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Abstract. The topological derivative concept has been proved to be useful in many
relevant applications such as topology optimization, inverse problems, image processing,
multi-scale constitutive modeling, fracture mechanics and damage evolution modeling.
In this work, we develop a new optimization method based on the topological derivative
concept applied to the cancer treatment by hyperthermia. Hyperthermia therapy is a
non-invasive medical treatment in which body tissue is artificially heated through elec-
tromagnetic waves, focusing the heat in cancerous cells undergoing apoptosis. The basic
idea, therefore, consists in finding a distribution of heat source generated by electromag-
netic antenna aiming to increase the temperature in the region occupied by the tumor,
while keeping the temperature in the remainder part of the body. Numerical results are
presented illustrating possible application of the proposed methodology to treatment of
cancer by hyperthermia.

1. Introduction

Hyperthermia is a non-invasive therapy, commonly used in treatment of cancer, consist-
ing in artificially heating body tissue through electromagnetic waves by focusing the heat
in cancerous cells. It is based on the observed fact that the vessels in the normal tissues
dilate when heated, increasing the blood flow and consequently allowing the appropriated
regulation of their temperature [1, 2, 3]. In contrast, cancerous tissues have a very disor-
ganized and compact vascular structure, reducing the dissipation of the delivered heat by
blood flow, so that the intra-tumoral temperature tends to increase. Thus, the applied
heat may damage or even kill first the cancerous cells. Even if the cancerous cells do
not die immediately, they may become more vulnerable to radiotherapy or chemother-
apy, enabling such – in general aggressive – therapies to be given in smaller doses [3].
However, one of the challenges in the hyperthermia treatment is to selectively heat the
cancerous tissue, elevating its temperature above 42◦C, while keeping the temperatures of
the healthy tissue close to the normal temperature of the human body [1, 3, 4, 5]. Several
optimization methods have been proposed to maximize the heat in the diseased tissue
and, at the same time, to minimize the hot spots concentrated in the healthy tissue that
arise in the treatment [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17].

The regional electromagnetic hyperthermia problem is modeled by a semi-coupled sys-
tem of partial differential equations. The heat equation in biologic tissues, or bioheat
equation [5, 18, 13, 19], is coupled with the Helmholtz equation [13, 19]. Electromagnetic
waves are generated by spatially distributed antenna. This antenna produces a source in
the Helmholtz equation, whose solution appears as a heat source in the bioheat equation.
Therefore, the basic idea consists in finding a distribution of heat source generated by
electromagnetic antenna, which is able to focus the heat into the tumor and keep the
temperature under control in the healthy tissue [9, 16]. In particular, we are interested
in the design of the support of the antenna, which leads to a topology optimization prob-
lem. There are many methods that could deal with such a problem like SIMP [20] and
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level-set [21], for instance. In this work we propose a new optimization method based on
the topological derivative concept [22] to find the optimum configuration for the antenna.

The paper is organized as follows. The topology optimization problem is presented
in Section 2. In Section 3 the topological derivative concept is introduced. In particu-
lar, arguments on the existence of the associated topological derivative together with its
derivation in an explicit form are provided. Finally in Section 5 a fixed-point algorithm
based on the resulting topological derivative is devised and some numerical experiments
are presented, showing that the obtained antennas are able to selectively heat the target.
The paper ends with some concluding remarks in Section 6.

2. Topology Optimization Problem

Let us consider an open and bounded domain Ω ⊂ R2 with a Lipschitz continuous
boundary ∂Ω. We introduce a subset B of Ω representing the body tissue. Let us also
consider a subset ω of W = Ω \ B representing the antenna that emit electromagnetic
waves, where the region W \ ω in general is filled with deionized water. Our goal is to
maximize the temperature in the diseased tissue D ⊂ B with respect to the support of
the antenna ω, while keeping the temperature in the healthy tissue B \D close to normal.
See sketch in Fig. 1.

Figure 1. Original problem setting: domain Ω and the original antenna
ω ⊂ W , where D ⊂ B and B \ D are the diseased and healthy tissues,
respectively.

Let us introduce the model problem we are dealing with, which is given by a semi-
coupled system of variational problems [13, 5]. In particular, the temperature θ is solution
to the following steady-state heat transfer problem:

Find θ ∈ Θ(Ω), such that∫
Ω

(κ∇θ · ∇η + cw(θ − θb)η)dx =
1

2

∫
Ω

σ|u|2η dx, ∀η ∈ Θ0(Ω), (2.1)

with the set Θ(Ω) = {φ ∈ H1(Ω) : φ|∂Ω
= θΓ} and Θ0(Ω) = H1

0 (Ω), where H1(Ω) = {φ ∈
L2(Ω) : ∇φ ∈ L2(Ω)2} and H1

0 (Ω) = {φ ∈ H1(Ω) : φ|∂Ω
= 0} are real Hilbert spaces. The

function u is solution to the following time-harmonic wave problem:
Find u ∈ H1(Ω), such that∫

Ω

(∇u · ∇η − k2uη)dx+ i

∫
∂Ω

kuη ds =

∫
Ω

fη dx+

∫
∂Ω

rη ds, ∀η ∈ H1(Ω), (2.2)
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with η used to denote the complex conjugate of η and H1(Ω) = {φ ∈ L2(Ω) : ∇φ ∈
L2(Ω)2} a complex Hilbert space, where L2(Ω) is the space of square-integrable complex
functions.

