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Abstract. Compliant mechanisms are mechanical devices composed by one single piece that trans-
forms simple inputs into complex movements. This kind of multi-flexible structure can be manufac-
tured at a very small scale. Therefore, the spectrum of applications of such microtools has become
broader in recent years including microsurgery, nanotechnology processing, among others. In this
paper, we deal with topology design of compliant mechanisms under von Mises stress constraints.
The topology optimization problem is addressed with an efficient approach based on the topological
derivative concept and a level-set domain representation method. The resulting topology optimiza-
tion algorithm is remarkably efficient and of simple computational implementation. Finally, some
numerical experiments are presented, showing that the proposed approach naturally avoids the
undesirable flexible joints (hinges) by keeping the stress level under control.

1. Introduction

Compliant mechanisms are mechanical devices composed by one single peace that transforms
simple inputs into complex movements by amplifying and changing their direction. Hence they
are easy to fabricate and miniaturize and have no need for lubrication. Although the concept of
compliant mechanisms is not new [11] this kind of multi-flexible structure have received considerable
attention in recent years. This fact is due to manufacturing at a very small scale, the introduction of
new advanced materials and the fast development of Micro-Electro-Mechanical Systems [14]. Since
such microtools are capable to perform precise movements, the spectrum of their applications
has become broader including microsurgery, nanotechnology processing, cell manipulation, among
others.

In spite of the above mentioned advantages, there are many difficulties in the design process of
compliant mechanisms. A compliant mechanism needs to be stiff enough to support external loads
and at the same time must be flexible enough to satisfy the kinematic requirements [10]. Another
difficulty that arises is the tendency of forming flexible joints (hinges), in which the stresses exceed
the material failure limit. In this way, many researchers have addressed the design of hinge-free
compliant mechanisms [21, 12, 18, 1, 19, 16], most of them in the context of SIMP and level-set
methods. The reader interested in a broader review on topology optimization methods may refer
to [14], for instance. However, there are relatively few papers dealing with compliant mechanisms
design under stress constraints [1, 19]. According to [15] this is related to the local nature of the
stress constraints and to the highly non-linear stress behavior. See for instance the recent paper
[13] dealing with stress-constrained topology optimization of compliant mechanisms using the SIMP
method, where the stress constraints is enforced by using a normalized global stress measure based
on the p-norm of the von Mises effective stress.

In this paper, we deal with topology design of compliant mechanisms under von Mises stress
constraints. The topology optimization problem is addressed with an efficient approach based on
the topological derivative concept and a level-set domain representation method [6]. In addition,
in order to deal with the local stress constraints we follow the original ideas [4], where a class of
penalty function is introduced to enforce the point-wise stress constraints. Finally, some numerical
experiments are presented, showing that the proposed approach naturally avoids the undesirable
hinges by keeping the stress level under control, unlike it occurs in the unconstrained case. The nu-
merical examples agree well with the results that should be expected by other methods. Therefore,
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our approach can be seen as an alternative method for optimum design of compliant mechanisms
under stress constraints.

In fact, the topological derivative is defined through a limit passage when the small parameter
governing the size of the topological perturbation goes to zero. Then, it can be used as a steepest-
descent direction in an optimization process like in any method based on the gradient of the cost
functional. However, the difficulty in finding a convenient formula of the topological derivative for
numerics purposes should be noted. It requires technical derivations strongly dependent on the
problem under analysis, which may limit its range of real world applications. On the other hand,
in contrast to traditional topology optimization methods, the topological derivative formulation
does not require a material model concept based on intermediary densities, so that interpolation
schemes are unnecessary. These features are crucial in stress constrained problems, since the diffi-
culties arising from material model procedures are here naturally avoided. In addition, topological
derivative has the advantage of providing an analytical form for the topological sensitivity which
allows to obtain the optimal design in few iterations. Therefore, the resulting topology optimiza-
tion algorithm is remarkably efficient and of simple computational implementation, since it features
only a minimal number of user-defined algorithmic parameters.

