
Q .

while the topologically perturbed counterpart of the
thermal adjoint problem (3.18) is given by: Find the
adjoint temperature field ¢. € Ho(€2), such that

/ ge(ip2) - Vi = / Bdiv(p)n Vi€ Ho(Q). (3.28)
Q Q

Remark 1. The arguments concerning the existence
of the topological derivative associated with the prob-
lem under analysis can be found in Appendix A.
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Remark 2. Since we are dealing with a topology op-
timization problem in a fized domain €2, the optimal
structure is identified by the elastic material, while
a very compliant (weak) material is used to mimic
voids, both distributed within ). Therefore, we con-
sider contrasts in the Young’s modulus E (assuming
the Poisson ratio v as constant) and in the thermal
conductivity k only, which are respectively given by
M and AT In fact, by setting yM — 0 and 47 — 0,
the transmission conditions on 0B.(T) degenerate to
homogeneous Neumann boundary conditions in both
mechanical (3.20) and thermal (3.24) problems, re-
spectively representing a void and an ideal thermal
insulation. The general case is much more involved,
so that we left it for future work.

4. TOPOLOGICAL ASYMPTOTIC ANALYSIS

Since the problem under consideration is linear,
we firstly set v = 1 and develop the topological as-
ymptotic analysis for 47 # 1. Next, we set 4/ =1
and develop the analysis for ¥ # 1. Finally, the
obtained results are superposed, leading to the asso-
ciated topological derivative for any pair of Y™ and
~T. Let us start by evaluating the difference between
the original and perturbed shape functionals given
respectively by (3.1) and (3.19), which leads to

Falus) - Tolu) =~ [

e (us — u). (4.1)

*

4.1. Contrast on the elastic coefficients. Let us
set v7' = 1 and develop the analysis for v # 1. In
this case we have immediately that . = 0. By taking
v =u. —u in (3.27), we obtain the equality

[ oo (V=) = [ e-w—w. @2

Now, let us set v = p. in (3.11) and (3.20). After eval-
uating the difference between the obtained results we
get

/ oe(pe) - (V(ue —u))® =
Q

1—yM
~M

[ oo (vuy ==+ [ sodivip.).
) ) (4.3)
Therefore, after comparing the last two results with
(4.1) we have
Ja(ue) — Ja(u) =

_ M
= Z\Z Je(ps)‘(vu)s+(1—7M)/ £Odiv(p:).
Be

Y B:
(4.4)
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Let us propose an ansétz for p. in the form p. =
p + w. + pe, which allows us to choose w. as a so-
lution to: Find the exterior displacement field w, €
W1(R?)/R, such that

/R ouwe) - (Vo) =

(1 - +")o(p) @) - / (Vo)* o € WI(R?)/R.
) (4.5)

where the weighted quotient space W!(R?)/R has
been introduced in (Amstutz et al., 2014, App. C)
to ensure existence and uniqueness of a solution to
the above exterior problem. From Eshelby’s The-
orem (Eshelby (1957, 1959)), the exterior problem
(4.5) admits an explicit solution, namely

oo(w.) = To(p)@) in B, (4.6)

where T is a fourth order isotropic tensor written as

T =M il@l) ,(4.7)

(a I+ a
T2+ 4 May)
with the constants a1 and as given by

a_qu)\ a_3u+A
1= e =

See, for instance, the book (Novotny and Sokotowski,
2013, Ch. 5, pp. 156). From Lemma 6 in Appen-
dix A the remainder p. has an estimate of the form
[Pt ) =~ o(e). Finally, by taking into account
these last results, we have the following expansion
for the shape functional

Jalue) — TJa(u) = —7w?Po(u)(Z) - (Vp)* (Z)+
M

1+yMay

(4.8)

119V, 0(z)div(p)(Z) + o(e?).

