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Abstract. The electrical impedance tomography (EIT) problem consists in determining the
distribution of the electrical conductivity of a medium subject to a set of current fluxes, from
measurements of the corresponding electrical potentials on its boundary. EIT is probably the
most studied inverse problem since the fundamental works by Calderón from the eighties. It has
many relevant applications in medicine (detection of tumors), geophysics (localization of mineral
deposits) and engineering (detection of corrosion in structures). In this work, we are interested in
reconstructing a number of anomalies with different electrical conductivity from the background.
Since the EIT problem is written in the form of an overdetermined boundary value problem,
the idea is to rewrite it as a topology optimization problem. In particular, a shape functional
measuring the misfit between the boundary measurements and the electrical potentials obtained
from the model is minimized with respect to a set of ball-shaped anomalies by using the concept
of topological derivatives. It means that the objective functional is expanded and then truncated
up to the second order term, leading to a quadratic and strictly convex form with respect to
the parameters under consideration. Thus, a trivial optimization step leads to a non-iterative
second order reconstruction algorithm. As a result, the reconstruction process becomes very
robust with respect to noisy data and independent of any initial guess. Finally, in order to show
the effectiveness of the devised reconstruction algorithm, some numerical experiments into two
spatial dimensions are presented, taking into account total and partial boundary measurements.

1. Introduction

A wide class of inverse problems can be written in the form of overdetermined boundary value
problems. Such a difficult can be overcome by rewriting the inverse problem in the form of an
optimization problem. The basic idea consists in minimizing an objective functional measuring
the misfit between a given data and a numerical solution with respect to the parameters under
consideration. In particular, let us consider a geometrical domain Ω with its boundary denoted
as Γ = ∂Ω. A boundary value problem is defined in Ω, whose solution is denoted by u∗. We
assume that the response of the system on the boundary Γ can be observed. For example, given
a Dirichlet data U on Γ, the associated Dirichlet-to-Neumann map for a second order elliptic
equation is defined as follows [8]

Λω∗ : u∗ = U 7→ Q := ∂nu
∗ on Γ.

where ω∗ is an unknown set of anomalies embedded within Ω and n is the exterior unit normal
vector on Γ. Therefore, given the pair (U,Q) we want to reconstruct the set ω∗ ⊂ Ω. The
mathematical model of the system furnishes the mapping ω 7→ Λω for a family of anomalies ω.
Thus, taking U we can generate the output of the model Λω(U) and compare it with the given
function Q = Λω∗(U). Hence, using the mathematical model we can consider the associated
optimization problem based on the distance minimization between the observation (U,Q) and
the model response (U,Λω(U)) over the family of admissible anomalies ω.

In this paper the Electrical Impedance Tomography (EIT) is adopted as model problem, which
consists in finding the number, size, shape and location of a set of hidden anomalies inside a
body from total or partial measurements of the electrical potential on the boundary of the body.

Since the unknown of the problem we are dealing with is given by a geometrical domain
ω∗ representing the set of hidden anomalies, then it can be written in the form of a topology
optimization problem. Thus, the topological derivative concept is used [26], which can be
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seen as a particular case of the broader class of asymptotic methods fully developed in the
books by Ammari & Kang [4] and Ammari et al. [2], for instance. See also related works
[22, 23, 24, 25]. In the context of EIT problem, important contributions can be found in
[6, 10, 11, 12, 16, 17, 18]. The stability and resolution analysis for a (first-order) topological
derivative based imaging functional in the context of Helmholtz equation is known [3]. However,
such an analysis is missing for the conductivity problem we are dealing with. Therefore, the
second-order topological derivative concept starts to play an important role in the context of the
inverse conductivity problem. In particular, it has been successfully applied for solving a class
of EIT problem in [7, 13]. In the paper [7] a higher order expansion of a tracking-type shape
functional with respect to a number of arbitrary shaped inclusion is derived, all of them controled
by the same small parameter. The resulting expansion is used to reconstruct a single circular
or elliptical inclusion from partial boundary measurement. In [13] a second-order topological
expansions of a tracking-type shape functional is also considered with respect to several circular
inclusions of uniform sizes. The resulting expansion is used to initialize a standard level set
method.

In our approach the anomalies are approximated by a finite number of ball-shaped trial in-
clusions of different sizes. In addition, we have evoked the adjoint method a posteriori, after
obtaining the associated sensitivities, allowing us to derive a simpler representation for the re-
sulting expansion. These two ingredients were crucial in the development of the proposed novel
reconstruction algorithm, which represents the main contribution of our paper with respect to
[7, 13]. In particular, following the original ideas presented in [9], the objective functional is
expanded and then truncated up to the second order term, leading to a quadratic and strictly
convex form with respect to the parameters under consideration. Finally, a trivial optimization
step leads to a non-iterative second order reconstruction algorithm. As a result, the reconstruc-
tion process becomes very robust with respect to noisy data and independent of any initial guess,
allowing us to approximate the topology as well the shape of the hidden anomalies through a
number of trial balls. Therefore, our approach can be used either as a standalone tool to accu-
rately and quickly detect a set of hidden anomalies, even with several connected components, or
as an initialization for more complex iterative approaches such as the ones based on level-sets
methods [15, 19], for instance.

The paper is organized as follows. In Section 2 the mathematical formulation of the inverse
EIT problem is introduced and rewritten as a topological optimization problem. In Section 3 the
second order topological expansion of the shape functional is presented. The novel non-iterative
reconstruction algorithm is devised in Section 4. Some reconstruction experiments from total
and partial boundary measurements are presented in Section 5. Finally, in Section 6 the paper
ends with some concluding remarks.

2. The Inverse Conductivity Problem

Let us consider a domain Ω ⊂ R2 with Lipschitz continuous boundary ∂Ω. The domain Ω
represents a body endowed with the capability of conducting electricity. Its electrical conductiv-
ity coefficient is denoted by k∗(x) > k0 > 0, with x ∈ Ω and k0 ∈ R+. If the body Ω is subjected
to a given electric flux Q on ∂Ω, then the resulting electric potential u in Ω is observed on a
part of the boundary Γm ⊂ ∂Ω. The objective is to reconstruct the electrical conductivity k∗

over Ω from a given boundary measurement u∗|Γm
= U , solution of the following overdetermined

boundary value problem 
div[q(u∗)] = 0 in Ω,

q(u∗) = −k∗∇u∗,
q(u∗) · n = Q on ∂Ω,

u∗ = U on Γm.

