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Abstract. In this work a new pointwise source reconstruction method is proposed. From a
single pair of boundary measurements, we want to completely characterize the unknown set of
pointwise sources, namely, the number of sources, their locations and intensities. The idea is
to rewrite the inverse source problem as an optimization problem, where a Kohn-Vogelius type
functional is minimized with respect to a set of admissible pointwise sources. The resulting
second-order reconstruction algorithm is non-iterative and thus very robust with respect to
noisy data. Finally, in order to show the effectiveness of the devised reconstruction algorithm,
some numerical experiments into two spatial dimensions are presented.

1. Introduction

In this paper we deal with an inverse potential problem, which consists of reconstructing an
unknown source located within an open domain D using information obtained on a subset Γm of
∂D, where ∂D denotes the boundary of D. Usually, it is assumed that the source to be recovered
is given by a piecewise constant function with support contained in D, namely

b(x) =

{

α1 if x ∈ ω,
α2 if x ∈ D \ ω.

(1.1)

In this case, to reconstruct the unknown source means to determine the values α1 ∈ R and α2 ∈ R

as well as the shape and the topology of the set ω. In [16] it was shown that the reconstruction
is possible only if α1 and α2 are given and if ω is convex or star-shaped with respect to its
barycenter. Important contributions in the solution of a wide class of inverse problems have
relied on standard approaches based on level-set methods [21, 17] or asymptotic analysis [1, 9].
In particular, see for instance recent papers dealing with source reconstruction problem from
total [6] and partial [7] boundary measurements, respectively, where ω is approximated by a
number of ball shaped anomalies.

In contrast to the above mentioned papers, here we are interested in the reconstruction of
pointwise sources. Formally, the effect of a ball in the boundary measurements is exactly the
same as that of a pointwise source of same total mass. Therefore, in this paper we extend –
from the mathematical point of view – the theory developed in [6, 7] by considering that the
unknown source is given by a number of Dirac-mass, namely

b(x) =

m
∑

i=1

αiδ(x− xi), (1.2)

where m is the number of sources, αi is the intensity and xi the location of each source. The
main advantage of recovering a set of concentrated sources is that it eliminates the concern
regarding the shape of their support. On the other hand, along with the locations xi, we must
determine the number m and intensities αi of the anomalies in order to completely characterize
the unknown source b. In [2] it was proved that it is possible to reconstruct a source in the form
(1.2) from a single pair of boundary measurements provided that |Γm| 6= 0. Among the possible
applications for this kind of problem, we highlight:

• Location of pollution sources in a given environment [3, 16].
• Identification of monopoles and dipoles in electroencephalography and magnetoencephalog-
raphy [13, 15].
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criterion; sensitivity analysis.

1



2

• Detecting the epicenter of a given earthquake, knowing its effect on the earth’s surface
[20].
• Detection of hidden anomalies in the density of the earth, from measurement of the
gravity field on its surface [4].

Since we are dealing with pointwise sources, standard approaches of resolution of inverse
problems cannot be directly applied in this context. Therefore, in order to solve the inverse
problem we are dealing with, it is rewritten as an optimization problem where a Kohn-Vogelius
type functional [19] is minimized with respect to a set of admissible pointwise sources. The
Kohn-Vogelius criterion measures a quadratic form of the misfit between the solutions of two
auxiliary problems, one containing information on the boundary measurement and the other one
containing information on the boundary excitation. Therefore, it vanishes over the solution of
the inverse problem. The resulting second-order reconstruction algorithm is non-iterative and
thus very robust with respect to noisy data. Finally, in order to show the effectiveness of the
devised reconstruction algorithm, some numerical experiments into two spatial dimensions are
presented.

The paper is organized as follows. In Section 2 the mathematical formulation of the inverse
potential problem we are dealing with is introduced. In Section 3 the inverse problem is rewritten
as an optimization problem. In Section 4 the Kohn-Vogelius functional is minimized with respect
to a set of admissible pointwise sources and the resulting reconstruction algorithm is devised.
Some numerical experiments of pointwise source reconstruction from total and partial boundary
measurements are presented in Section 5. Finally, in Section 6 the paper ends with some
concluding remarks.

2. Problem Formulation

Let D ⊂ R
2 be an open domain with Lipschitz boundary, denoted by ∂D. Let Γm be a subset

of ∂D with non-zero Lebesgue measure. The inverse source problem consists in determining the
unknown source b∗ from the Cauchy data u∗ and q∗ in the following elliptic boundary value
problem:







−∆u = b∗ in D,
u

−∂nu
=
=

u∗

q∗

}

on Γm.
(2.1)

It is well-known that the above inverse source problem may have no unique solution. To
recover uniqueness it is necessary to restrict the set in which b∗ belongs. In this work, we
consider the following set of admissible solutions:

Cδ(Ω) =

{

b : Ω→ R; b(x) =
n
∑

i=1

αiδ(x− xi)

}

, (2.2)

where n ∈ N, αi ∈ R \ {−∞,+∞} and xi ∈ Ω, with i ∈ {1, ..., n}. By assumption, the open
and bounded subdomain Ω ⊂ D contains the support of the unknown source b∗. Moreover, the
distribution δ : Ω→ R is defined by:

∫

R2

δ(x − y)ϕ(y) dy = ϕ(x) ∀ϕ ∈ C∞

c (R2;R).