This paper is organized as follows. In Section 2 the problem formulation which we are dealing
with is stated. The closed formula for the associated topological derivative is presented in Section 3.
In Section 4 some numerical experiments are presented, where a topology optimization algorithm
based on the topological derivative and a level set domain representation method is adopted to solve
the minimization problem under analysis. Finally, the paper ends with some concluding remarks
in Section 5.

2. Problem formulation

We want to find the optimal design of a compliant mechanism subject to von Mises stress
constraints into two spatial dimensions. Then, the corresponding optimization problem in which
we are dealing with is mathematically stated in what follows.

2.1. The constrained optimization problem. Let us consider an open and bounded domain
D ⊂ R2 and a subdomain Ω ⊂ D with Lipschitz boundary Γ, see sketch in Fig. 2. The boundary Γ
is split into two non overlapping subsets, namely, Γ = ΓD∪ΓN , where ΓN consists of three mutually
disjoint parts, that is ΓN = Γin ∪ Γout ∪ Γ0. On ΓD displacements are prescribed, while the input,
output and zero boundary tractions are prescribed on Γin, Γout and Γ0, respectively. Given a hold-
all domain D and a stress constraints-enforcement sub-domain Ω? ⊂ D, the optimization problem
consists in finding a subdomain Ω ⊂ D that solves the following constrained minimization problem:{

Minimize
Ω⊂D

FΩ(u) := β|Ω|+ J (u)

subject to σM (u) ≤ σ a.e. in Ω? ⊂ Ω
(2.1)

where Ω = Ω? ∪ ω ⊂ D, with ω used to denote a part of Ω where the stress constrains are not
enforced. Finally, u is solution to the following variational problem: Find u ∈ U , such that∫

D
σ(u) · ε(η) =

∫
Γin

qin · η +

∫
Γout

qout · η ∀η ∈ U , (2.2)

with the space U defined as

U := {ϕ ∈ H1(D;R2) : ϕ|ΓD
= 0}. (2.3)

The idea is to maximize the output displacement uout on Γout in some direction for a given input
traction on Γin. The exterior medium is represented by springs with stiffness K, attached to the
output ports. See details in Fig. 1.
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Figure 1. Original model.

The springs are then replaced by the expected boundary reaction qout on Γout. In this way, the
output displacement is going to be indirectly constrained by such given reaction. See sketch in Fig.
2.

Figure 2. Domain representation.

Therefore, the shape functional J (u) in (2.1) is defined as [6]:

J (u) =

∫
Γin

qin · u+ κ

∫
Γout

qout · u, (2.4)

where qin and qout are given and κ > 0 is a penalty coefficient.
Some terms in the above expressions still require explanation. The scalar β = β?/|D|, where

β? > 0 and |(·)| denotes the Lebesgue measure of (·). The von Mises effective stress σM (u) is given
by

σM (u) :=

√
1

2
Bσ(u) · σ(u) (2.5)

with

B = 3I− I⊗ I (2.6)

where I and I are the fourth and second order identity tensors, respectively. The Cauchy stress
tensor σ(u) and the linearized Green tensor ε(u) are defined as

σ(u) = ρCε(u), ε(u) =
1

2
(∇u+ (∇u)>), (2.7)

with the constitutive tensor C given by

C = 2µI + λ(I⊗ I) (2.8)
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in which µ and λ denote the Lamé’s coefficients, both considered constants everywhere. In the
plane stress assumption, there are

µ =
E

2(1 + ν)
and λ =

νE

1− ν2
, (2.9)

while in plane strain assumption we have

µ =
E

2(1 + ν)
and λ =

νE

(1 + ν)(1− 2ν)
, (2.10)

where E is the Young’s modulus and ν the Poisson ratio.
In order to simplify the numerical implementation, we consider that the hold-all domain D is

decomposed into two sub-domains Ω and D \ Ω. The domain Ω represents the elastic part while
D \ Ω is filled with a very complacent material, used to mimic voids. This procedure allows us to
work in a fixed computational domain. Therefore, we introduce a piecewise constant function ρ in
(2.7), such that

ρ(x) =

{
1, if x ∈ Ω,
0 < ρ0 � 1, if x ∈ D \ Ω,

(2.11)

with ρ0 used to mimic voids. That is, the optimization problem, where the structure itself consists
of the domain Ω with elastic properties and the remaining empty part D \ Ω, is approximated by
means of the two-phase material distribution given by (2.11) over Ω. The empty region D \ Ω is
filled by a material (the soft phase) with Young’s modulus, ρ0E, much lower than the Young’s
modulus, E, of the structure material (the hard phase).