Some terms in the above equations require explanations. The thermal conductivity is
denoted by κ = κ(x) [Wm−1 ◦C−1], c = c(x) [J kg−1 ◦C−1] is the specific heat, w = w(x)
[kg m−3 s−1] is the perfusion rate, θb = θb(x) is the temperature of the background,
θΓ = θΓ(x) is the temperature on ∂Ω and σ = σ(x) [Sm−1] is the electrical conductivity.

The wavenumber is denoted by k = k(x) = k0

√
εr(x)µr(x), where k0 is the wavenumber

in free space, εr(x) is the relative permittivity and µr(x) is the relative permeability. In
addition, i is the imaginary unit, namely i =

√
−1, and r = r(x) is a Robin boundary data

on ∂Ω, which degenerates to an ideal absorbing condition by setting r = 0. In particular,
all distributed parameters in Ω depending on x are considered piecewise constant functions
assuming different values in each region described in Fig. 1. Finally, the function f = f(x)
is a distributed source term in Ω defined as:

f(x) =

{
f0, if x ∈ ω,
0, if x ∈ Ω \ ω, (2.3)

where f0 is the electromagnetic intensity. Therefore, problem (2.2) is the weak form of
the Helmholtz equation with Robin boundary condition, while problem (2.1) is the weak
form of the diffusive-reactive equation with Dirichlet boundary condition. Equations (2.1)
and (2.2) lead to a one way coupled system. Given the source term f and the Robin
boundary data r, equation (2.2) can be solved for u independently of the temperature θ
solution of (2.1). Given the background temperature θb and the Dirichlet boundary data
θΓ, then from u solution of (2.2), the temperature equation (2.1) can be solved for θ.

Since the goal is to maximize the temperature in D ⊂ B and keep the temperature in
B \ D under control, the following shape functional is introduced

J (θ) = − α

|D|

∫
D
θ dx+

1− α
|B|

∫
B\D

θ dx, (2.4)

where the weight 0 < α < 1. In particular, we set α = 0.5, which represents a balance
between each term of the shape functional (2.4). Thus, our minimization problem can be
stated as

Minimize
ω⊂W

J (θ), (2.5)

where θ is the solution of the semi-coupled system of variational equations (2.1)-(2.2).
Therefore, θ depends implicitly on ω, namely θ = θ(ω). Let us explain better the shape
functional (2.4). Note that there is no target temperature in our formulation. Therefore
we can not control the temperature level during the optimization process. On the other
hand, we have observed that the resulting topology optimization algorithm based on (2.5)
becomes very well-conditioned, leading to a feasible solution in just a few iterations. In
fact, after obtaining the optimal support for the antenna, the temperature level can be
adjusted a posteriori by changing the intensity f0 of the source.

Our main challenge here is to find the source term f of the time harmonic wave equation
which leads to the minimum of the shape functional (2.4). In the next section we present a
methodology based on a topological sensitivity analysis to solve the optimization problem
(2.5). To this end we need to introduce two nested adjoint problems. The first one is
associated with the semi-coupled heat problem (2.1), that is:

Find ϕ ∈ H1
0 (Ω), such that,∫

Ω

(κ∇ϕ · ∇η + cw ϕη) dx = − α

|D|

∫
D
η dx+

1− α
|B|

∫
B\D

η dx, ∀η ∈ H1
0 (Ω). (2.6)
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While the other one is associated with the Helmholtz problem (2.2), namely:
Find v ∈ H1(Ω), such that∫

Ω

(∇v · ∇η − k2vη) dx− i

∫
∂Ω

kvη ds =

∫
Ω

σϕuη dx, ∀η ∈ H1(Ω), (2.7)

Note that now the adjoint Helmholtz problem (2.7) depends on the solution to the
adjoint thermal problem (2.6). Of course, problem (2.7) also depends on the solution to
(2.2), while problem (2.6) is independent of (2.1) due to the choice of the shape function
(2.4).