From the definition for the set of admissible solutions (2.2), the unknown source b∗ ∈ Cδ(Ω)
can be represented as follows:

b∗(x) =

m∗

∑

i=1

α∗

i δ(x− x∗i ). (2.3)

Therefore, solving the inverse potential problem (2.1) in Cδ(Ω) means to find m∗, α∗

i and x∗i ,
which denote the number, intensities and locations of the unknown pointwise sources, respec-
tively. In particular, we are going to address two distinct situations with respect to the domain
D, which are:
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• Case 1: We suppose that D is a bounded domain in R
2 and that Γm coincides with ∂D,

namely Γm = ∂D. Therefore, total boundary measurement (u∗, q∗) on Γm is available.
See sketch in Fig. 1(a).
• Case 2: We assume that D is the half-plane in R

2 and that Γm is a subset of ∂D, namely
Γm ( ∂D. Therefore, only partial boundary measurement (u∗, q∗) on Γm is available.
See sketch in Fig. 1(b).

Since by assumption the domain Ω contains the support of the unknown source b∗, the inverse
problem associated with each one of the above cases can be defined in Ω instead of D. Let us
denote the boundary of Ω by ∂Ω. In the Case 1 we have Ω = D and Γm = ∂Ω. While in the Case
2, Γm ( ∂Ω and its complement is denoted by Γ = ∂Ω \ Γm, where Γ is a fictitious boundary
used in the reformulation of the inverse problem in the next section. See sketch in Fig. 1.

(a) Case 1: D is bounded (b) Case 2: D is unbounded

Figure 1. Problems setting.

3. Problem Reformulation

According to [2], the inverse potential problem (2.1) has a unique solution within the set
Cδ(Ω). However, stability of the reconstruction is still an issue mainly in the presence of noise. In
order to overcome this difficulty, it is usual to introduce a regularization on the inverse operator,
such as total variation techniques or Tikhonov regularization. In contrast to regularization
strategies, in this paper we propose to rewrite the inverse problem we are dealing with as an
optimization problem where a Kohn-Vogelius type functional is minimized with respect to the
set of admissible pointwise sources Cδ(Ω) defined in (2.2).

In order to define the optimization problem, let us introduce the following functional based
on the Kohn-Vogelius criterion [19]:

J (uD, uN ) =

∫

Ω

(uD − uN )2 dx. (3.1)

The functions uD and uN are solutions of two direct auxiliary problems depending on the
pointwise source b ∈ Cδ(Ω). One of them is associated to the Dirichlet data u∗ whereas the other
one contains information on the Neumann data q∗. These auxiliary problems are constructed in
such a way that the Kohn-Vogelius functional (3.1) attains its minimum value over the solution
of the inverse problem (2.1). In Sections 3.1 and 3.2 the auxiliary problems respectively related
to Cases 1 and 2 are presented. We note that since the auxiliary problems depend on b ∈ Cδ(Ω),
then minimizing (3.1) with respect to the set of admissible pointwise sources Cδ(Ω) can be
seen as an optimal control problem in measure space, widely studied in the literature. See, for
instance, [5, 8, 10, 22].

3.1. Auxiliary Problems: Case 1. In the Case 1, the Cauchy data is available on the whole
boundary ∂Ω. Therefore, the auxiliary problems related to this case are given by:

{

−∆uD = b in Ω,
uD = u∗ on ∂Ω.

(3.2)
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and














−∆uN = b+ c in Ω,
−∂nu

N = q∗ on ∂Ω,
∫

Ω

uN dx =

∫

Ω

uD dx,
(3.3)

where b ∈ Cδ(Ω) is a given source, representing an initial guess. In addition, the compatibility
constant c is given by

c =
1

|Ω|

(
∫

∂Ω

q∗ dS −

∫

Ω

b dx

)

, (3.4)

where |Ω| is the Lebesgue measure of the set Ω.

3.2. Auxiliary Problems: Case 2. Let us consider Case 2, where the data u∗ and q∗ are
known only on a part of ∂Ω, namely Γm. Therefore, we have to complement the information on
the remainder boundary Γ. See Fig. 1(b). The idea is to introduce the Newtonian potential

uT [b](x) = −

∫

R2

1

2π
log ‖x− y‖b(y) dy, ∀x ∈ R

2. (3.5)

Then, the auxiliary problems are defined as follows:






−∆uD = b in Ω,
uD = u∗ on Γm,
uD = uT [b] on Γ

(3.6)

and






−∆uN = b in Ω,
−∂nu

N = q∗ on Γm,
uN = uT [b] on Γ,

(3.7)

where b ∈ Cδ(Ω) is a given source.