7e?B(1 + o) (4.9)
where P is the Polya-Szégo polarization tensor given

by (Ammari and Kang, 2007)

1— M 1 — M

-=— " (@ T+ (g —ao)—1—

1+ yMay <( +az) +2(a1 az)l—i—'yMal
(4.10)

4.2. Contrast on the thermal coefficients. Let
us now set Y = 1 and develop the analysis for
7T # 1. By taking v = u. — u in (3.27), we obtain

Lo Ve —wy = [ e w-w. @)

Now, let us set v = pin (3.11) and (3.20). After eval-
uating the difference between the obtained results we
get

[ otus =) (70 = [ a6~ 0)div(p). (112
Q Q

Therefore, after comparing the last two results with
(4.1) we have

Jolus) — Jalu) = — /Q B(0: — O)div(p).  (4.13)

By setting n = 6. —0 in (3.28) we obtain the following
equality

/ 4-(p2) V(6 — 6) = / B(6. — B)div(p), (4.14)
Q Q
which leads to

Talus) — Tau) = — /Q 4:(p:) - V(6. — 0). (4.15)

Now, let us set n = ¢, in (3.12) and (3.24). After
evaluating the difference between the obtained results
we get

/QQa(ee_e)'V(Pa:
_ T . — T
(1—+7) /B ) Vie+ (1= 7) /B e (116

After comparing the last two results with (4.15) we
finally obtain

Ja(ue) — Ja(u) =

1‘”T/ ()0 - (-7 [ b

qe\Pe) - - - ED

,}/T 5. ®, Y 5. 2
(4.17)

Let us propose an ansétz for ¢, in the form ¢, = @+
¥ + @, which allows us to choose ¥, as a solution to:
Find the exterior temperature field 9. € W(R?)/R,
such that

RCORE

(1=9)qe)@)- | Vn vne W' R*)/R, (4.18)

Be
®1).
zhere the weighted quotient space W!'(R?)/R has

been introduced in (Amstutz et al., 2014, App. C) to
ensure existence and uniqueness of a solution to the
above exterior problem. The exterior problem (4.18)
admits an explicit solution, namely

r1-7"

1+71

(V) = (p)@) in B.. (419
See, for instance, the book (Novotny and Sokotowski,
2013, Ch. 5, pp. 144). From Lemma 7 in Appen-
dix A we have that the remainder . has an estimate
of the form ||¢c||f1 () ~ o(¢). From these last re-

sults, we have the following expansion for the shape



functional

Jalue) — To(u) = —m?Pq(0)(Z) - Vo (T)—
7e2(1 — 4 D)bp(Z) + o(?), (4.20)

where P is the Polya-Szégo polarization tensor given
by (Ammari and Kang, 2007)

1—AT
1+A4T

4.3. Topological Derivative. Since the problem is
linear, we can sum the obtained expansions (4.9) and
(4.20) to obtain

Jalue) — TJa(u) = —7m?Po(u)(Z) - (Vp)* (Z)+

P=2

I (4.21)

25(1 1-7" 0(z)div(p)(z
me”B( +a1)m (z)div(p)(Z)—
me*Pq(0)(Z) - V() — (1 — y")bp(Z) + o(e?),

(4.22)

which ensures the existence for the topological deriv-
ative of the shape functional J(2) for f(e) = me?,
provided that the remainder has order o(¢?). Finally,
the topological derivative can be promptly identified,
which is given by the following closed formula

T(@) = =Po(u)(Z) - (Vp)*(7)
1—yM .
+ B(1 + al)me(l’)dw(?)(@

—Pg(0)(2) - V(@) — (1 =" )bp(2).  (4.23)
For the reader convenience, we present the above for-
mula in standard index notation, namely

T(z) = —%&2(1 + a2)oij(u) () (9ip; () + 9;pi(%))

— — (a1 — ag)ag g0y (u) () 0ipi ()