2.2. The penalized optimization problem. In order to deal with the point-wise stress con-
straints in (2.1) we use a class of von Mises stress penalty functional introduced in [7].

We start by introducing the nominal stress S(u), defined as

S(u) :=
σ(u)

σ
. (2.12)

Then, the von Mises stress constraints in terms of normalized stresses is stated as:

S2
M (u) =

1

2
BS(u) · S(u) ≤ 1. (2.13)

We now define the penalized counterpart of objective function in (2.1). Let Φ : R+ → R+ be a
nondecreasing function of class C2. We assume that the derivatives Φ′ and Φ′′ are bounded. The
penalty functional is defined as:

G(u) :=

∫
Ω?

Φ(S2
M (u)). (2.14)

In particular, we shall adopt a function Φ of the following functional form (for more details the
reader may refer to [7, 8]):

Φ(t) ≡ Φq(t), (2.15)

where q ≥ 1 is a given real parameter and Φq : R+ → R+ is defined as

Φq(t) = [1 + tq]1/q − 1. (2.16)

The exponent q has to be chosen as large as possible. For a detailed explanation on how to choose
it we refer to the original paper [4]. Here the exponent q is fixed as q = 32.

Therefore, the original constrained optimization problem (2.1) can be approximated by the
following penalized unconstrained optimization problem:

Minimize
Ω⊂D

FαΩ(u) := FΩ(u) + αG(u), (2.17)

with the scalar α > 0 used to denote a given penalty coefficient.
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3. Topological derivative

The topological derivative was introduced in the fundamental paper [22]. This concept has
been successfully applied to solve many relevant problems such as topology optimization, inverse
problems, image processing, damage and crack evolution. See, for instance, the book [20].

In this paper, the topological derivative concept is also used to solve the minimization problem
(2.17). The topological derivative of the von Mises penalty functional was derived in [7]. The
topological asymptotical analysis of the other terms can be found in many references, such as
[3, 20].

For the sake of completeness, the topological derivative associated with the objective functional
(2.17), with respect to the nucleation of a small circular inclusion of different material property
from the background, is here stated in its closed form. Since we are using a very complacent
material to mimic voids, the topological derivatives are presented in their limit cases versions when
the contrast on the material properties goes to zero or infinity. Note that these limit cases have to
be justified. Therefore, the reader may refer to [9], where such cases are discussed together with
the concept of degenerated topological derivative. Finally, the results are written in terms of the
Lamé’s coefficients, so that they can be used either in plane stress or plane strain assumptions.

Theorem 1. The topological derivative of (2.17), with respect to the nucleation of a small circular
inclusion of different material property from the background, is given by the sum

DTFαΩ(u) = βDT |Ω|+DTJ (u) + αDTG(u). (3.1)

We are interested into two cases, which are:
Case 1. Let us consider x ∈ Ω. In this case ρ = 1 and the contrast on the material property goes
to zero since ρ0 � 1. Then the topological derivative DTG of the von Mises penalty functional reads

DTG(u) = −P0S(u) · ε(v)− χ
Ω?k1(u)TBS(u) · S(u)

+
1

4
χ

Ω?k1(u)(10S(u) · S(u)− 2tr2S(u))

+ χ
Ω?Ψ(S(u))− χ

Ω?Φ(S2
M (u)), (3.2)

where the polarization tensor P0 is written as [2]

P0 =
λ+ 2µ

λ+ µ

(
2I− µ− λ

2µ
I⊗ I

)
. (3.3)

The displacements field u is solution to (2.2) while v is solution to the following variational adjoint
problem: Find v ∈ U , such that∫

D
σ(v) · ε(η) =

∫
D
χΩ?k1(u)B̃S(u) · ε(η)−

∫
Γin

qin · η − κ
∫

Γout

qout · η ∀η ∈ U , (3.4)

with the space U defined by (2.3) and the fourth order tensor B̃ is given by

B̃ = 6µI + (λ− 2µ)I⊗ I. (3.5)

The characteristic function χ
Ω? is written as

χ
Ω? =

{
1 in Ω?,
0 otherwise.