4. Sensitivity Analysis

Let us minimize the Kohn-Vogelius functional (3.1) with respect to the set of admissible
solutions (2.2). Therefore, the idea is to perturb the source b by introducing a number m of
pointwise sources with arbitrary locations and intensities. The perturbed source bδ ∈ Cδ(Ω) is
defined as follows

bδ(x) = b(x) +

m
∑

i=1

αiδ(x − xi). (4.1)

Associated with the perturbed source bδ there are two new perturbed boundary value problems,
whose solutions are denoted by uDδ and uNδ . The auxiliary problems related to Cases 1 and 2 are
presented in Sections 4.1 and 4.2, respectively. The perturbed counterpart of the Kohn-Vogelius
functional is given by

J (uDδ , u
N
δ ) =

1

2

∫

Ω

(uDδ − uNδ )2 dx. (4.2)

After subtracting the original (3.1) from the perturbed (4.2) Kohn-Vogelius functional, we obtain

J (uDδ , u
N
δ )− J (uD, uN ) =

1

2

∫

Ω

[

(uDδ − uNδ )2 − (uD − uN )2
]

dx

=
1

2

∫

Ω

[

(uDδ + uD)− (uNδ + uN )
] [

(uDδ − uD)− (uNδ − uN )
]

dx .(4.3)

Now, we introduce the following ansätze for uDδ and uNδ

uDδ − uD =

m
∑

i=1

αivi ⇒ uDδ + uD =

m
∑

i=1

αivi + 2uD , (4.4)
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and

uNδ − uN =
m
∑

i=1

αi(vi + hi) ⇒ uNδ + uN =
m
∑

i=1

αi(vi + hi) + 2uN . (4.5)

Finally, the corresponding boundary value problems to the functions vi and hi are presented in
Sections 4.1 and 4.2, respectively associated with Cases 1 and 2.

4.1. Perturbed Problems: Case 1. The perturbed counterparts of problems (3.2) and (3.3)
associated with complete boundary measurement are written as:

{

−∆uDδ = bδ in Ω,
uDδ = u∗ on ∂Ω

(4.6)

and














−∆uNδ = bδ + cδ in Ω,
−∂nu

N
δ = q∗ on ∂Ω,

∫

Ω

uNδ dx =

∫

Ω

uDδ dx.
(4.7)

The compatibility constant cδ is given by

cδ =
1

|Ω|

(
∫

∂Ω

q∗ dS −

∫

Ω

bδ dx

)

dx = c−
1

|Ω|

m
∑

i=1

αi. (4.8)

Now, let us specify the ansätze (4.4) and (4.5) associated with the Case 1. After subtracting
problem (3.2) from (4.6) and also (3.3) from (4.7), it follows that vi and hi are respectively
solutions of the following boundary value problems:

{

−∆vi = δi in Ω,
vi = 0 on ∂Ω,

(4.9)

and


















−∆hi =
1

|Ω|
in Ω,

−∂nhi = ∂nvi on ∂Ω,
∫

Ω

hi dx = 0,

(4.10)

where δi(x) := δ(x − xi). The function vi is solution of a singular problem with homogeneous
boundary condition. On the other hand, the function hi is solution of a regular problem, since
by assumption xi /∈ ∂Ω.

4.2. Perturbed Problems: Case 2. Now, let us consider the perturbed counterpart of prob-
lems (3.6) and (3.7) associated with partial boundary measurement. They are written as:







−∆uDδ = bδ in Ω,
uDδ = u∗ on Γm,
uDδ = uT [bδ] on Γ,

(4.11)

and






−∆uNδ = bδ in Ω,
−∂nu

N
δ = q∗ on Γm,

uNδ = uT [bδ] on Γ.
(4.12)

The ansätze (4.4) and (4.5) associated with the Case 2 can now be specified. In fact, let us
subtract problem (3.6) from (4.11) and problem (3.7) from (4.12). Then, vi and hi are promptly
identified as solutions of the following boundary value problems:











−∆vi = δi in Ω,
vi = 0 on Γm,

vi = −
1

2π
log‖x− xi‖ on Γ,

(4.13)
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and






∆hi = 0 in Ω,
−∂nhi = ∂nvi on Γm,

hi = 0 on Γ,
(4.14)

where δi(x) := δ(x−xi). Note that function vi is solution of a singular problem, whereas function
hi is solution of a regular problem, since by assumption xi /∈ ∂Ω.