2
+ B(1 + a1)a10(z)0;pi(7)
T
2 O@0(@) — (1= he(@). (424

where the coefficients a7 and as are respectively
given by

~ 1—M 1—AM

a1_1+’7MOé1 1+’7M042

Notice that the closed formula for the topological

derivative depends only on the solution of the direct
and adjoint problems, given by egs. (3.11), (3.12),
(3.17) and (3.18), evaluated at the point z. This de-
rivative represents the sensitivity of the multi-physics
problem presented in Section 3 to the insertion of a
circular inclusion of radius € and center at an arbi-
trary point = € ), whose constitutive properties are
characterized by the contrasts v and ~7.

and ag = (4.25)

5. NUMERICAL EXPERIMENTS

In this section two numerical examples of topol-
ogy design of thermomechanical actuators into plane
stress assumptions are presented. The topology de-
sign algorithm developed by Amstutz and Andra
(2006) is adopted in order to solve the optimization
problem, which is based on the topological deriva-
tive concept together with a level-set domain repre-
sentation method. For further details of the algo-
rithm we refer to the work by Amstutz and Novotny
(2010). In all examples we consider the following con-
stitutive properties: £ = 1 GPa (Young’s modulus),
v = 0.3 (Poisson’s ratio), a = 1.0 x 1079 K~! and
k = 1.0W/mK. The contrast parameters are given
by YM = 4T = 1.0 x 10™*, which are used to mimic
the voids. In the part of the boundary where noth-
ing is specified, we consider homogeneous Neumann
boundary conditions in both problems (mechanical
and thermal). The direction e is given by a unit vec-
tor on I'*. In addition, we do not consider a heat
source, i.e. b = 0. The thermomechanical prob-
lem (3.11), the steady-state heat conduction problem
(3.12) and the adjoint equations (3.17) and (3.18) are
solved by using the standard finite element method
(Zienkiewicz and Taylor, 2000). The initial mesh is
generated from a regular grid of size 20 x 12, where
each resulting square is divided into four triangles,
leading to 960 elements. Then, four steps of uni-
form mesh refinement are performed during the it-
erative process. In the figures, black and white are
respectively used to represent solid and void, whereas
the color levels black/brown to yellow/white indicate
colder to hotter, respectively. Finally, the procedures
described by Campeao et al. (2014) were used to im-
pose a targeted final volume.

Remark 3. We point out that numerical results ob-
tained in the paper are not directly utilizable in en-
gineering practice. In particular, in practical designs
all singularities of solutions to state equations should
be removed to avoid e.q., the damage. In addition, it
is remarked that a local, mesh-dependent optimalde-
sign was found for the problems under consideration.

5.1. Example 1: Amplifier. The first example is
the optimization of a displacement amplifier. This
device is used to amplify the displacements in a given
direction generated by thermal effects. In particular,
the design domain considered is presented in Fig. 2,
in which only one quadrant of the complete domain
is represented, based on horizontal and vertical sym-
metry assumptions (the dashed-dot lines indicate the
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axes of symmetry). The objective is the maximiza-
tion of the outward output displacement in the di-
rection e on I'* in response to a thermal excitation
imposed on I'y. In this case, the boundary condition
is given by a linear temperature distribution on I'y, as
shown in Fig. 2(b). The material properties are op-
timized in white subdomains, while in the light grey
regions of Figs. 2(a) and 2(b) the material properties
are fixed.
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Ficure 2. Example 1. Domain and
boundary conditions: (a) mechanical
problem and (b) heat problem.

In Fig. 3, the results for two different volume frac-
tions are shown. Also, in Fig. 4 a selected result
is shown without the symmetry boundary condition.
The amplified deformed configuration of a selected
result is shown in Fig. 6(a). In order to analyze the
results from a quantitative point of view we define
an effectiveness factor A := Jo(wini)/Ta(uopt), where
Uini and uyy; are the displacements of the initial and
optimized configurations, respectively. This effective-
ness factor can be viewed as a particularization of
the standard geometric advantage (GA) metric, used
in the design and performance studies of compliance
mechanisms. See for instance Howell et al. (2013).
The GA measures the relation between the obtained

displacement wu,,+ when the device is actuated by an
input displacement w;,, i.e. GA = ugy/uiy. Here,
the factor A measures the GA with respect to the
obtained displacement of the reference (initial) con-
figuration.