(2.1)

Without loss of generality, we are considering only one boundary measurement U on Γm. The
extension to several boundary measurements is trivial.
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An important feature of the human body is that the electrical conductivity can be approxi-
mated by a piecewise constant function representing different tissues. The electrical conductivity
of the muscles, lungs, bones and blood are respectively given by 8.0, 1.0, 0.06 and 6.7 milisiemens
(mS), for instance. Thus, we assume that the unknown electrical conductivity k∗ we are looking
for belongs to the following set

Cγ(Ω) :=

{
ϕ ∈ L∞(Ω) : ϕ = k

(
1Ω −

N∑
i=1

(1− γi)1ωi

)}
, (2.2)

where k ∈ R+ is the electrical conductivity of the background. When the conductivity k depends
on the frequency, see [1]. The sets ωi ⊂ Ω, with i = 1, · · · , N , are such that ωi ∩ ωj = ∅, for
i 6= j. In addition, 1Ω and 1ωi are used to denote the characteristics functions of Ω and ωi,
respectively. Finally, γi ∈ R+ are the contrasts with respect to the electrical conductivity of the
background k. From these elements, the inverse problem we are dealing with can be stated as:

Problem 1. Let Q ∈ H−1/2(∂Ω) be a given Neumann excitation, then find k∗ ∈ Cγ(Ω) from
observations of the field U on Γm ⊂ ∂Ω, such that u∗[k∗] ∈ H1(Ω) satisfies (2.1).

We assume that each ωi is measurable and simply connected. We also assume that the values
of the electrical conductivity of the background k and the associated contrasts γi are known (see
counter-example at the end of this section). From these assumptions, Problem 1 can be written
as a topology optimization problem with respect to the sets ωi, for i = 1, · · · , N . In fact, let

us introduce the unknown set ω∗ =
⋃N∗

i=1 ω
∗
i ⊂ Ω, where N∗ is the number of anomalies we are

looking for. Therefore

k∗(x) =

{
k if x ∈ Ω \ ω∗,
γik if x ∈ ω∗i , i = 1, · · · , N∗. (2.3)

See sketch in Figure 1(a). Now, let us introduce the following auxiliary Neumann boundary
value problem: Find u, such that

div[q(u)] = 0 in Ω,
q(u) = −kω∇u,

q(u) · n = Q on ∂Ω,∫
∂ΩQ = 0,∫
Γm

u =
∫

Γm
U,

(2.4)

where Q and U are the boundary excitation and boundary measurement, respectively and kω ∈
Cγ(Ω) is constant by parts, characterized by a set ω ⊂ Ω. See sketch in Figure 1(b).

(a) ω∗ (b) ω

Figure 1. A body Ω with a set of anomalies.

Finally, we introduce the following shape functional measuring the misfit between the bound-
ary measurement U and the solution u = u(ω) of (2.4) evaluated on Γm, namely

Jω(u) =

∫
Γm

(u− U)2. (2.5)
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Since the electrical conductivity of the background k and the associated contrasts γi are known
by assumption, then solving Problem 1 is equivalent to solve the following topology optimization
problem with respect to the support ω of the anomalies

Minimize
ω⊂Ω

Jω(u), subject to (2.4). (2.6)

The problem of finding k∗ ∈ Cγ(Ω) for a given Dirichlet excitation U on ∂Ω, from observations
of the flux Q on Γm ⊂ ∂Ω, by using similar optimization approach can be found in [5].

Remark 2. In the case of the EIT problem in general a number M of boundary measurements
is available, which are easily obtained by combining different pairs of injection and draining
electrodes. See sketch in Figure 4, for instance. However, for the sake of simplicity and without
lost of generality, in this paper all derivations are presented by taking into account just one single
boundary measurement. Their extensions for a number M > 1 of measurements is trivially
obtained after sum-up the sensitivities associated with each individual boundary measurement.

The minimization problem (2.6) we are dealing with is based on the following paradigm:
we know what we are looking for, but we do not know where they are. In fact, we cannot
reconstruct both the topology ω∗ and the contrasts γi, i = 1, · · · , N∗. Let us present a simple
counter-example. It consists of an inclusion of radius ρ and contrast γ centered into a disk of
unity radius with electrical conductivity k = 1. We introduce a polar coordinate system (r, θ)
at the center of the inclusion. The disk is excited with an electric flux Q = sin(θ) applied on its
boundary. The solution u = u(r, θ) of problem (2.4), evaluated on the boundary of the disk, is
given by u(1, θ) = β sin(θ), with

β =
(1 + γ) + ρ2(1− γ)

(1 + γ)− ρ2(1− γ)
. (2.7)

For a fixed pair (ρ∗, γ∗), the boundary measurement is given by U = β∗ sin(θ). After solving
the minimization problem (2.6), we can write γ as a function of ρ, namely

γ(ρ) =
(1 + β∗)ρ2 + (1− β∗)
(1 + β∗)ρ2 − (1− β∗)

. (2.8)

By setting ρ∗ = 0.2 and after taking the limit cases γ∗ → 0, γ∗ → 1 and γ∗ → ∞, the plot of
γ(ρ) with respect to ρ is shown in Figure 2, where we can observe the lack of uniqueness when
both the radius ρ∗ and the contrast γ∗ are simultaneously unknown.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

Figure 2. Counter-example of lack of uniqueness when both the topology and
contrast are simultaneously unknown.
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3. Topological Asymptotic Expansion

In this paper we deal with the reconstruction of k∗ ∈ Cγ(Ω) from total or partial boundary
measurement using the topological sensitivity analysis concept [26]. Therefore, let us consider
ω = ∅ and u0 = u|ω=∅ solution of

div[q(u0)] = 0 in Ω,
q(u0) = −k∇u0,

q(u0) · n = Q on ∂Ω,∫
∂ΩQ = 0,∫

Γm
u0 =

∫
Γm

U,

(3.1)

where k is a constant that represents the electrical conductivity of the background. In this
particular case, the following notation for the shape function is introduced

J0(u0) =

∫
Γm

(u0 − U)2. (3.2)

Let us perturb the domain Ω by nucleating – simultaneously – a number N of circular inclu-
sions Bεi(xi) with contrast γi, i = 1, · · · , N , as shown in Figure 3. We assume that Bεi(xi) ⊂ Ω
is a ball with center at xi ∈ Ω and radius εi, such that Bεi(xi)∩Bεj (xj) = ∅ for i 6= j. We intro-
duce the notations ξ = (x1, · · · , xN ) and ε = (ε1, · · · , εN ), whether necessary. The topologically
perturbed counterpart of the shape functional is defined as follows

Jε(uε) =

∫
Γm

(uε − U)2, (3.3)

where uε is solution of the following boundary value problem

div[qε(uε)] = 0 in Ω,
qε(uε) = −γεk∇uε,

qε(uε) · n = Q on ∂Ω,∫
∂ΩQ = 0,∫

Γm
uε =

∫
Γm

U,

JuεK = 0 on
⋃N
i=1 ∂Bεi(xi),

Jqε(uε)K · n = 0 on
⋃N
i=1 ∂Bεi(xi),

(3.4)

with the contrast defined as

γε = γε(x) =

{
1, if x ∈ Ω \

⋃N
i=1Bεi(xi)

γi, if x ∈ Bεi(xi).
(3.5)

Figure 3. Perturbed domain representation.