4.3. Reconstruction Algorithm. Now, we have all elements to evaluate the difference (4.3)
explicitly. In fact, after inserting the ansätze (4.4) and (4.5) in (4.3), we get the following
important result:

J (uDδ , u
N
δ )− J (uD, uN ) = −

∫

Ω

(

m
∑

i=1

αihi(u
D − uN )

)

dx+
1

2

∫

Ω

(

m
∑

i=1

αihi

)2

dx (4.15)

Note that the expression on the right-hand side of (4.15) depends explicitly on the number m of
pointwise sources and their intensities αi. Moreover, it also depends implicitly on the locations
of the pointwise sources xi through the function hi, solution of (4.10) or (4.14). Thus, we can
define the following function:

J(α, ξ,m) := J (uDδ , u
N
δ )− J (uD, uN ) = −α · d+

1

2
Hα · α , (4.16)

where α = (α1, ..., αm) and ξ = (x1, ..., xm). In addition, we observe that the function J is
strictly convex with respect to the variable α, so that there exists a global minimum denoted
by α⋆. In fact, let us minimize J(α, ξ,m) with respect to α, namely:

〈DαJ, β〉 = (Hα− d) · β = 0, ∀β, (4.17)

which leads to the following linear system

Hα = d . (4.18)

Some terms in the above derivations require explanations. The coefficients of the matrix H ∈
R

m×m and the vector d ∈ R
m are respectively given by:

Hki := A(i, k) =

∫

Ω

hkhi dx and dk := b(k) =

∫

Ω

hk(u
D − uN ) dx. (4.19)

In addition, α solution of (4.18) becomes a function of the locations ξ, namely α = α(ξ). Let
us now replace the solution of (4.18) into J(α, ξ,m). Therefore, the optimal locations ξ⋆ can
be trivially obtained from a combinatorial search over the domain Ω, solution to the following
minimization problem

ξ⋆ = argmin
ξ∈X

{

J(α(ξ), ξ,m) = −
1

2
α(ξ) · d

}

, (4.20)

where X is the set of admissible source locations. Finally, the optimal intensities are given by
α⋆ = α(ξ⋆). In summary, our method is able to find in one step the optimal intensities α⋆ and
locations ξ⋆ for a given m. The problem on how to find the optimal number of pointwise sources
m⋆ will be discussed in the numerical experiments section.

In order to summarize the calculations presented in this section we introduce now the resulting
reconstruction algorithm. It describes the process of obtaining the optimal parameters α⋆ and
ξ⋆ from the computational point of view. The entries of the algorithm are listed below:

• The quantity m of pointwise sources to be reconstructed;
• The n-points on which the systems (4.18) are solved;
• The vector d and the matrix H whose entries are given by (4.19);

The reconstruction algorithm returns optimal intensities α⋆ and locations ξ⋆. The reconstruction
procedure written in pseudo-code format is shown in Algorithm 1.
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Algorithm 1: Reconstruction Algorithm

Data: m, n, d, H
Result: S⋆, α⋆, ξ⋆

1 Initialization: S⋆ ←∞; α⋆ ← 0; ξ⋆ ← 0;

2 for i1 ← 1 to n do

3 for i2 ← i1 + 1 to n do
...

4 for im ← im−1 + 1 to n do

5 d←











b(i1)
b(i2)
...

b(im)











; H ←











A(i1, i1) A(i1, i2) · · · A(i1, im)
A(i2, i1) A(i2, i2) · · · A(i2, im)

...
...

. . .
...

A(im, i1) A(im, i2) · · · A(im, im)











;

6 I ← (i1, i2, ..., im); ξ ← Π(I); α← H−1d ; S ← −
1

2
d · α;

7 if S < S⋆ then

8 ξ⋆ ← ξ;

9 α⋆ ← α;

10 S⋆ ← S;

11 end if

12 end for

13 end for

14 end for

15 return S⋆, α⋆, ξ⋆

In the above algorithm Π maps the vector of nodal indices I = (i1, i2, ..., im) into the corre-
sponding vector of nodal coordinates ξ. As can be noted in the reconstruction Algorithm 1, the
optimal solution (ξ⋆, α⋆) is obtained through an exhaustive and combinatorial search over the
n-points. Therefore, the complexity C(n,m) of the algorithm can be evaluated by the formula:

C(n,m) =

(

n
m

)

m3 =
n!

m!(n −m)!
m3. (4.21)

In Fig. 2 the graphics of m× log10(C(n,m)) for n = 100 and n = 400 are presented in blue and
red, respectively.

0 100 200 300 400

0

20

40

60

80

100

120

140

Figure 2. Complexity order of Algorithm 1: m× log10(C(n,m)), for n = 100 in
blue and n = 400 in red.
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Since Algorithm 1 is the bottleneck of the proposed pointwise source reconstruction method,
two alternative and more efficient procedures are presented in Appendix A. The first one is based
on a multi-grid approach, while the second algorithm is based on a metaheuristic procedure.