Remark 1. A realistic simulation of the cancer treatment by hyperthermia should consider
a three dimensional phenomenon of very complex nature whose mathematical model is still
an open question and deserves further investigations. How to measure material properties
of in-vivo tissues is a challenging issue. These properties in general present a non-linear
behavior with respect to the temperature, for instance. Our simplified setting is a two
dimensional, linear and steady-state model problem, which is adopted here as a starting
point to introduce a new optimization methodology with potential applications to more
realistic models of cancer treatment by hyperthermia.

3. Topological Sensitivity Analysis

The topological derivative measures the sensitivity of a given shape functional with
respect to an infinitesimal singular domain perturbation, such as the insertion of holes,
inclusions, source-terms or even cracks. The topological derivative was rigorously intro-
duced in [23]. Since then, this concept has become a subject of intensive research. In fact,
the topological derivative has proved to be extremely useful in the solution of a wide range
of problems, such as topology optimization [24], inverse problems [25], image processing
[26], multi-scale constitutive modeling [27] and fracture [28] and damage [29] mechanics.
See, for example, the book by Novotny & Soko lowski 2013 [22].

To introduce these ideas, let us consider a characteristic function χ = 1Ω associated to
the domain Ω. Suppose that Ω is subject to a singular perturbation confined in a small
ball Bε(x̂) of size ε and center at x̂ ∈ Ω, as shown in Fig. 2. We denote by χε(x̂) the
characteristic function associated to the topologically perturbed domain. In the case of
a perforation, for instance, χε(x̂) = 1Ω − 1Bε(x̂), and the perforated domain is obtained

as Ωε(x̂) = Ω \ Bε(x̂). Then, we assume that a given shape functional ψ(χε(x̂)), associ-
ated to the topologically perturbed domain, admits the following topological asymptotic
expansion

ψ(χε(x̂)) = ψ(χ) + ρ(ε)DTψ(x̂) +R(ρ(ε)), (3.1)

where ψ(χ) is the shape functional associated to the original (unperturbed) domain, ρ(ε)
is a positive function such that ρ(ε) → 0, when ε → 0, and R(ρ(ε)) = o(ρ(ε)) is the
remainder. The function x̂ 7→ DTψ(x̂) is called the topological derivative of ψ at x̂.
Therefore, this derivative can be seen as a first order correction of ψ(χ) to approximate
ψ(χε(x̂)).

3.1. Perturbed Problems. Let us introduce the perturbed counterpart of the shape
functional, which is given by

ψ(χε) := J (θε) = − α

|D|

∫
D
θε dx+

1− α
|B|

∫
B\D

θε dx, (3.2)

where the weight α is the same as in (2.4) and θε is the temperature distribution solution
of the perturbed hyperthermia problem:
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Figure 2. The topological derivative concept.

Find θε ∈ Θ(Ω), such that∫
Ω

(κ∇θε · ∇η + cw(θε − θb)η)dx =
1

2

∫
Ω

σ|uε|2η dx, ∀η ∈ Θ0(Ω) (3.3)

with uε solution to:
Find uε ∈ H1(Ω), such that∫

Ω

(∇uε · ∇η − k2uεη)dx+ i

∫
∂Ω

kuεη ds =

∫
Ω

fεη dx+

∫
∂Ω

rη ds, ∀η ∈ H1(Ω). (3.4)

Here, fε is the perturbed source term which plays a fundamental role in our minimization
problem. As we consider the source term as a piecewise constant function, the support
of f becomes our key control variable. The topological sensitive analysis is used to find
the optimal distribution of the antennas, or the support of the source function f . A
perturbation in the source term is introduced by adding a piece of antenna outside ω
(where there is no antenna) or by removing a piece of antenna inside ω (where there
already exits an antenna) as illustrated in Fig. 3. Let us consider x̂ = (x+, x−), with
x+ ∈ W \ ω and x− ∈ ω. Then we introduce the perturbations Bε(x

+) ⊂ W \ ω and
Bε(x

−) ⊂ ω, such that Bε(x
+) ∩ Bε(x

−) = ∅. From these elements the perturbed source
term fε is introduced as:

fε(x) =

{
f0, if x ∈ ωε
0, if x ∈ Ω \ ωε,

(3.5)

with ωε = (ω \Bε(x−)) ∪Bε(x
+). Note that for ε = 0, ψ(χ) := J (θ) in equation (2.4).

+

+

-

-

Figure 3. Perturbed problem setting: domain Ω and the topologically
perturbed antenna ωε ⊂ W , where D ⊂ B and B \ D are the diseased and
healthy tissues, respectively.
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3.2. Stability with Respect to Topological Perturbations . In this section we show
that the solution of problem (3.4) is stable with respect to the size ε of the topological
perturbation. Our stability analysis of the time harmonic wave equation is based on the
following result from Melenk and Sauter [30, 31, 32].