The variation of the effectiveness values A with re-
spect to the final volume fraction are presented in
Fig. 5. From the amplified deformed configurations
we noticed that the actuator generates the desired
displacement.

| mmTmTmTmmTmmTmTmTTmme -
(a)

Te

i

|

i

|

i

i

|

!

e m—mTmTmTmTmTTmTTmTTme™ -
(b)

Results for

(a) 30%

FiGure 3. Example 1.
different volume fractions:

and (b) 50%.

FIGURE 4. Example 1.
from Fig. 3(b)

Amplifier
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FiGUure 5. Example 1. Effectiveness
factor vs. final volume fraction.

The behavior of the effectiveness factor with re-
spect to the final volume fraction suggests that there
exists a volume fraction close to the 40% where the
displacement on I'* is maximal in the direction e.
This value can be interpreted as an optimal vol-
ume fraction whose associated effectiveness factor is
A =4.01.

After an inspection of the obtained results, we note
the presence of flexible hinges in the design (see Re-
mark 3). These hinges allow for high values of A. The
hinges generated in optimal design, see Fig.6(a), as-
sure easy rotation of the upper lever elements in order
to produce maximal displacement along the symme-
try axis. Here, we can refer to the simple example
in Section 1.1 illustrating the optimal mode of de-
formation. However, the hinges are undesirable for
obvious reasons. Actually, they can induce large lo-
cal stress concentration, so in real design the final
material segments should be used. Such a pathology
is a consequence of the adopted formulation based on
compliance maximization. How to avoid these hinges
is a subject of recent research and it is out of the
scope of this paper (see, for instance, the papers by
Lee and Gea (2014) and Lopes and Novotny (2016)).
On the other hand, the results previously presented
can be interpreted, from an engineering point of view,
as a ring connected by a transversal bar. This intu-
itive solution is hinge-free and produces a displace-
ment in the desired direction e, but with an effec-
tiveness factor smaller than the one obtained through
the methodology presented in this paper. Actually,
in Fig. 6 the amplified deformed configurations of a
selected optimal solution and from an intuitive so-
lution are presented (we recall that only a quarter
of the domain is modeled). Also, the temperature
distribution field in both devices are shown together
with their associated effectiveness factors A.

(a) A = 3.967

(b) A = 2.546

FIGURE 6. Example 1. Amplified de-
formed configurations and tempera-
ture distributions: (a) optimal config-
uration from Fig. 3(b) and (b) intu-
itive solution.

5.2. Example 2: Inverter with eccentricity ef-
fect. The second example considers the same do-
main from the previous experiment, however, the out-
put displacement region I'* is changed as depicted in
Fig. 7. This apparently simple modification in the
design domain actually results in a completely differ-
ent mechanism, since the optimizer seeks an output
displacement contrary to the natural movement of
the thermomechanical device. In addition, all sym-
metry assumptions remain valid and the boundary
condition for thermal problem is given by a linear
temperature distribution on I'y, as shown in Fig.
7(b). The material properties are optimized in white
subdomains, while in the light grey regions of Figs.
7(a) and 7(b) the material properties are fixed, as in
the previous example.
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FiGure 7. Example 2. Domain and
boundary conditions: (a) mechanical
problem and (b) thermal problem.

In Fig. 8, the results for two different volume frac-
tions are shown. In Fig. 9 a selected result is shown
without the symmetry boundary condition. The am-
plified deformed configuration of a selected result is
shown in Fig. 11(a). Here, also, we notice the pres-
ence of flexible hinges in the design (see Remark 3).
Referring to Figs. 8 and 9 it is seen that the contact
forces at hinge points with upper lever elements in-
duce the rotation moments producing large displace-
ment in the e-direction. The values for the effective-
ness factor A for the obtained results are presented
in Fig. 10, where the negative sign for A indicates
the inversion of the direction of the displacement (as
shown in the amplified deformed configuration Fig.
11(a)). Also, in this example, the effectiveness fac-
tor has a minimum value between 45% and 50% of
volume fraction. This behavior suggests that there
exists a volume fraction where the displacement on
I is maximal in the direction e.