5. Numerical results

In this section we present some numerical examples in order to demonstrate the efficiency of
the method proposed in this work. In the examples we consider that Ω = (−0.5, 0.5)×(−0.5, 0.5)
is the hold-all domain and that the initial guess b ∈ Cδ(Ω) is identically zero, that is b = 0
in Ω. Moreover, Dirichlet boundary data is imposed on Γm using the Newtonian potential
(3.5) evaluated in b∗, so that the associated Neumann boundary data q∗ corresponds to the
boundary measurement on Γm. The auxiliary boundary value problems are solved using the
Finite Element Method. An initial uniform grid of size 100×100 is generated and each resulting
square is divided into four triangles, leading to 4 × 104 finite elements. The functions uD, uN ,
vi and hi are computed over this mesh. From these functions the sensitivity of the functional
(3.1) with respect to the set of admissible pointwise sources (2.2), given by (4.16), can be
numerically evaluated at any point of the mesh. From this mesh a sub-grid is defined where the
combinatorial search is performed, leading to the optimal solution (α⋆, ξ⋆) defined in the sub-
grid. Each obtained pointwise source is represented by a circle, where the center corresponds
to the location while the radius is proportional to the intensity. In the case of noisy data, the
boundary measurement q∗ is replaced by q∗µ = q∗(1+µη), where η is a function assuming random
values in (−1, 1) and µ corresponds to the noise level.

5.1. Case 1: Total boundary measurement. In this section we present three examples
concerning total boundary measurement. The first example shows the sensitivity of the recon-
struction with respect to the size of the sub-grid. In the second example we propose a procedure
to find the unknown number of pointwise sources. In the third example we investigate the
robustness of the method with respect to noisy boundary measurement.

5.1.1. Example 1: Sensitivity of the reconstruction with respect to the size of the sub-grid. The
purpose of this example is to analyse the sensitivity of the reconstruction with respect to the size
of the sub-grid. We consider a target given by one pointwise source located at x∗ = (0.14,−0.23),
with intensity α∗ = 6. Four uniform sub-grids with 5×5, 20×20, 50×50 and 100×100 nodes are
considered. The obtained results for each sub-grid are presented in Table 1, where we observe
that the more refined is the sub-grid the better is the reconstruction. When the location x∗

belongs to the sub-grid, the reconstruction becomes exact. In the next examples we define a
uniform sub-grid of size 20× 20 nodes, which represents a good compromise between resolution
and computational effort [6]. In order to show different features of the Algorithm 1, we assume
from now on that the locations x∗ belongs to the sub-grid.

Table 1. Example 1: Results for different sizes of the sub-grid.

Sub-grid 5× 5 20× 20 50× 50 100 × 100

ξ⋆ (0.10,−0.20) (0.15,−0.25) (0.14,−0.24) (0.14,−0.23)
α⋆ 5.0829 5.5307 5.8187 6.0000

5.1.2. Example 2: Seeking for the number of pointwise sources. In this example the target
consists of three pointwise sources located at x∗1 = (−0.20, 0.20), x∗2 = (−0.25,−0.25), and
x∗
3
= (0.15, 0.00), with intensities α∗

1
= 1, α∗

2
= 2 and α∗

3
= 3. The representation of the target

is shown in Fig. 3. We start the reconstruction algorithm by taking m = 1 and proceed to
increasing the value of m until that the vector of optimal intensities α⋆ contains one entry with
negligible value. The results are shown in Fig. 4. For m = 1 and m = 2 the solutions are
clearly far from the target. For m = 3 the locations and intensities are perfectly reconstructed.
Finally, for m = 4 there is an additional pointwise source with negligible intensity, namely
α⋆
4 = 1.2342×10−12 . Therefore we can conclude that the correct quantity of pointwise sources is
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m = 3. Note that this procedure is not iterative, since there is no relation between the results for
two consecutive values of m. In addition, we can start the Algorithm 1 based on the assumption
that there exists m > m∗ and find a number (m−m⋆) of trial balls with negligible sizes in just
one shot.

Figure 3. Example 2: Target

(a) m = 1 (b) m = 2

(c) m = 3 (d) m = 4

Figure 4. Example 2: Results.

5.1.3. Example 3: Noisy boundary data. Now we are interested in investigating the robustness
of the method with respect to noisy boundary data. The target contains three pointwise sources
located at x∗

1
= (−0.20, 0.20), x∗

2
= (−0.25,−0.25) and x∗

3
= (0.15, 0.00) with same intensities

α∗

i = 4, i = 1, 2, 3. The target representation is shown in Fig. 7. The boundary measurement
q∗ is corrupted with white Gaussian noise (WGN) of zero mean and different values of standard
deviation. The obtained results for standard deviation µ corresponding to 5%, 10%, 20% and
40% of noise are presented in Figs. 6(a), 6(b), 6(c) and 6(d), respectively.
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Figure 5. Example 3: Target

(a) WGN = 5% (b) WGN = 10%

(c) WGN = 20% (d) WGN = 40%

Figure 6. Example 3: Results.