Proposition 2. Let Ω be a bounded star-shaped domain with smooth boundary or a
bounded convex domain. Then, there is C(Ω) > 0 such that for any f ∈ L2(Ω), r ∈
H1/2(∂Ω), the solution u of problem (2.2) satisfies

‖u‖H(Ω) ≤ C(Ω)(‖f‖L2(Ω) + ‖r‖L2(∂Ω)), (3.6)

where the constant C(Ω) is proportional to the diameter of Ω and the norm ‖p‖H(Ω) :=

(p, p)
1/2
H , which is equivalent to the usual H1(Ω)-norm, is induced by the inner product

(p, q)H :=

∫
Ω

∇p · ∇q dx+

∫
Ω

k2pq dx, ∀p, q ∈ H1(Ω).

Lemma 3. Let ũε = uε−u, where u and uε are solutions of (2.2) and (3.4), respectively.
Then, we have the following estimate for ũε

‖ũε‖H(Ω) ≤ Cε2, (3.7)

where C is a constant independent of the small parameter ε.

Proof. Subtracting (2.2) from (3.4) we obtain

ũε ∈ H1(Ω) :

∫
Ω

(∇ũε · ∇η − k2ũεη)dx+ i

∫
∂Ω

kũεη ds =∫
Bε(x+)

f0 η dx−
∫
Bε(x−)

f0 η dx, ∀η ∈ H1(Ω), (3.8)

where we have used the definition of the perturbed source-term given by (3.5). In fact,∫
ωε

f0 η dx =

∫
ω\Bε(x−)

f0 η dx+

∫
Bε(x+)

f0 η dx

=

∫
ω

f0 η dx−
∫
Bε(x−)

f0 η dx+

∫
Bε(x+)

f0 η dx, (3.9)

Let us introduce the following decomposition for ũε, solution of (3.8),

ũε = pε + qε. (3.10)

Function pε is solution to

pε ∈ H1(Ω) :

∫
Ω

∇pε · ∇η dx+ i

∫
∂Ω

kpεη ds =∫
Bε(x+)

f0 η dx−
∫
Bε(x−)

f0 η dx, ∀η ∈ H1(Ω), (3.11)

while qε has to compensate for the discrepancy left by pε. Therefore, it is solution to the
following problem

qε ∈ H1(Ω) :

∫
Ω

(∇qε · ∇η − k2qεη)dx+

i

∫
∂Ω

kqεη ds =

∫
Ω

k2pεη dx, ∀η ∈ H1(Ω). (3.12)
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By setting η = pε as test function in (3.11) we obtain the following equality∫
Ω

∇pε · ∇pε dx+ i

∫
∂Ω

kpεpε ds =

∫
Bε(x+)

f0 pε dx−
∫
Bε(x−)

f0 pε dx. (3.13)

The Cauchy-Schwarz inequality yields∫
Ω

∇pε · ∇pε dx+ i

∫
∂Ω

kpεpε ds ≤ C1ε
(
‖pε‖L2(Bε(x+)) + ‖pε‖L2(Bε(x−))

)
. (3.14)

In addition, by making use of the Hölder inequality together with the Sobolev embedding
theorem for 1/p+ 1/q = 1 and q ≥ 1 [33, Ch. IV, §8, Sec. 1.2, pp 140], we have

‖pε‖L2(Bε(x+)) ≤ A1ε
1/q‖pε‖L2p(Bε(x+)) ≤ εA2‖pε‖H1(Ω), (3.15)

‖pε‖L2(Bε(x−)) ≤ B1ε
1/q‖pε‖L2p(Bε(x−)) ≤ εB2‖pε‖H1(Ω), (3.16)

where we have used the interior elliptic regularity of function pε. Therefore,∫
Ω

∇pε · ∇pε dx+ i

∫
∂Ω

kpεpε ds ≤ C2ε
2‖pε‖H1(Ω). (3.17)

From the coercivity of the bilinear form on the left hand side of the above inequality and
by the equivalence between the norms, we obtain

c‖pε‖2
H1(Ω) ≤ C2ε

2‖pε‖H1(Ω) ⇒ ‖pε‖H(Ω) ≤ C3ε
2, (3.18)

with constant C3 independent of ε. Now, by setting f = k2pε and r = 0 in Proposition 2,
the following estimate for qε, solution to (3.12), holds true

‖qε‖H(Ω) ≤ C4‖k2pε‖L2(Ω) ≤ C5‖pε‖H(Ω) ≤ C6ε
2, (3.19)

where we have used (3.18). Finally, from the above estimates, the triangular inequality
in (3.10) yields

‖ũε‖H(Ω) ≤ C7(‖pε‖H(Ω) + ‖qε‖H(Ω)) ≤ Cε2, (3.20)

which leads to the result, with the constant C independent of the small parameter ε. �

3.3. The Topological Derivative . As observed in Section 3, the topological sensitivity
analysis provides an asymptotic expansion in the form of (3.1) for a given shape functional,
whose main term, called topological derivative, measures the sensitivity of this functional
when an infinitesimal singular perturbation is introduced at an arbitrary point of the
domain [22]. To derive an explicit form for the topological derivative, we subtract (2.4)
from (3.2), yielding

J (θε)− J (θ) = − α

|D|

∫
D

(θε − θ) dx+
1− α
|B|

∫
B\D

(θε − θ) dx. (3.21)

Now, we subtract (2.1) from (3.3), to obtain∫
Ω

(κ∇(θε − θ) · ∇η + cw(θε − θ)η) dx =
1

2

∫
Ω

σ(|uε|2 − |u|2)η dx ∀η ∈ H1
0 (Ω), (3.22)

Setting η = ϕ in the above equation we get∫
Ω

(κ∇(θε − θ) · ∇ϕ+ cw(θε − θ)ϕ) dx =
1

2

∫
Ω

σ(|uε|2 − |u|2)ϕdx. (3.23)

On the other hand, by setting η = θε − θ in the adjoint heat problem (2.6), we obtain∫
Ω

(κ∇ϕ·∇(θε−θ)+cwϕ(θε−θ)) dx = − α

|D|

∫
D

(θε−θ) dx+
1− α
|B|

∫
B\D

(θε−θ) dx. (3.24)
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Comparing the obtained results with (3.21) yields

J (θε)− J (θ) =
1

2

∫
Ω

σ(|uε|2 − |u|2)ϕdx

=

∫
Ω

σϕ<{u(uε − u)}dx+ E1(ε), (3.25)

where <{·} denotes the real part of {·} and the remainder E1(ε) is given by

E1(ε) =
1

2

∫
Ω

σ|uε − u|2ϕdx

≤ C1‖uε − u‖2
H(Ω) = o(ε2), (3.26)

where we have used the result from Lemma 3 together with the elliptic regularity of
function ϕ. Now, we subtract (2.2) from (3.4), to obtain∫

Ω

(∇(uε − u) · ∇η − k2(uε − u)η) dx+ i

∫
∂Ω

k(uε − u)η ds =∫
Bε(x+)

f0 η dx−
∫
Bε(x−)

f0 η dx, ∀η ∈ H1(Ω). (3.27)

By choosing η = v in the above equation, we have∫
Ω

(∇(uε − u) · ∇v − k2(uε − u)v) dx+ i

∫
∂Ω

k(uε − u)v ds =∫
Bε(x+)

f0 v dx−
∫
Bε(x−)

f0 v dx. (3.28)

Let us now set η = uε − u in the adjoint Helmholtz problem (2.7), to get∫
Ω

(∇v · ∇(uε − u)− k2v(uε − u)) dx− i

∫
∂Ω

kv(uε − u) ds =∫
Ω

σϕu(uε − u) dx. (3.29)

By taking the real part of the last two equalities, we can compare the obtained result
with (3.25), to obtain

J (θε)− J (θ) =

∫
Bε(x+)

f0<{v} dx−
∫
Bε(x−)

f0<{v} dx+ E1(ε)

= |Bε(x
+)|f0<{v(x+)} − |Bε(x

−)|f0<{v(x−)}+ E(ε), (3.30)

since <{v} = <{v}. The remainder E(ε) = E1(ε) + E2(ε), with

E2(ε) =

∫
Bε(x+)

f0(<{v(x)} − <{v(x+)}) dx

−
∫
Bε(x−)

f0(<{v(x)} − <{v(x−)}) dx = o(ε2), (3.31)

where we have used the interior elliptic regularity of v. Thus, from the estimates (3.26)
and (3.31), the expansion (3.30) allows us to set ρ(ε) = πε2 in (3.1), leading to the main
result of our work, namely:

Theorem 4. The topological derivative of the shape functional (2.4) is given by

DTψ(x) = f0<{v(x)} ×
{

+1, if x ∈ W \ ω,
−1, if x ∈ ω. (3.32)



9

where v is solution to the adjoint Helmholtz equation (2.7).

Remark 5. The obtained sensitivity (3.32) does not take into account for perturbations
on the coefficients of the BVPs produced by the insertion/removal of antennas. However,
such an incomplete sensitivity shall be useful for solving the topology optimization problem
(2.5). In fact, we observe that the shape functional (2.4) is actually much more sensitive
with respect to the source f(x) than to the other distributed parameters defined in W.
On the other hand, the derivation of the complete sensitivity with respect to all variable
parameters is much more involved and somehow useless in this context.

4. A Topology Design Algorithm

In this section a topology optimization algorithm based on the obtained topological
derivative (3.32) is devised. It consists basically in looking for a fixed-point for the mini-
mization problem (2.5). For more sophisticated topology design algorithm, see for instance
[34].