3.1. Asymptotic Expansion of the Solution. General results for the asymptotic expansions
of solutions in singularly perturbed domains were originally considered in [14, 21]. When per-
turbations are included in Ω, discrepancies over the inclusions Bεi(xi) in problem (3.1) appear.
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The idea is to introduce boundary layers which compensate for such discrepancies. Thus, let us
consider the following ansätz for the asymptotic expansion of uε

uε(x) = u0(x) +
N∑
i=1

(
wi(x/εi) + ε2

i ũi(x) + w̃i(x/εi) + ε4
i
˜̃ui(x)

)
+

N∑
i=1

N∑
j=1
j 6=i

(
wji (x/εi) + ε2

i ε
2
ju
j
i (x)

)
+ ˜̃uε(x). (3.6)

Before continue, let us give a rough explanation of each term in the above expansion. The
boundary layers wi are introduced to compensate for the first and second order terms of the
Taylor’s expansion of ∇u0 around xi. The problem associate with ũi compensates for the
discrepancy introduced on ∂Ω by one term of wi. The boundary layers w̃i compensate for the first
and third term of the Taylor’s expansion of ∇ũi and ∇u, respectively. There still discrepancies
left on ∂Ω by one term of each set of boundary layers wi and w̃i, which are compensate by
˜̃ui. The terms wji and uji are introduced to take into account interactions between different

inclusions. Finally, ˜̃uε compensate for all remainder discrepancies. Each term of the ansätz
(3.6) are now explicitly defined. In what follows, the notation ∇nϕ(y)(x − xi)n represents the
derivative of order n of a function ϕ in the direction (x− xi) evaluated at y.

We start with the boundary layers wi(x/εi), for i = 1, · · · , N , which are solutions of
div[qε(wi)] = 0 in Ξε,

qε(wi) = −γεik∇wi in R2,
wi → 0 at ∞,

JwiK = 0 on ∂Bεi(xi),
Jqε(wi)K · n = k(1− γi)

(
∇u0(xi) · n− εi∇2u0(xi)n · n

)
on ∂Bεi(xi).

(3.7)

where Ξε := Bεi(xi)
⋃(
R

2 \Bεi(xi)
)

. By fixing the notation

ρi =
1− γi
1 + γi

and γεi = γεi(x) =

{
1, if x ∈ R2 \Bεi(xi)
γi, if x ∈ Bεi(xi),

(3.8)

the solutions of (3.7) in R2 \Bεi(xi) are given by

wi(x/εi) = ε2
i gi(x) + ε4

ihi(x), (3.9)

where

gi(x) =
ρi

‖x− xi‖2
∇u0(xi) · (x− xi) (3.10)

and

hi(x) =
ρi

2‖x− xi‖4
∇2u0(xi)(x− xi)2. (3.11)

The functions wji (x/εj), j 6= i, satisfy

div[qε(w
j
i )] = 0 in Ξε,

qε(w
j
i ) = −γεjk∇w

j
i in R2,

wji → 0 at ∞
Jwji K = 0 on ∂Bεj (xj),

Jqε(w
j
i )K · nj = k(1− γj)ε2

iAi(xj)∇u0(xi) · nj on ∂Bεj (xj).

(3.12)

The second order tensor Ai(x) is defined by

Ai(x) =
ρi

‖x− xi‖2

[
I − 2

(x− xi)⊗ (x− xi)
‖x− xi‖2

]
. (3.13)

Thus, the solutions of (3.12) in R2 \Bεj (xj) are given by

wji (x/εj) = ε2
i ε

2
jθ
j
i (x), (3.14)
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where

θji (x) =
ρiρj

‖x− xj‖2
Ai(xj)∇u0(xi) · (x− xj). (3.15)

Since the boundary layers wi introduce discrepancies on ∂Ω, we construct ũi, i = 1, · · · , N ,
such that 

div[q(ũi)] = 0 in Ω,
q(ũi) = −k∇ũi in Ω,

q(ũi) · n = −q(gi) · n on ∂Ω,∫
Γm

ũi = −
∫

Γm
gi,

(3.16)

where gi is given by (3.10).
The boundary layers w̃i(x/εi), i = 1, · · · , N , satisfy

div[qε(w̃i)] = 0 in Ξε,
qε(w̃i) = −γεik∇w̃i in R2,

w̃i → 0 at ∞,
Jw̃iK = 0 on ∂Bεi(xi),

Jqε(w̃i)K · n = k(1− γi)ε2
i

(
∇ũi(xi) · n+ 1

2∇
3u0(xi)n

3
)

on ∂Bεi(xi),

(3.17)

whose explicit solutions in R2 \Bεi(xi) are given by

w̃i(x/ε) = ε4
i g̃i(x) + ε6

i h̃i(x), (3.18)

where

g̃i(x) =
ρi

‖x− xi‖2
∇ũi(xi) · (x− xi) (3.19)

and

h̃i(x) =
ρi

2‖x− xi‖6
∇3u0(xi)(x− xi)3. (3.20)

Now, we chose ˜̃ui such that it compensates for the discrepancies of order O(ε4
i ) left on the

boundary ∂Ω by w̃i and wi for i = 1, · · · , N , namely,
div[q(˜̃ui)] = 0 in Ω,

q(˜̃ui) = −k∇˜̃ui in Ω,

q(˜̃ui) · n = −q(hi + g̃i) · n on ∂Ω,∫
Γm

˜̃ui = −
∫

Γm
hi + g̃i.

(3.21)

The boundary layers wji also produce discrepancies on ∂Ω, which are compensated by uji
solution of the following boundary value problems for i, j = 1, · · · , N , with i 6= j,

div[q(uji )] = 0 in Ω,

q(uji ) = −k∇uji in Ω,

q(uji ) · n = −q(θji ) · n, on ∂Ω,∫
Γm

uji = −
∫

Γm
θji ,

(3.22)

where θji is given by (3.15).

Finally, the last term of the expansion (3.6), namely ˜̃uε, has to compensate for all remainder
terms, so that it is solution to the following boundary value problem

div[qε(˜̃uε)] = 0 in
⋃N
i=1Bεi(xi)

⋃(
Ω \

⋃N
i=1Bεi(xi)

)
,

qε(˜̃uε) = −γεk∇˜̃uε in Ω,

qε(˜̃uε) · n = −
N∑
i=1

ε6
i qε(h̃i) · n on ∂Ω,∫

Γm
˜̃uε = −

N∑
i=1

ε6
i

∫
Γm

h̃i

J˜̃uεK = 0 on
⋃N
i=1 ∂Bεi(xi),

Jqε(˜̃uε)K · n = ˜̃gε on
⋃N
i=1 ∂Bεi(xi),

(3.23)
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where,

˜̃gε =

N∑
i=1

N∑
j=1
j 6=i

ε2
i εjg

a
ij +

N∑
i=1

ε3
i g
b
i +

N∑
i=1

ε4
i (g

c
i + ∂nhi) +

N∑
i=1

N∑
j=1
j 6=i

ε2
i ε

2
jgij , (3.24)

with

gaij = (∇Ai(ξj)nj)∇u0(xi) · nj , (3.25)

gbi = k(1− γi)
1

3!
∇4u0(ξi)n

4, (3.26)

gci = k(1− γi)∂n ˜̃ui, (3.27)

gij = k
1− γj
‖x− xj‖2

Ai(xj)∇u0(xi) · (x− xj), (3.28)

for ξj = δx+ (1− δ)xj , with δ ∈ (0, 1) and x ∈ Bεj (xj).