5.2. Case 2: Partial boundary measurement. In this section we show two examples related
to partial boundary measurement. The idea is to investigate the influence of the size of Γm in
the reconstruction process with and without noise on the boundary measurement.

5.2.1. Example 4: Without noise. The target is given by two pointwise sources located at x∗
1
=

(0.00, 0.20) and x∗
2
= (0.00,−0.20) and with intensities α∗

1
= 10 and α∗

2
= 1, as can be seen

in Fig. 7. The obtained results for different sizes of the set Γm are shown in Figs. 8(a), 8(b),
8(c) and 8(d) for |Γm| = 1.0, |Γm| = 0.8, |Γm| = 0.4 and |Γm| = 0.1, respectively. Note that
the reconstruction is exact even when Γm is considerably small. This fact corroborates with the
result demonstrated in [16], where the reconstruction of a star-shaped source is ensured provided
that |Γm| 6= 0.
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Figure 7. Example 4: Target

(a) |Γm| = 1.0 (b) |Γm| = 0.8

(c) |Γm| = 0.4 (d) |Γm| = 0.1

Figure 8. Example 4: Results.

5.2.2. Example 5: With noise. In this example the target shown in Fig. 9 is given by two
pointwise sources located at x∗

1
= (0.00, 0.20) and x∗

2
= (0.00,−0.20) and with intensities α∗

i = 5,
i = 1, 2. The boundary measurement q∗ is corrupted with white Gaussian noise (WGN) of
zero mean and standard deviation µ corresponding to 5% of noise. The obtained results for
|Γm| = 1.0, |Γm| = 0.8, |Γm| = 0.4 and |Γm| = 0.1 are presented in Figs. 10(a), 10(b), 10(c)
and 10(d), respectively. In contrast to Example 3, here the smaller is Γm the worst is the
reconstruction.
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Figure 9. Example 5: Target

(a) |Γm| = 1.0 (b) |Γm| = 0.8

(c) |Γm| = 0.4 (d) |Γm| = 0.1

Figure 10. Example 5: Results.

6. Conclusion

In this paper a new method for pointwise sources reconstruction from total or partial boundary
measurements has been proposed. The main idea consists in reformulate the inverse problem
as an optimization problem, where a Kohn-Vogelius type functional is minimized in the set of
admissible pointwise sources. The sensitivity of the Kohn-Vogelius functional with respect to
the admissible set of pointwise sources has been explicitly evaluated. From these results, a new
non-iterative second-order reconstruction algorithm has been devised. In particular, for a given
number of pointwise sources, it returns their optimal intensities and locations. The number
of pointwise sources can be find after some trials. In addition, the reconstruction is exact
without noise and the algorithm is very robust with respect to noisy data. These features have
been shown through some numerical experiments. Finally, two alternative and more efficient
reconstruction algorithms are presented in Appendix A.
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Appendix A. Alternative Reconstruction Algorithms

As described in Section 4.3, the reconstruction Algorithm 1 performs an exhaustive search
over the n-points in order to obtain the optimal intensities α⋆ and locations ξ⋆ for a given
number of pointwise sources m. Since we are dealing with a combinatorial problem, such ex-
haustive search becomes rapidly infeasible for n≫ m as m increases. For example, in trial tests,
when using Algorithm 1, the optimal solution cannot be efficiently obtained in the sub-grid with
n = 20 × 20, when 4 < m ≪ n. See Fig. 2. Since Algorithm 1 is clearly the bottleneck of the
proposed pointwise source reconstruction method, in this appendix two alternative reconstruc-
tion algorithms are presented. The first one is based on a multi-grid procedure, while the second
algorithm is based on a metaheuristic approach.

A.1. Multi-grid approach. After an inspection of Fig. 2, we note that the complexity of
Algorithm 1 goes down very quickly when m ∼ n. Moreover, in Example 1 of Section 5 we
observe that when x∗i does not belong to the sub-grid, the reconstruction algorithm finds the
optimal location x⋆i over the sub-grid, which is closest to the x∗i . Therefore, we propose a multi-
grid approach which takes advantages of these features. The basic idea consists in defining an
initial sub-grid G0 with a number n of nodes, such that n ∼ m. In this way, the number of
combinations becomes small and consequently Algorithm 1 runs very fast. After solving the
exhaustive search in G0, we obtain the vector of optimal locations ξ⋆

0
over the sub-grid G0. The

next step consists in refining G0 in the neighbourhood of ξ⋆
0
in order to produce a new sub-grid

G1. The exhaustive search is solved in G1 and a new vector of optimal locations ξ⋆
1
is obtained

within the sub-grid G1. This procedure is then repeated until a desired resolution is attained.
See sketch of the multi-grid procedure in Algorithm 2.