To present our topology optimization algorithm we introduce a domain representation
function Ψ ∈ L2(Ω) such that

Ω \ ω = {x ∈ Ω : Ψ(x) = +1}, (4.1)

ω = {x ∈ Ω : Ψ(x) = −1}. (4.2)

Therefore, the source f(x) can be defined through Ψ(x) as follows:

f(x) =

{
f0, if Ψ(x) = −1,
0, if Ψ(x) = +1,

(4.3)

Let us introduce W∗ ⊂ W such that

W∗ = {x ∈ W : DTψ(x) < 0}. (4.4)

Additionally, the quantity

DTψ
∗ = min

x∈W∗
DTψ(x) (4.5)

is used to define Wβ ⊂ W∗ as follows

Wβ = {x ∈ W∗ : DTψ(x) < (1− β)DTψ
∗}, (4.6)

where 0 < β ≤ 1 induces a threshold for the topological derivative DTψ(x). Finally, we
introduce the function Ψβ ∈ L2(Ω) associated with β as follows

Ψβ(x) =

{
+Ψ(x), if x ∈ Ω \Wβ,
−Ψ(x), if x ∈ Wβ.

(4.7)

From these elements we can devise a simple topology optimization algorithm. The basic
idea consists in insert/remove antenna by changing the sign of the domain representation
function Ψ(x) according to the topological derivative DTψ(x). In particular, we start with
an initial guess Ψ0. Then, for a generic iteration number n, we set Ψn = Ψβ and update
all quantities according to the new function Ψn. The procedure is repeated until a fixed
point is found. The resulting topology design algorithm is summarized in the form of a
pseudo-code presented in Algorithm 1, where εmin and βmin are given small tolerances.
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Algorithm 1: The topology design algorithm

input : Initial guess Ψ0

output: Optimal solution Ψ?

1 n← 0; ε← εmin + 1;
2 while ε > εmin do
3 Compute un, θn, ψn;
4 Compute ϕn, vn;
5 Compute DTψn, DTψ

∗
n;

6 β ← 1, ψold ← ψn, ψn ← ψn + 1;
7 while ψn > ψold do
8 Compute Wβ, Ψβ;

9 Ψn ← Ψβ;
10 Execute line 3;
11 if β < βmin then
12 ψn ← ψold;
13 end if
14 β ← β/2;
15 end while
16 ε← ‖ψn − ψold‖;
17 n← n+ 1;
18 end while

5. Numerical Results

In this section some numerical experiments are presented, showing that the proposed
optimization method can be potentially used in the treatment of cancer by hyperthermia.
The first set of experiments presented in Section 5.1 is conducted to test the proposed
optimization method, where the medium is assumed to be homogeneous. In Section
5.2, we apply the proposed optimization method to a model problem of a breast cancer
treatment by hyperthermia, taking into account realistic heterogenous medium. The
Galerkin finite element method is used to discretize the BVPs. To obtain stable Galerkin
approximations to problems (2.2) and (2.7), a mesh of size h satisfying the condition
k2h < 1 is adopted [35, 36]. In particular, the BVPs are discretized into a uniform mesh
with 400× 400 square elements. Each square is then divided into eight triangles, so that
the condition k2h < 1 holds true, where h is the finite element mesh size. In the pictures
of the temperature distribution, the color levels black/brown to yellow/white mean colder
to hotter.

5.1. Experiment 1: Preliminary Tests . In this first set of experiments, the com-
putational domain is given by a square Ω = (−1, 1) × (−1, 1) as shown in Fig. 4. The
healthy body B is represented by a ball of radius ρB = 0.2, while the diseased part of the
body D is given by a ball of radius ρD = 0.04. The annular region with radii 0.3 and 0.6
represents the design domain for the antenna ω. The weight α of the shape functional is
set as α = 0.5. In all cases, the following parameters are adopted: κ = 1, c = 1, w = 1,
θb = 0, θΓ = 0, f0 = 1 and r = 0. Finally, we set σ = 1 in B and σ = 0 in the remainder
part W = Ω \ B. Note that all the properties are assumed to be homogeneous, except σ.
In particular, there is no distinction between B and D. Therefore, the fictitious domain
D just represents the target region to be selectively heated.
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Figure 4. Sketch of Experiment 1.

5.1.1. Example 1A. In this example the target D is positioned at the center of the body.
The initial guess for the antenna ω is given by a small ball of radius 0.04 and center at
(−0.45, 0). The experiments are driven by setting different wavenumbers k ∈ {12, 16, 20}.
In all cases the target D is heated independently of k, as can be seen through figs. 5, 6
and 7. However, the higher is the wavenumber the more focused becomes the temperature
hot spot over the target D.