Lemma 3. Let ˜̃uε be solution to (3.23) or equivalently solution to the following variational
problem: Find ˜̃uε ∈ Uε, such that

−
∫

Ω
qε(˜̃uε) · ∇η +

∫
∂Bε

˜̃gεη −
∫
∂Ω

N∑
i=1

ε6
i qε(h̃i) · nη = 0 ∀η ∈ V, (3.29)

where the set Uε and the space V are defined as

Uε :=

{
ϕ ∈ H1(Ω) :

∫
Γm

ϕ =

N∑
i=1

ε6
i ρi

∫
Γm

h̃i

}
(3.30)

and

V :=

{
ϕ ∈ H1(Ω) :

∫
Γm

ϕ = 0

}
. (3.31)

Then, we have the estimate ‖˜̃uε‖H1(Ω) = O(|ε|5) for the remainder, where |ε| := max{ε1, · · · , εN}.

Proof. By taking η = ˜̃uε − ϕε in (3.29), with ϕε =
N∑
i=1

ε6
i ρih̃i on ∂Ω, we have

−
∫

Ω
qε(˜̃uε) · ∇˜̃uε +

∫
Ω
qε(˜̃uε) · ∇ϕε +

∫
∂Bε

˜̃gε ˜̃uε −
∫
∂Bε

˜̃gεϕε

−
∫
∂Ω

N∑
i=1

ε6
i qε(h̃i) · n˜̃uε +

∫
∂Ω

N∑
i=1

ε6
i qε(h̃i) · nϕε = 0 (3.32)

Integration by parts yields

−
∫

Ω
qε(˜̃uε) · ∇˜̃uε −

∫
Ω

div[qε(˜̃uε)]ϕε +

∫
∂Ω
qε(˜̃uε) · nϕε +

∫
∂Bε

Jqε(˜̃uε)K · nϕε

+

∫
∂Bε

˜̃gε ˜̃uε −
∫
∂Bε

˜̃gεϕε −
∫
∂Ω

N∑
i=1

ε6
i qε(h̃i) · n˜̃uε +

∫
∂Ω

N∑
i=1

ε6
i qε(h̃i) · nϕε = 0. (3.33)

Using equation (3.23), we obtain the equality

−
∫

Ω
qε(˜̃uε) · ∇˜̃uε =

∫
∂Ω

N∑
i=1

ε6
i qε(h̃i) · n˜̃uε −

∫
∂Bε

˜̃gε ˜̃uε (3.34)

From the Cauchy-Schwarz inequality together with the trace theorem we have

−
∫

Ω
qε(˜̃uε) · ∇˜̃uε 6 |ε|6‖˜̃uε‖L2(∂Ω)

∥∥∥ N∑
i=1

qε(h̃i)
∥∥∥
L2(∂Ω)

+ ‖˜̃gε‖
H

1
2 (∂Bε)

‖˜̃uε‖
H−

1
2 (∂Bε)

6 C1|ε|6‖˜̃uε‖H1(Ω) + C2‖˜̃gε‖H1(Bε)‖˜̃uε‖L2(Bε). (3.35)
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Now, let us make use of the Hölder inequality together with the Sobolev embedding theorem for
1/p+ 1/q and q > 1, to obtain

‖˜̃uε‖L2(Bε) 6 C3|ε|1/q‖˜̃uε‖L2p(Bε) 6 |ε|C4‖˜̃uε‖H1(Ω), (3.36)

where we have used the interior elliptic regularity of function ˜̃uε. In addition, by using definition
(3.24), we obtain

‖˜̃gε‖H1(Bε) 6 C5|ε|4, (3.37)

Therefore,

−
∫

Ω
qε(˜̃uε) · ∇˜̃uε 6 C6|ε|5‖˜̃uε‖H1(Ω). (3.38)

Finally, from the coercivity of the bilinear form on the left hand side of the above inequality we
obtain

c‖˜̃uε‖2H1(Ω) 6 −
∫

Ω
qε(˜̃uε) · ∇˜̃uε 6 C6|ε|5‖˜̃uε‖H1(Ω), (3.39)

which leads to the result, namely ‖˜̃uε‖H1(Ω) 6 C|ε|5, with constant C = C6/c independent of
ε. �

3.2. Asymptotic Expansion of the Shape Functional. From the ansätz for uε given by
(3.6), we can obtain the asymptotic expansion of the shape functional Jε(uε) defined through
(3.3) with respect to ε. In fact, the shape functional is defined on the boundary Γm. Then, let
us evaluate the expansion for uε on the boundary ∂Ω to obtain uε|∂Ω

= (u0 + ϕε)|∂Ω
, where ϕε

is such that

ϕε =
N∑
i=1

(
ε2
i (gi + ũi) + ε4

i (hi + g̃i + ˜̃ui) + ε6
i h̃i

)
+

N∑
i=1

N∑
j=1
j 6=i

(
ε2
i ε

2
j (θ

j
i + uji )

)
+ ˜̃uε. (3.40)

Therefore,

Jε(uε) =

∫
Γm

(u0 + ϕε − U)2 = J0(u0) + 2

∫
Γm

(u0 − U)ϕε +

∫
Γm

ϕ2
ε. (3.41)

Let us now collect the terms on the right-hand side of (3.41) in power of ε. The first one is
independent of ε. It is actually the original shape functional. In view of (3.40), the second term
can be written as∫

Γm

(u0 − U)ϕε =

N∑
i=1

(
ε2
i

∫
Γm

(u0 − U)(gi + ũi) + ε4
i

∫
Γm

(u0 − U)(hi + g̃i + ˜̃ui)

)

+
N∑
i=1

N∑
j=1
j 6=i

ε2
i ε

2
j

∫
Γm

(u0 − U)(θji + uji ) +
2∑
`=1

E`(ε), (3.42)

where, from the Cauchy-Scharwz inequality together with Lemma 3, we have

E1(ε) =

N∑
i=1

ε6
i

∫
Γm

(u0 − U)h̃i = O(|ε|6), (3.43)

E2(ε) =

∫
Γm

(u0 − U)˜̃uε = O(|ε|5), (3.44)