Algorithm 2: Multi-grid Reconstruction Algorithm.

Data: m,n,d,H,K

1 Define the initial sub-grid G0

2 Perform the combinatorial search over G0 using Algorithm 1

3 for k ← 1 to K do

4 Refine previous sub-grid to obtain the new one Gk

5 Perform the combinatorial search over Gk using Algorithm 1

6 end for

The parameters m, n, d and H represent the same as in Algorithm 1 and K is the number of
refinements necessary to the initial grid reaches the same resolution of the finite element mesh.

Note that the proposed multi-grid procedure becomes iterative, since the solution obtained
in the finer sub-grid depends on the previous one. Nevertheless, such an approach allows to
deal with a large number of pointwise sources m in a feasible computational cost. This fact is
confirmed through some numerical experiments presented in the Section A.3.

A.2. Metaheuristic approach. In contrast to the deterministic method presented in Section
A.1, here we propose a stochastic approach based on metaheuristic ideas, which is capable of
finding good quality solutions in a relatively low computational cost. The proposed evolutionary

algorithm (EA), largely known as a metaheuristic, does not guarantee to find the global optimal
solution but a good approximation of it in a reasonable time.

Metaheuristics can be seen as a high level framework which combines basic heuristic meth-
ods in order to efficiently explore the search space. In comparison with classical optimization
methods, where a single solution is modified at each iteration and the outcome of the method is
a single optimized solution, in EAs a population of solutions is modified in each iteration, and
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the outcome of the method is also a population of solutions. In the case where the optimization
problem has a unique optimum, it is expected that the population members of an EA converge
to that optimum solution [11].

Hence, a new algorithm is proposed here for solving the minimization problem described
in equation (4.20). This new method is a population based EA which tries to improve a set
of solutions by applying mutation and crossover strategies in each member of the population,
followed by two local search procedures which balance intensification and diversification of the
search process. A simplified scheme of the proposed metaheuristic is shown in Algorithm 3.

Algorithm 3: Algorithmic skeleton for the proposed metaheuristic.

Data: gmax, Np, ǫ, Tg, δ, m, n, d, H
1 Initialize population for g ← 1 to gmax do

2 for k ← 1 to Np do

3 Performs mutation and crossover

4 Apply local search

5 end for

6 Select the next population

7 end for

8 return Best solution

The parameters m, n, d and H represent the same as in Algorithm 1. The parameter gmax

indicates the maximum number of generations, Np is the maximum number of solutions in the
population, ǫ and Tg are parameters used in the local search procedure, and δ ∈ [0, 1] is the
crossover probability. Those parameters are user-defined values.

Once initialized, the algorithm performs the search process until gmax is reached. At each
generation, each solution in the population is mutated and recombined to produce a trial solu-
tion, hopefully better than the previous one. After that, local search procedures are applied in
order to increase the quality of the trial solutions. Hence, a new population with Np new trial
solutions is generated. Those solutions are then compared to the previous ones, and those with
better objective function value are selected to constitute the population of the next generation.
A detailed description of the components and the steps of the method are presented in the
following.

A.2.1. Structure of candidate solutions. In the proposed metaheuristic, each solution k in the
population, with k = 1, ..., Np, is represented by: (i) the m-dimensional vector Ik whose entries
are distinct nodal indices belonging to N = {1, 2, ..., n}; (ii) the n-dimensional vector yk which
contains binary values associated with the indices in Ik; and (iii) the objective function value
F (Ik) := J(α(Π(Ik)),Π(Ik),m) associated with the solution Ik. Table 2 shows an illustrative
example of a population of solutions.

Table 2. Illustrative example of a population structure with Np = 5, m = 3
and n = 6.

Solution,k Ik yk F (Ik)
1 (2,1,3) (1,1,1,0,0,0) -1.53
2 (5,6,4) (0,0,0,1,1,1) -2.19
3 (2,4,6) (0,1,0,1,0,1) -1.15
4 (6,1,3) (1,0,1,0,0,1) -0.69
5 (3,5,4) (0,0,1,1,1,0) -2.33

A.2.2. Initialization. The algorithm starts with a population of size Np. Each vector Ik is
initialized with random distinct indices in the set N , and the binary values are assigned to the
associated vector yk. After that, each solution is evaluated according to the objective function
F (Ik).
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A.2.3. Mutation and crossover. At each generation, the solutions in the population are mutated
and recombined to produce an intermediary population of Np mutant solutions. To generate a
trial solution I ′k, the mutation process randomly selects two solutions (Ir1 , Ir2), in the population
and combine them to the current solution (Ik), with r1 6= r2 6= k. The mutation strategy is
inspired by the permutation matrix approach proposed for the differential evolution algorithm
when applied to the travelling salesman problem [18]. Hence, two solutions Ir1 and Ir2 define a
permutation matrix P as yr2 = Pyr1 . After multiplying P by the binary vector yk associated to
a third solution Ik, a new trial solution I ′k is obtained. Since all operations are combinations of
distinct indices, the resultant trial solutions are always feasible, that is, combinations of distinct
indices in the set N . Therefore, for each candidate solution Ik this procedure is performed, where
two other solutions Ir1 and Ir2 are randomly selected to be combined with the current solution
Ik. In addition, as suggested in [18], a crossover procedure is implemented. The crossover
probability δ ∈ [0, 1] scales the effect of the permutation matrix P. By setting δ = 1, the
permutation matrix is kept unchanged, while with δ = 0 it reduces the permutation matrix to
diagonal form. By using intermediate values for δ ∈ (0, 1), just a fraction of the permutations
defined by P is performed.