Figure 5. Example 1A: Experiment conducted with the wavenumber k =
12. On the left, is shown the initial configuration of the antenna ω and
initial temperature distribution in the body B. On the right, is shown the
final configuration of the antenna ω and the final temperature distribution
in the body B, obtained after 8 iterations.

Let us now set the whole annular region with radii 0.3 and 0.6 as initial guess for the
antenna ω. We repeat the last experiment by setting the wavenumber k = 20. The
obtained results are shown in Fig. 8. The optimal configuration obtained in the previous
experiment (Fig. 7 left) is reproduced in Fig. 8 (left). In Fig. 8 we can also observe that
the initial and final temperature distributions are qualitatively almost the same, because
in this case the initial guess is also qualitatively close to the optimal solution (both are
given by centered rings). We observed the same behavior for k equal to 12 and 16.
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Figure 6. Example 1A: Experiment conducted with the wavenumber k =
16. On the left, is shown the initial configuration of the antenna ω and
initial temperature distribution in the body B. On the right, is shown the
final configuration of the antenna ω and the final temperature distribution
in the body B, obtained after 18 iterations.

Figure 7. Example 1A: Experiment conducted with the wavenumber k =
20. On the left, is shown the initial configuration of the antenna ω and
initial temperature distribution in the body B. On the right, is shown the
final configuration of the antenna ω and the final temperature distribution
in the body B, obtained after 33 iterations.

5.1.2. Example 1B. Now the target D is positioned at (0.1, 0.1) and the initial guess
for the antenna ω is given by an annular region with radii 0.3 and 0.6, while the other
parameters are the same as before. It is possible to observe that the results obtained with
k equal to 12 and 16 are not satisfactory, as shown in Figs. 9 and 10, since the target has
not been precisely heated. On the other hand, with k = 20 the result is much better, as
can be seen in Fig. 11.

We also set the initial guess for the antenna ω as a small ball of radius 0.04 and
center at (−0.45, 0) and repeat the last experiment by setting the wavenumber k = 20.
The obtained results are shown in Fig. 12, showing a slightly different configuration
for the antenna in comparison to the one presented on the right of Fig. 11. However,
both temperature hot spots are concentrated over the target D. The decay of the cost
functionals at each iteration considering a small ball and a ring as initial guesses are
shown in Fig. 13, where the value of the cost functional obtained for the ring (red) is 6%
smaller than the one obtained from the ball (blue). See also Table 1.
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Figure 8. Example 1A: Experiment conducted with the wavenumber k =
20. On the left, is shown the initial configuration of the antenna ω and
initial temperature distribution in the body B. On the right, is shown the
final configuration of the antenna ω and the final temperature distribution
in the body B, obtained after 16 iterations.

Figure 9. Example 1B: Experiment conducted with the wavenumber k =
12. On the left, is shown the initial configuration of the antenna ω and
initial temperature distribution in the body B. On the right, is shown the
final configuration of the antenna ω and the final temperature distribution
in the body B, obtained after 4 iterations.

Table 1. Example 1B: Experiments conducted with the wavenumber k =
20. Decay of the cost functional ψn (×10−8) at each iteration n considering
a small ball and a ring as initial guesses.

ψ0 ψ1 ψ2 ψ3 ψ4 ψ5

Ball 7.75× 10−4 −11.58 −16.47 −16.99 −17.04 −17.05
Ring −208.14× 10−4 −7.96 −17.22 −18.09 −18.13 −18.14

5.2. Experiment 2: A Breast Cancer Model . In this numerical example, the prob-
lem is solved in a heterogeneous medium taking into account realistic data [13]. The
computational domain is given by a square Ω = (−0.5, 0.5) × (−0.5, 0.5) [m2] as shown
in Fig. 14. We suppose that the body B represents a cross section of the human breast
with radius ρB = 0.075 [m] and center at (0.0, 0.0). The target to be heated D represents
a set of three tumors with radii and centers given respectively by ρD1 = 0.005 [m] and
(−0.05, 0.03), ρD2 = 0.010 [m] and (0.03, 0.03), ρD2 = 0.015 [m] and (0.00,−0.04). The
domain W is filled with deionized water. The annular region with radii 0.15 and 0.2
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Figure 10. Example 1B: Experiment conducted with the wavenumber
k = 16. On the left, is shown the initial configuration of the antenna ω and
initial temperature distribution in the body B. On the right, is shown the
final configuration of the antenna ω and the final temperature distribution
in the body B, obtained after 8 iterations.

Figure 11. Example 1B: Experiment conducted with the wavenumber
k = 20. On the left, is shown the initial configuration of the antenna ω and
initial temperature distribution in the body B. On the right, is shown the
final configuration of the antenna ω and the final temperature distribution
in the body B, obtained after 5 iterations.

represents the design domain for the antenna ω, whose initial guess is given by a small
ball of radius 0.01 [m] and center at (−0.17, 0.00). The weight α of the shape functional
is set as α = 0.5.