The last term on the right-hand side of (3.41) can be expanded as follows∫
Γm

ϕ2
ε =

∫
Γm

( N∑
i=1

ε2
i (gi + ũi)

)2
+

15∑
`=3

E`(ε), (3.45)

with

E3(ε) = 2

∫
Γm

N∑
i=1

ε2
i (gi + ũi)

N∑
i=1

ε4
i (hi + g̃i + ˜̃ui) = O(|ε|6), (3.46)
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E4(ε) = 2

∫
Γm

( N∑
i=1

ε4
i (hi + g̃i + ˜̃ui)

)2
= O(|ε|8), (3.47)

E5(ε) = 2

∫
Γm

N∑
i=1

N∑
j=1
j 6=i

ε2
i ε

2
j (θ

j
i + uji )

( N∑
i=1

ε2
i (gi + ũi)

)
= O(|ε|6), (3.48)

E6(ε) = 2

∫
Γm

N∑
i=1

N∑
j=1
j 6=i

ε2
i ε

2
j (θ

j
i + uji )

( N∑
i=1

ε4
i (hi + g̃i + ˜̃ui)

)
= O(|ε|8), (3.49)

E7(ε) =

∫
Γm

( N∑
i=1

N∑
j=1
j 6=i

ε2
i ε

2
j (θ

j
i + uji )

)2
= O(|ε|8), (3.50)

E8(ε) =

∫
Γm

N∑
i=1

ε6
i h̃i

N∑
i=1

ε2
i (gi + ũi) = O(|ε|8), (3.51)

E9(ε) = 2

∫
Γm

N∑
i=1

ε6
i h̃i

N∑
i=1

ε4
i (hi + g̃i + ˜̃ui) = O(|ε|10), (3.52)

E10(ε) =

∫
Γm

( N∑
i=1

ε6
i h̃i

)2
= O(|ε|12), (3.53)

E11(ε) =

∫
Γm

N∑
i=1

ε6
i h̃i ˜̃uε = O(|ε|11), (3.54)

E12(ε) = 2

∫
Γm

˜̃uε

N∑
i=1

ε2
i (gi + ũi) = O(|ε|7), (3.55)

E13(ε) = 2

∫
Γm

˜̃uε

N∑
i=1

ε4
i (hi + g̃i + ˜̃ui) = O(|ε|9), (3.56)

E14(ε) =

∫
Γm

˜̃uε

N∑
i=1

ε6
i h̃i = O(|ε|11), (3.57)

E15(ε) =

∫
Γm

˜̃u2
ε = O(|ε|10), (3.58)

where we have used again the Cauchy-Scharwz inequality together with Lemma 3.
Finally, after replacing (3.42) and (3.45) into (3.41), we obtain the following asymptotic

expansion for the topologically perturbed shape functional Jε(uε)

Jε(uε) = J0(u0) + 2
N∑
i=1

(
ε2
i

∫
Γm

(u0 − U)(gi + ũi) + ε4
i

∫
Γm

(u0 − U)(hi + g̃i + ˜̃ui)

)

+ 2
N∑
i=1

N∑
j=1
j 6=i

ε2
i ε

2
j

∫
Γm

(u0 − U)(θji + uji ) +

∫
Γm

( N∑
i=1

ε2
i (gi + ũi)

)2
+ E(ε), (3.59)
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with

E(ε) =
15∑
`=1

E`(ε) = O(|ε|5). (3.60)

3.3. Introduction of Adjoint States. Note that to evaluate expansion (3.59), we have to

solve the problems associated with the non-local terms ũi and ˜̃ui for each point xi, and uji for
each pair of points xi and xj . However, thanks to the representation we have found, the non-
local terms which appears in the first, second and third integrals in (3.59) can be replaced by
just one adjoint state independent of the points xi and xj . On the other hand, the term ũi
also appears in the last integral of expansion (3.59) in a quadratic form, so that ũi has to be
computed. Therefore, the adjoint state will be used to replace only the terms involving ˜̃ui and

uji . In fact, expansion (3.59) can be rewritten as

Jε(uε) = J0(u0) + 2

N∑
i=1

(
ε2
i

∫
Γm

(u0 − U)(gi + ũi) + ε4
i

∫
Γm

(u0 − U)(hi + g̃i)

)

+ 2

N∑
i=1

(
ε4
i

∫
Γm

(u0 − U)˜̃ui +

N∑
j=1
j 6=i

ε2
i ε

2
j

∫
Γm

(u0 − U)uji

)

+ 2

N∑
i=1

N∑
j=1
j 6=i

(
ε2
i ε

2
j

∫
Γm

(u0 − U)θji

)
+

∫
Γm

( N∑
i=1

ε2
i (gi + ũi)

)2
+ E(ε). (3.61)

Let us introduce an adjoint state solution of the following variational problem: Find v ∈ V,
such that ∫

Ω
q(v) · ∇η = 2

∫
Γm

(u0 − U) η, ∀η ∈ V, (3.62)

where the space V is given by (3.31). The associated strong form of (3.62) is written as
div[q(v)] = 0 in Ω,

q(v) = −k∇v,
q(v) · n = 2(u0 − U) on Γm,
q(v) · n = 0 on ∂Ω \ Γm,∫

Γm
v = 0.

(3.63)

The weak form of (3.21) reads: Find ˜̃ui ∈ Ui, such that∫
Ω
q(˜̃ui) · ∇η +

∫
∂Ω
q(hi + g̃i) · n η = 0, ∀η ∈ V, (3.64)

where the space V is given by (3.31) and the set Ui is defined as

Ui :=

{
ϕ ∈ H1(Ω) :

∫
Γm

ϕ = −
∫

Γm

hi + g̃i

}
. (3.65)

By setting η = ˜̃ui+ϕi as test function in (3.62), with ϕi = hi+ g̃i on ∂Ω, we obtain the equality∫
Ω
q(v) · ∇(˜̃ui + ϕi) = 2

∫
Γm

(u0 − U)(˜̃ui + ϕi). (3.66)

Integration by parts yields∫
Ω
q(v) · ∇˜̃ui = 2

∫
Γm

(u0 − U)˜̃ui + 2

∫
Γm

(u0 − U)ϕi −
∫
∂Ω
q(v) · nϕi

= 2

∫
Γm

(u0 − U)˜̃ui, (3.67)
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since v solves (3.63). Now, let us set η = v as test function in (3.64) to obtain the equality∫
Ω
q(˜̃ui) · ∇v = −

∫
∂Ω
q(hi + g̃i) · n v. (3.68)

After comparing the obtained results we have the following important identity

2

∫
Γm

(u0 − U)˜̃ui = −
∫
∂Ω
q(hi + g̃i) · n v. (3.69)

In addition, the weak form of (3.22) can be written as: Find uji ∈ U
j
i , such that∫

Ω
q(uji ) · ∇η +

∫
∂Ω
q(θji ) · n η = 0, ∀η ∈ V, (3.70)

with the space V given by (3.31) and the set U ji given by

U ji :=

{
ϕ ∈ H1(Ω);