A.2.4. Local search procedures. In the proposed method two local search procedures are applied
in order to improve the solutions obtained after the mutation and crossover procedures. These
two local searches try to balance the intensification of the search by exploiting information
obtained until the current generation, and the diversification of the search by randomly selecting
information to be incorporated at the current solution. Hence, the trial solutions are modified
into new solutions by changing one of the corresponding solution components.

The intensification phase is performed first. Given a trial solution I ′k, one index in the set N
that is not in the trial solution is probabilistically chosen to substitute one index in that solution.
This probabilistic choice relies on the roulette wheel selection procedure of genetic algorithms
and ant colony optimization methods [14, 12]: in the probability vector p ∈ R

n, each value p[i]
determines a slice on a circular roulette wheel. The size of the slice is proportional to the number
of times that an index i appears in the best solution of the previous generation. The more an
index appears in candidate solutions the greater is the probability that the index is selected to
be replaced in the current solution. If the replacement of an index in the trial solution generates
an improved solution, then this new solution is considered, otherwise the trial solution is kept
unchanged.

Thereafter, the diversification phase is performed. Given a trial solution I ′k, possibly modified
in the intensification phase, one index in the set N that is not in the trial solution is randomly
selected to be replaced in the trial solution. If the replacement of an index generates a better
solution, then this new modified solution is considered, otherwise the trial solution is kept
unchanged.

The probability vector p is initialized by ǫ, that is, in the first generation all indices in the
set N have the same probability to be selected. At the end of each generation, the probability
vector p is updated by ǫ only in the assigned indices that appeared in the best solution in the
current generation. To avoid stagnation in the selection of the indices, caused by the increase in
the value of p[i] associated with indices that appear in the best solution along many generations,
the probability vector p is initialized with the initial value ǫ at every Tg generations.

A.3. Comparative analysis between all approaches. Let us present a comparative analysis
in terms of computational cost between the exhaustive (Algorithm 1), multi-grid (Algorithm 2)
and metaheuristic (Algorithm 3) approaches. All algorithms were implemented in Matlab and
the experiments were performed in a workstation running Windows 7 with Intel Core i5 and 8
GB RAM. For Algorithms 1 and 3, a sub-grid with 20 × 20 nodes is defined. For Algorithm
2, three nested sub-grids are defined with 5 × 5, 10 × 10 and 20 × 20 nodes. Therefore, in
all cases we have the same final resolution. In the case of Algorithm 3, five independent runs
were performed for different values of m with the following parameters setting: gmax = 1500,
Np = 50, ǫ = 10−5, δ = 0.5 and Tg = 200. Finally, Fig. 11 shows the computational time
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from all methods considering different values for pointwise sources m. For the metaheuristic,
the average computational time from five runs are presented.
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Figure 11. Comparison of the computational time of all approaches.

For m = 4, the exhaustive method takes 270 seconds while the multi-grid approach takes less
than 0.27 seconds, which denotes a decrease of about 1000 times in the computational time. For
the metaheuristic, the average computational time in five runs is about 120 seconds for m ≤ 10.
It is possible to observe that the increase of the computational time of both the multi-grid and
the metaheuristic approaches is not directly proportional to the increase in the parameter m,
which shows stability of these methods regarding the scalability of the problem. Moreover, this
fact indicates that the multi-grid is able to reconstruct a large number of sources in a reasonable
time.

Regarding the metaheuristic, it is important to highlight that form = 2, 3, 4, 6, 8 the algorithm
finds the optimal solution in all executions. Form = 10, the optimal solution was found in 20% of
the executions. Although in some executions the optimal solution was not found, the final results
reported can give an idea about the optimal locations ξ⋆ and intensities α⋆, since the resulting
solutions are close to the optimal one. It is also important to mention that the metaheuristic is
capable of reaching the optimal solution using less number of generations than the one used in
these experiments, as can be observed in Fig. 12.
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(a) m = 2. (b) m = 3.

(c) m = 4. (d) m = 6.

(e) m = 8. (f) m = 10.

Figure 12. History of the average of the best objective function value in each
generation from five runs.
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