The material properties for the semi-coupled system of variational equations (2.1)-(2.2)
are described in Table 2 below. The relative permeability is set as µr = 1 in Ω. The
electrical and thermal properties of tissues and of the deionized water were found in [13].
The FR-4 antenna properties were found in http://www.mtarr.co.uk/courses/topics/

0140_pl/index.html, April, 2016.
In this experiment all coefficients of the body (electrical as well as thermal) have been

corrupted with 10% of white Gaussian noise. To show the difference between the original
and noisy properties, we plot in Fig. 15 the thermal conductivity κ of the breast B without
noise (left) and with noise (right).

To solve this problem we apply a frequency of 140 [MHz] [13]. The temperature of
the background is set as θb = 36◦C, while the boundary conditions for the thermal
and electromagnetic problems are given by θΓ = 36◦C and r = 0, respectively. The
computational domain Ω is discretized into a uniform grid with 600×600 square elements

http://www.mtarr.co.uk/courses/topics/0140_pl/index.html
http://www.mtarr.co.uk/courses/topics/0140_pl/index.html
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Figure 12. Example 1B: Experiment conducted with the wavenumber
k = 20. On the left, is shown the initial configuration of the antenna ω and
initial temperature distribution in the body B. On the right, is shown the
final configuration of the antenna ω and the final temperature distribution
in the body B, obtained after 5 iterations.

0 1 2 3 4 5
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-20

-15

-10

-5

0

5

Ball

Ring

Figure 13. Example 1B: Experiments conducted with the wavenumber
k = 20. Decay of the cost functional ψn at each iteration n considering a
small ball (blue) and a ring (red) as initial guesses.

Table 2. Material Properties of Experiment 2.

Properties Region εr σ κ c w

Fat B \ D 20.4 0.12 0.22 2387 1.1
Tumor D 65 0.78 0.56 3639 1.8
Water W 76.5 10−3 0.50 4178 0.0

Antenna ω 4.5 0.0 0.27 0.0 0.0

with each resulting square divided into eight triangles, so that the condition k2h < 1 is
fulfilled.

The idea is to heat one tumor by once. The electromagnetic intensity f0 used to heat
each tumor individually is given in Table 3. The initial temperature distributions are
always quasi-uniform about 36◦C. In Fig. 16 we show the final configuration of the
antenna ω (in black) and the final temperature distribution in the breast B (in color) for
each target. The number of iterations for each case is also shown in Table 3.
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0.200.15

Figure 14. Sketch of Experiment 2.

Figure 15. Experiment 2: Thermal conductivity κ of the breast B without
noise (left) and with 10% of white Gaussian noise (right).

Table 3. Additional data of Experiment 2.

radius center f0 (×106) iterations
Case ]1 0.005 (−0.05, 0.03) 400 4
Case ]2 0.010 ( 0.03, 0.03) 220 12
Case ]3 0.015 ( 0.00,−0.04) 180 14

Note that the perturbations on the coefficients of the BVPs produced by the inser-
tion/removal of antennas are not taken into account by the sensitivity formula (3.32). On
the other hand, these properties were updated during the iterative process. Therefore,
this procedure can be seen as a sensitivity delay in the pseudo-time n in Algorithm 1. As
expected in Remark 5, such an incomplete sensitivity has been able to properly minimize
the shape function. In fact, from an inspection of Fig. 16, we observe in all cases that the
cancer D is heated over 42◦C, while keeping the temperature in the healthy body under
39◦C.
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Figure 16. Experiment 2: Final configuration of the antenna ω and final
temperature distribution in the breast B (center). On the left, center and
right we present the results for the smallest (ρD1 = 0.005), medium (ρD2 =
0.010) and biggest (ρD3 = 0.015) tumors, respectively. The hot spots are
always concentrated in the corresponding tumor, leading to a temperature
over 42◦C in all cases.

6. Conclusions

A new method for topology optimization design of antenna applied to the treatment
of cancer by hyperthermia is proposed based on the topological derivative concept. As
the hyperthermia problem is modeled by a semi-coupled system of partial differential
equations, two nested adjoint problems have been introduced in order to simplify the
form of the topological derivative, leading to a point-wise formula easy to implement.
Based on the obtained theoretical result a fixed-point algorithm has been devised, which
converges to a solution of the problem in very few iterations. The results presented here on
some preliminary numerical simulations indicate that the proposed methodology is very
promising to the design of electromagnetic antennas to selectively heat a target region.
In particular, we have presented an experiment concerning breast cancer hyperthermia
where the cancer has been heated over 42◦C, while the temperature in the healthy body
has been kept under 39◦C. These results are in agreement with the initial motivation for
our work.
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