FIGURE 8. Example 2. Results for
different volume fractions: (a) 45%

and (b) 60%.

FiGURE 9. Example 2. Inverter from
Fig. 8(b)

-1,00

-1,05

-1,10 /
=115

]

0.30 035 0,40 045 0.50 0.55 0.60 0,65
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Ficure 10. Example 2. Effective-
ness factor vs. final volume fraction.



(b)

FiGure 11. Example 2. Amplified
deformed configuration (a) for result
from Fig. 8(b) and temperature dis-
tribution (b).

6. CONCLUDING REMARKS

In the paper the topological derivative of the
tracking-type shape functional for the semi-coupled
thermomechanical model are derived in two spatial
dimensions. In order to avoid complicated theoreti-
cal derivations such as the ones presented by Giusti
et al. (2013), the thermal expansion coefficients have
been fixed. By introducing contrasts on the ther-
mal conductivity coefficient and elastic modulus, the
derivations become much simpler, allowing us to fo-
cus on the main contribution of the paper, namely:
a simple and analytical expression of the topologi-
cal derivative to be used in the design of thermal-
mechanical actuators, where the contrasts in the ma-
terial properties are used just to mimic voids. Ac-
tually, the information provided by the topological
derivative T (Z) can be used as a steepest descent
direction in an optimal design algorithm. To illus-
trate this feature, two numerical experiments asso-
ciated with the topology optimization of actuators
have been presented. These simple examples show
the applicability of the proposed methodology in the
context of optimal design of thermomechanical de-
vices. Furthermore, we have shown that the proposed
methodology allows for finding the optimal volume
fraction after some realizations. That is, the volume
of the actuator which produces the maximal effective-
ness factor A for a given direction e. Finally, the re-
markable simplicity of topological derivative formula
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(4.23) has to be noted: once the temperature dis-
tribution 6 (solution of (3.12)), displacement field u
(solution of (3.11)), thermal adjoint state ¢ (solution
of (3.18)) and mechanical adjoint state p (solution of
(3.17)) are obtained in the original (unperturbed) do-
main 2, the topological derivative T (Z) can be eval-
uated at all T € € using standard postprocessing
procedures. Therefore the resulting topology design
algorithms based on the topological derivative con-
cept are in general very fast and easy to implement.
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APPENDIX A. EXISTENCE OF THE TOPOLOGICAL
DERIVATIVE

The following results ensure the existence of the
topological derivative associated with the problem
under analysis.

Lemma 4. Let 6 and 0. be solutions to (3.12) and
(3.24), respectively. Then we have that the following
estimate holds true

”06—0”H1(Q) SCE (Al)

Proof. We start by subtracting the variational prob-
lem (3.12) from (3.24). After some manipulations
there is:

/Qqsws—m-w:

(1—7T)/Eq(9)-Vn+(1—’yT)/ b,

€

(A.2)
where we have used the fact that ¢.(¢) = ¢(¢) and
be = bin Q\ B, and ¢-(¢) = 7 q(¢) and b. = +Tb

in B.. By taking n = 6. — 0 as a test function in the
above equation we obtain the following equality

/qsws—e)-wee—e):
Q
(1-~7) / 4(8) - V(6. — 6)+
(147 / b6, —6). (A3)
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From the Cauchy-Schwartz inequality it follows that

/ 4:(0. — 0) - V(6. — 0) <
Q

Cilla@ N 2BV (0 — )l 125+
Col[bl| 2510 — Ol 2(5.) < €C3]10: — Ol 110y,
(A4)

where we have used the interior elliptic regularity of
function 6 and the continuity of the function b at
the point z € Q. Finally, from the coercivity of the
bilinear form on the left-hand side of (A.2), namely

ellf — 01310 < /Q ¢.(0. — 0)- V(6. — 0), (A5)

we obtain the result with the constant C' = C3/c in-
dependent of the small parameter e. O