∫
Γm

ϕ = −
∫

Γm

θji

}
. (3.71)

After setting η = uji + ϕji as test function in (3.62), with ϕji = θji on ∂Ω, there is∫
Ω
q(v) · ∇(uji + ϕji ) = 2

∫
Γm

(u0 − U)(uji + ϕji ). (3.72)

From integration by parts we obtain∫
Ω
q(v) · ∇uji = 2

∫
Γm

(u0 − U)uji + 2

∫
Γm

(u0 − U)ϕji −
∫
∂Ω
q(v) · nϕi

= 2

∫
Γm

(u0 − U)uji , (3.73)

where we have used (3.63). By comparing the last two results, the following important equality
holds true

2

∫
Γm

(u0 − U)uji = −
∫
∂Ω
q(θji ) · n v. (3.74)

Finally, we can respectively replace the third and fourth integrals in (3.61) by the obtained
equalities (3.69) and (3.74), namely

J (uε) = J (u0) + 2

N∑
i=1

ε2
i

∫
Γm

(u0 − U)(gi + ũi)

+
N∑
i=1

ε4
i

(
2

∫
Γm

(u0 − U)(hi + g̃i)−
∫
∂Ω
q(hi + g̃i) · n v

)

+

N∑
i=1

N∑
j=1
j 6=i

ε2
i ε

2
j

(
2

∫
Γm

(u0 − U)θji −
∫
∂Ω
q(θji ) · nv

)
+

∫
Γm

(
N∑
i=1

ε2
i (gi + ũi)

)2

+ E(ε). (3.75)

Therefore, without any approximation, the integrals in (3.61) involving the non-local terms ũi
and uji have been replaced by just one adjoint state v, solution of (3.63), which does not depend
on the points xi and xj .

4. A non-iterative reconstruction algorithm

In this section we present the resulting non-iterative reconstruction algorithm based on the
expansion (3.75). The topological asymptotic expansion of the shape functional J (uε) given by
(3.75) can be rewritten in the following compact form

J (uε) = J (u0) + d(ξ) · α+
1

2
H(ξ)α · α+ E(ε), (4.1)

where d(ξ) and H(ξ) are the first and second order topological derivatives, respectively. In
addition, α = (ε2

1, · · · , ε2
N ) and E(ε) is the remainder.
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The vector d(ξ) and the matrix H(ξ) are defined as

d(ξ) :=

 d1
...
dN

 and H(ξ) :=


h11 h12 · · · h1N

h21 h22 · · · h2N
...

...
. . .

...
hN1 hN2 · · · hNN ,

 (4.2)

where each component di of the topological derivative vector d(ξ) is given by

di := b(i) = −2

∫
Γm

(u0 − U)(gi + ũi) (4.3)

while the entries hij := A(i, j) of the topological Hessian matrix H(ξ) are defined as

A(i, i) = 4

∫
Γm

(u0 − U)(hi + g̃i)− 2

∫
∂Ω

(q(hi + g̃i)) · n v + 2

∫
Γm

(gi + ũi)
2, (4.4)

and, for i 6= j,

A(i, j) = 2

∫
Γm

(u0 − U)(θji + θij)−
∫
∂Ω
q(θji + θij) · n v + 2

∫
Γm

(gi + ũi)(gj + ũj). (4.5)

In addition, the functions gi(x), hi(x), g̃i(x) and θji (x) are respectively given by (3.10), (3.11),
(3.19) and (3.15). Finally, the auxiliary function ũi solves (3.16) and v is solution to the adjoint
equation (3.63).

Note that the expression on the right-hand side of (3.75) depends explicitly on the number
N of anomalies, their positions xi and sizes α. Thus, let us now introduce the quantity

Ψ(ξ, α,N) = d(ξ) · α+
1

2
H(ξ)α · α. (4.6)

After minimizing (4.6) with respect to α we obtain the following linear system

α = −(H(ξ))−1d(ξ). (4.7)

Let us replace α = α(ξ) solution of (4.7) in (4.6), to obtain

Ψ(ξ, α(ξ), N) = −1

2
d(ξ) · α(ξ). (4.8)

Therefore, the pair of vectors (ξ?, α?) which minimizes (4.6) is given by

ξ? := arg min
ξ∈X

{
−1

2
d(ξ) · α(ξ)

}
and α? := α(ξ?), (4.9)

where X is the set of admissible locations of the inclusions. From these elements the Algorithm
1 is devised. Its input data are given by:

• The number N of anomalies we are going to find;
• The first d and second H order topological derivatives;
• The size of the grid where we are seeking for the anomalies, denoted by ng;

As a result, the algorithm returns the optimum location and size of the anomalies (ξ?, α?)
for a given number of trial inclusions N , and the associated minimum value of the functional
(4.8) denoted as S?. For more sophisticated approaches based on meta-heuristic and multi-grid
methods, we refer to [20]. In Algorithm 1, Π maps the vector of nodal indices I = (i1, i2, ..., iN )
into the corresponding vector of nodal coordinates ξ.

5. Numerical Experiments

Let us apply Algorithm 1 for solving some examples of EIT problem. We consider a disk
of unitary radius with center at the origin, namely Ω = B1(0). Its electrical conductivity is
assumed to be uniform and given by k = 1. The boundary of the disk ∂Ω is subdivided into 16
disjoint pieces representing the electrodes. One pair of such electrodes is selected for injecting
and draining the electrical current. Therefore, the excitation Q is given by a pair Qin = 1 of
injection and Qout = −1 of draining. The remainder part of the boundary ∂Ω remains insulated.
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Algorithm 1: Reconstruction Algorithm

Data: N , ng, d, H
Result: S?, α?, ξ?

1 Initialization: S? ←∞; α? ← 0; ξ? ← 0;

2 for i1 ← 1 to ng do
3 for i2 ← i1 + 1 to ng do

...
4 for iN ← iN−1 + 1 to ng do

5 d←


b(i1)
b(i2)

...
b(iN )

; H ←


A(i1, i1) A(i1, i2) · · · A(i1, iN )
A(i2, i1) A(i2, i2) · · · A(i2, iN )

...
...

. . .
...

A(iN , i1) A(iN , i2) · · · A(iN , iN )

;

6 I ← (i1, i2, · · · , iN ); ξ ← Π(I);α← −H−1d ;

7 if αk > 0 ∀k ∈ {1, . . . , N} then
8 S ← −1

2
d · α;

9 if S < S? then
10 S? ← S;

11 α? ← α;

12 ξ? ← ξ;

13 end if

14 end if

15 end for

16 end for

17 end for

18 return S?, α?, ξ?

The associated potential U is measured on the whole Γm = ∂Ω or on a part Γm  ∂Ω of the
boundary of the disk. For more than one measurement, this procedure is repeated by changing
the selected pair of injection and draining electrodes. From these information we are going to
reconstruct an unknown number of anomalies with contrast γi = 2, for i = 1, · · · , N∗. See sketch
in Figure 4.