(3.6)

The function k1(u) is defined as

k1(u) = Φ′(S2
M (u)) (3.7)

and the fourth order tensor T is written as

T = a2I +
a1 − a2

2
I⊗ I (3.8)

with

a1 =
λ+ µ

µ
; a2 =

λ+ 3µ

λ+ µ
. (3.9)
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At last, the function Ψ(S(u)) can be written as

Ψ(S(u)) =
1

π

∫ 1

0

∫ π

0

1

t2
[
Φ(S2

M (u) + Λ(t, θ))− Φ(S2
M (u))− Φ′(S2

M (u))Λ(t, θ)
]
dθdt, (3.10)

where

Λ(t, θ) = − t
2

[
5(S2

I − S2
II) cos θ + 3(SI − SII)2(2− 3t) cos 2θ

]
+

t2

4

[
3(SI + SII)

2 + (SI − SII)2(3(2− 3t)2 + 4 cos2 θ) + 6(S2
I − S2

II)(2− 3t) cos θ
]
, (3.11)

and SI , SII are the eigenvalues of S(u). Finally, the topological derivative of J (u) is given by

DTJ (u) = −P0σ(u) · ε(v) (3.12)

and the topological derivative of the volume reads

DT |Ω| = −1. (3.13)

Case 2. Now, let us consider x ∈ D \ Ω. In this case x /∈ Ω? by definition and ρ = ρ0 � 1.
Therefore, the contrast on the material property goes to infinity. Then the last term in (3.1),
namely DTG, is given by

DTG(u) = −P∞S(u) · ε(v), (3.14)

with u and v solution to (2.2) and (3.4), respectively. The polarization tensor P∞ is written as [2]

P∞ = −λ+ 2µ

λ+ 3µ

(
2I +

µ− λ
2(λ+ µ)

I⊗ I

)
. (3.15)

The topological derivative of J (u) is given by

DTJ (u) = −P∞σ(u) · ε(v), (3.16)

and, finally, the topological derivative of the volume assumes

DT |Ω| = 1. (3.17)

4. Numerical examples

Some numerical experiments are here presented to show the effectiveness of the proposed method-
ology. The minimization problem (2.17) is solved by using a topology optimization algorithm based
on the topological derivative together with a level-set domain representation method as proposed
in [6]. A locally sufficient optimality condition for problem (2.17), under the considered class of
domain perturbation given by circular inclusions, can be stated as [5]

DTFαΩ∗(x) > 0 ∀x ∈ D , (4.1)

where Ω∗ is a local minimum for problem (2.17). Let us introduce a level-set domain representation
function ψ ∈ L2(Ω) of the form:

Ω = {ψ(x) < 0, for x ∈ D}, (4.2)

D \ Ω = {ψ(x) > 0, for x ∈ D}, (4.3)

where ψ vanishes on the interface ∂Ω. We define the quantity

g(x) :=

{
−DTFαΩ(x), if ψ(x) < 0 ,
+DTFαΩ(x), if ψ(x) > 0 ,

(4.4)

allowing for rewriting the condition (4.1) in the following equivalent form{
g(x) < 0, if ψ(x) < 0,
g(x) > 0, if ψ(x) > 0.

(4.5)

Note that (4.5) is satisfied whenever quantity g coincides with level-set function ψ up to a strictly
positive number. Thus, the basic idea consists in finding a fixed point satisfying the following
condition

τ > 0 : g = τψ. (4.6)
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The reader interested in the details of the algorithm may refer to [17], for instance.
Let us consider the following metric associated with the mechanism effectiveness:

E = −

∫
Γout

qout · u∫
Γin

qin · u
× 100% . (4.7)

In addition, we set D = Ω. The domains Ω? and ω are represented by dark and light grays,
respectively. The domain ω remains unchanged throughout the optimization process. The thick
lines represents Dirichlet boundary condition, while dashed lines means symmetry conditions. If
nothing is specified, there is homogeneous Neumann boundary condition.