Lemma 5. Let u and u. be solutions to (3.11) and
(3.20), respectively. Then we have that the following
estimate holds true

Proof. Let us subtract the variational problem (3.11)
from (3.20), so that after some manipulations we
have:

/Q oot — u) - (Vo) = /Q B(6. — 0)div(v)+
(1=9") [ (ot +B0T) - (Vo) -
Be

(1 —~M) ; B(6. — 0)div(v),

where we have used the fact that o.(¢) = o(¢) and

Be = Bin Q\E, and 0. (¢) = ’YMU((b) and f3; ’YM/B
in B.. By taking v = u. — u as test function in the
above equation we obtain the following equality

/ 0 (tte—10)-(V (ue—u))® = / B(0e—0)div (ue—u)+
Q Q
(1M / (o) + BOT) - (V(ue — ) —
Be

(A7)

(1 — M) /B B(6- — 6)div(ue —u). (A8)

From the Cauchy-Schwartz inequality it follows that

[ oetue = (Vi =y <
C1|0z — 0] L2 IV (ue — u)[|p2 )+
Callo(u) + BOT||L2 ()| V (ue — u)|lL2(p.)+
C310: — Ol 23y IV (ue — u)l|L2(p.) <

Cul|0= — 01| 1 () lue — vl @) + 05 |ue — ullw (),
(A.9)

where we have used the interior elliptic regularity of
function u and the continuity of the function 5 at the
point Z € Q. From Lemma 4 we have now

| o2t =) (Ve = )" < Cuelhue = ulan o

(A.10)
Finally, from the coercivity of the bilinear form on
the left-hand side of (A.7), namely

el = ulf @y < [ ol =) (Ve = w)TAID

we obtain the result with the constant C' = Cg/c in-
dependent of the small parameter e. O

Lemma 6. Let p and p. be solutions to (3.17) and
(3.27), respectively. Then we have that the following
estimate holds true

1P = pllE @) < Ce. (A.12)

Proof. After subtracting the variational problem
(3.17) from (3.27) we have:

[ oetoe =) (70 = 1= [ atp) - (Vorp3)
where we have used the fact that o.(¢) = o(¢) in
Q\ B: and o.(¢) YMa(¢) in B.. By taking
v = p. — p as test function in the above equation
we obtain the following equality

/Qae(pe—p)-(v(pe—p))s
(1 -4 / o(p) - (V(p- — ). (A.14)

From the Cauchy-Schwartz inequality it follows that

<

/ oc(pe —p) - (V(pe — p))°
Q

ClHO'(p)HL?(BE)Hv(ps_p)HL?(Bs) < €C2Hpe_p||H1(Q)7
(A.15)

where we have used the interior elliptic regularity of
function p. Finally, from the coercivity of the bilinear
form on the left-hand side of (A.13), namely

clp. = ol < [ o2l =) (Vo = p)(A10

we obtain the result with the constant C' = Cy/c in-
dependent of the small parameter . O

Lemma 7. Let ¢ and . be solutions to (3.18) and
(3.28), respectively. Then we have that the following
estimate holds true

e — ol < Ce. (A.17)



Proof. After subtracting the variational problem
(3.18) from (3.28) there is:

/ 4:(ps — @) - Vi = (1—47) / a(p) - Vi.(A.18)
Q

Be

where we have used the fact that ¢.(¢) = q(¢)
in Q\ B, and ¢.(¢) = 77q(¢) in B.. By taking
N = @ — @ as test function in the above equation
we obtain the following equality

/QQE(SDE —¢) - Vips —¢) =
(1= [ alo)- V(o). (A19
From the Cauchy-Schwartz inequality it follows that

/ Ge(pe — @) Vi(pe — ) <
Q

Cilla()l 2B IV (e —0) 2By < €Callpe— ¢l 1 (@),
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