Figure 4. Model problem.

The auxiliary boundary value problems are solved using a finite element mesh with 32768
elements and 16641 nodes. From these solutions the sensitivities can be numerically evaluated
at any point of the mesh. However, because of the high complexity of Algorithm 1 [20], a
sub-mesh is defined over the finite element mesh where the combinatorial search is performed,
leading to the optimal solution (α?, ξ?) defined in the sub-mesh.
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In the case of noisy data, the electrical conductivity k∗ is corrupted with White Gaussian Noise
(WGN) of zero mean and standard deviation µ. Therefore, k∗ is replaced by k∗µ = k∗(1 + µ ν),
where ν is a function assuming random values in the interval (−1, 1) and µ corresponds to the
noise level.

5.1. Complete Boundary Measurements. In this section we present five examples concern-
ing total boundary measurements (Γm = ∂Ω). The first example shows the sensitivity of the
reconstruction with respect to the size of the sub-mesh. In the second example we propose
a non-iterative procedure to find the unknown number of anomalies. In the third example a
L-shaped anomaly is approximated by a number of trial balls. Finally, in the fourth and fifth
examples the robustness of the reconstruction method with respect to noisy data is investigated.

5.1.1. Example 1: Sensitivity of the reconstruction with respect to the size of the sub-mesh. In
this case, the sensitivity of the method with respect to the size of the sub-mesh is studied. We
consider three sub-meshes, namely, the first one with 81 interior nodes, the second one with
289, and the third sub-mesh with 1089 interior nodes. The target ω∗ consists of a ball-shaped
anomaly with radius ε∗ = 0.15 and center at x∗ = (0.4431, 0.313). One boundary measurement
is used in the reconstruction process.

We start with a sub-mesh of 81 trial points. Then it is uniformly refined twice, leading
respectively to 289 and 1089 trial points. The results associated with each discretization are
respectively shown in Figures 5(a), 5(b) and 5(c). From an inspection of the results presented
Figure 5, we observe that the more the sub-mesh is refined the better is the reconstruction.
In particular, if the center of the target does not belongs to the set of nodes of the sub-mesh,
namely x∗ /∈ X, the algorithm returns a location x? which is the closest to x∗, as shown in
Figures 5(a) and 5(b). Finally, when x∗ ∈ X, the algorithm returns the exact location, as can
be seen in Figure 5(c). In all cases, each resulting size ε? is very close to the actual one ε∗.
For a quantitative analysis of the results obtained, see the convergence curves for ‖x?−x∗‖ and
|ε? − ε∗| in Figure 6.

(a) 81 trial points (b) 289 trial points (c) 1089 trial points

Figure 5. Example 1: Results obtained for different sub-meshes. The red and
black circles represent the solution and the target, respectively.

In order to show different features of the reconstruction Algorithm 1, from now on we assume
that the center of each anomaly to be reconstructed coincides with one point of the sub-mesh,
which has 289 points.

5.1.2. Example 2: Seeking for the number of anomalies. In this example the target consists of
three anomalies with different sizes, as showed in Figure 7 and Table 1. We use three boundary
measurements in the reconstruction process.

We start the reconstruction algorithm by taking N = 1 and proceed to increasing the value of
N until that the vector of optimal sizes α? contains one entry with negligible value. The results
are shown in Figure 8. For N = 1 and N = 2 the solutions are clearly far from the target.
For N = 3 the locations are perfectly reconstructed and the sizes are very close to the target.
Finally, for N = 4 there is an additional anomaly with negligible size, namely ε?4 ≈ 8.4556×10−3.
Therefore we can conclude that the correct quantity of anomalies is N? = 3. Note that this



16

0

0.02

0.04

0.06

0.08

0.1

‖
x
?
−

x
∗
‖

1 2 3

1

2

3

4

5

6

x 10
−3

|ε
?
−

ε
∗
|

Figure 6. Example 1: Convergence curves for ‖x? − x∗‖ and |ε? − ε∗|.

Figure 7. Example 2: Target with three anomalies.

Table 1. Example 2: Locations and sizes of the target anomalies.

ω∗1 ω∗2 ω∗3
x∗ (-0.1768,0.4268) (-0.3536,-0.3536) (0.4268,0.1768)
ε∗ 0.2 0.15 0.1

procedure is not iterative, since there is no relation between the results for two consecutive
values of N . In addition, we can start the Algorithm 1 based on the assumption that there
exists N > N∗ and find a number (N −N?) of trial balls with negligible sizes in just one shot.
The quantitative results are presented in the Table 2. Note that in all cases the total volume
and center of mass of the set of anomalies are almost preserved.

Table 2. Example 2: Results obtained for different number N of trial balls.

N = 1 N = 2 N = 3 N = 4

ω?1
x?1 (-0.1768,0.1768) (-0.0884,0.3384) (-0.1768,0.4268) (-0.1768,0.4268)
ε?1 0.2575 0.2283 0.2029 0.1976

ω?2
x?2 (-0.3536,-0.3536) (-0.3536,-0.3536) (-0.3536,-0.3536)
ε?2 0.1373 0.1448 0.1454

ω?3
x?3 (0.4268,0.1768) (0.4268,0.1768)
ε?3 0.0965 0.0997

ω?4
x?4 (-0.3681,0.6387)
ε?4 8.4556× 10−3
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(a) N = 1 (b) N = 2

(c) N = 3 (d) N = 4

Figure 8. Experiment 2: Results obtained for different number N of trial balls.

5.1.3. Example 3: Simultaneous topology and shape reconstruction. In this example the topology
as well as the shape of the anomalies are reconstructed. The target shown in Figure 9 consists
of a ball and a L-shaped anomalies. The number of trial balls is set as N = 4. The obtained
results for different number M of boundary measurements are shown in Figure 10. For M = 2
the reconstruction shown in Figure 10(a) is poor, whereas for M = 4, M = 8 and M = 16 the
reconstructions can be considered quite good, as respectively shown in Figures 10(b), 10(c) and
10(d).

Figure 9. Example 3: Target with a ball and a L-shaped anomalies.

5.1.4. Example 4: Reconstruction from noisy data. Now we are interested in investigating the
robustness of the method with respect to noisy data. The target consists of four anomalies of
same sizes, as shown in Figure 11 and Table 3. The electrical conductivity k∗ is corrupted with
a noise of level µ = 10%.

Table 3. Example 4: Location and sizes of the target anomalies.

ω∗1 ω∗2 ω∗3 ω∗4
x∗ (0.4268,0.1768) (-0.3536,0.4268) (-0.1768,-0.1768) (0.3681,-0.6387)
ε∗ 0.1 0.1 0.1 0.1

The obtained results for different number M of boundary measurements are shown in Figure
12. For M = 2 the reconstruction fails, as shown in Figure 12(a), whereas for M = 4, M = 8
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(a) M = 2 (b) M = 4

(c) M = 8 (d) M = 16

Figure 10. Example 3: Results obtained for different numbers M of complete
boundary measurements.

Figure 11. Example 4: Target corrupted with µ = 10% of White Gaussian Noise.

and M = 16 the reconstructions are quite good, as shown in Figures 12(b), 12(c) and 12(d).
The quantitative results are presented in Table 4.

Table 4. Example 4: Solutions for different values of M and with µ = 10% of
White Gaussian Noise.

M = 2 M = 4 M = 8 M = 16

ω?1
x?1 (0.3536,0.3536) (-0.3536,0.3536) (0.3681,-0.6387) (-0.1768,-0.1768)
ε?1 0.0993 0.1025 0.0958 0.0919

ω?2
x?2 (-0.3536,0.3536) (0.0000,-0.2500) (0.4268,0.1768) (0.3681,-0.6387)
ε?2 0.1016 0.0920 0.0917 0.0981

ω?3
x?3 (0.0000,-0.2500) (0.3681,-0.6387) (-0.0884,-0.2134) (0.4268,0.1768)
ε?3 0.0925 0.0919 0.0898 0.0865

ω?4
x?4 (0.3681,-0.6387) (0.4268,0.1768) (-0.2652,0.3902) (-0.1768,0.4268)
ε?4 0.0953 0.0944 0.1055 0.1055

5.1.5. Example 5: Increasing the noise level. Let us test again the robustness of the method with
respect noisy data. The target is the same as before, namely, it consists of four anomalies as
shown in Figure 11 and Table 3. The electrical conductivity is now corrupted with different levels
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(a) M = 2 (b) M = 4

(c) M = 8 (d) M = 16

Figure 12. Example 4: Solutions for different values of M and with µ = 10%
of White Gaussian Noise.

of noise, which are given by µ = 10%, µ = 15% and µ = 20%, as shown in Figures 13(a), 14(a)
and 15(a), respectively. The reconstructions obtained with M = 64 boundary measurements are
shown in Figures 13(b), 14(b) and 15(b) for µ = 10%, µ = 15% and µ = 20%, respectively. The
quantitative results are presented in Table 5.

(a) µ = 10% (b) M = 64

Figure 13. Example 5: Target corrupted with µ = 10% of White Gaussian
Noise (left) and obtained result with M = 64 complete boundary measurements
(right).

5.2. Partial Boundary Measurements. In this last example we consider partial boundary
measurements Γm  ∂Ω. More precisely, the electric potential are measured on the regions
representing the electrodes. See thick lines in Figure 4.

5.2.1. Example 6: Partial boundary measurements with noisy data. The target consists of three
ball-shaped anomalies, which is corrupted with different levels of noise µ = 10%, µ = 15% and
µ = 20%, as described in Table 6 and shown in Figures 16(a), 17(a) and 18(a), respectively.
The reconstructions obtained with M = 64 boundary measurements are shown in Figures 16(b),
17(b) and 18(b). The quantitative results are presented in Table 7.
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(a) µ = 15% (b) M = 64

Figure 14. Example 5: Target corrupted with µ = 15% of White Gaussian
Noise (left) and obtained result with M = 64 complete boundary measurements
(right).

(a) µ = 20% (b) M = 64

Figure 15. Example 5: Target corrupted with µ = 20% of White Gaussian
Noise (left) and obtained result with M = 64 complete boundary measurements
(right).

Table 5. Example 5: Solutions for different values of µ and M = 64 complete
boundary measurements.

µ = 10% µ = 15% µ = 20%

ω?1
x?1 (-0.3536,0.3536) (0.3681,-0.6387) (0.3681,-0.6387)
ε?1 0.1009 0.0929 0.0824

ω?2
x?2 (-0.1768,-0.1768) (0.0000,-0.1250) (0.3754,-0.7813)
ε?2 0.0823 0.0914 0.0240

ω?3
x?3 (0.3681,-0.6387) (0.3902,0.2652) (0.2134,0.0884)
ε?3 0.0981 0.0772 0.0956

ω?4
x?4 (0.4268,0.1768) (-0.2652,0.3902) (-0.1768,0.3018)
ε?4 0.0984 0.0935 0.0916

Table 6. Example 6: Location and sizes of the target anomalies.

ω∗1 ω∗2 ω∗3
x∗ (0.4268,0.1768) (-0.3536,-0.3536) (-0.1768,0.4268)
ε∗ 0.1 0.1 0.1

6. Concluding Remarks

In this paper a new reconstruction method for a class of electrical impedance tomography
problems has been proposed. It relies on the topological derivatives concept. The basic idea
consists in rewrite the inverse problem as a topology optimization problem, where a shape
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(a) (b)

Figure 16. Target corrupted with µ = 10% of White Gaussian Noise (left) and
obtained result with M = 64 partial boundary measurements (right).

(a) (b)

Figure 17. Target corrupted with µ = 15% of White Gaussian Noise (left) and
obtained result with M = 64 partial boundary measurements (right).

(a) (b)

Figure 18. Target corrupted with µ = 20% of White Gaussian Noise (left) and
obtained result with M = 64 partial boundary measurements (right).

Table 7. Example 6: Solutions for different values of µ and M = 64 partial
boundary measurements.

µ = 10% µ = 15% µ = 20%

ω?1
x?1 (0.4268,0.1768) (0.3902,0.2652) (0.0884,0.2134)
ε?1 0.0804 0.0795 0.1022

ω?2
x?2 (-0.3536,-0.3536) (-0.3536,-0.3536) (-0.3536,-0.3536)
ε?2 0.0827 0.0771 0.0396

ω?3
x?3 (-0.0884,0.4634) (-0.0884,0.3384) (-0.0975,0.8654)
ε?3 0.0870 0.1007 0.0181
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functional measuring the misfit between the boundary measurements and the electrical potentials
obtained from the model has been minimized with respect to a set of ball-shaped anomalies of
different sizes. The adjoint method has been evoked a posteriori, after obtaining the associated
sensitivities, allowing us to derive a simpler representation for the resulting expansion, which
has been truncated up to the second order term, leading to a quadratic and strictly convex form
with respect to the volume of the inclusions. Therefore, the truncated expansion has been used
to devise a novel non-iterative reconstruction algorithm based on a simple optimization step.
As a result, the reconstruction process has become very robust with respect to noisy data and
also independent of any initial guess. Finally, some numerical experiments taking into account
total and partial boundary measurements have been presented, showing different features of the
proposed reconstruction algorithm. Since the proposed method can approximate accurately the
unknown set of hidden anomalies by several balls, it can be used for supplying a good initial
guess for more complex iterative approaches such as the ones based on level-sets methods, for
instance.
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Laboratório Nacional de Computação Cient́ıfica LNCC/MCT, Coordenação de Matemática
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