The contrast on the material property is given by ρ0 = 3× 10−3. The mechanisms are manufac-
tured using Nylon. Then, the Young’s modulus is E = 3 × 103 MPa, the Poisson ratio is ν = 0.4
and the threshold stress is σ = 40 MPa. In addition, the mechanical problem is discretized into
linear triangular finite elements and three steps of uniform mesh refinement were performed during
the iterative process in order to fulfill the optimality condition (4.6).

The numerical realizations are driven as follows. We start by setting the stress constraints
penalty parameter α = 0. Then, for a given volume penalty β?, we set the in-out weight parameter
κ as large as possible in order to get a functional mechanism. This procedure leads to very flexible
configurations endowed with hinges where the stresses in general blow-up. Finally, the process
is restarted with the same β? and κ parameters as before, while the parameter α is turn-on and
chosen so that the stress constraints are satisfied.

4.1. Example 1. Let us consider a moonie mechanism design, which transforms an horizontal
input force into a vertical output displacement. The hold-all domain, representing the initial guess,
is a square of dimensions 50 × 50 mm2. It is modeled using double symmetry conditions and
an initial mesh with 1568 elements and 837 nodes. The moonie is submitted to two uniformly
distributed loading qin and qout, as shown in Fig. 3. The input load is given by qin = −20 N/mm2.
The stiffness of the exterior medium is represented by K = 100 N/mm and the desired output
displacement is uout = 1 mm, so that the output load is qout = −10 N/mm2. Finally, we chose
β? = 50 and κ = 2.0.

Figure 3. Example 1: Initial guess and boundary conditions.

In Fig. 4 the stress distributions obtained at the end of the optimization process are presented.
The unconstrained case (α = 0) has been obtained after 28 iterations. We note that the maximum
stress is more than twice the admissible threshold due to the presence of hinges, as can be seen
in Fig. 4(a). On the other hand, for the constrained case (α = 2) the stress is under control and
the final topology is free of hinges, as shown in Fig. 4(b). This result has been obtained after
24 iterations. The maximal stress for both cases obtained at the end of the iterative process are
presented in Table 1. The amplified deformed configurations are presented in Figs. 5(a) and 5(b)
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for the unconstrained and constrained cases, respectively. Finally, the graphic in Fig. 6 shows the
effectiveness E during the iterative process for both cases.

Figure 4. Example 1: Stress distributions for the unconstrained (a) and con-
strained (b) cases.

Table 1. Example 1: Maximal normalized stress obtained at the end of the iterative process.

α = 0 α = 2

max
Ω

(SM ) 2.3334 1.0211

(a) α = 0 (b) α = 2

Figure 5. Example 1: Amplified deformed configurations for the unconstrained
(a) and constrained (b) cases.
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Figure 6. Example 1: Effectiveness E during the iterative process.

4.2. Example 2. This example consists in an inverter mechanism design. In this case, the hold-all
domain representing the initial guess is a rectangle of dimensions 100 × 50 mm2 clamped on the
left corner of length 5 mm. It is also modeled using horizontal symmetry conditions. The initial
mesh has 3356 elements and 1764 nodes. The inverter is submitted to two uniformly distributed
loading qin = 10 N/mm2 and qout = 5 N/mm2, see Fig. 7. The stiffness of the exterior medium is
set as K = 100 N/mm. Therefore, the desired output displacement is given by uout = −0.5 mm.
Finally, we chose β? = 100 and κ = 9.0.

Figure 7. Example 2: Initial guess and boundary conditions.

The stress distributions obtained at the end of the optimization process are presented in Fig. 8.
Similarly to the first example, the maximum stress associated with the unconstrained case (α = 0)
exceeds the admissible threshold due to the presence of hinges, as shown in Fig. 8(a). This result
has been obtained after 48 iterations. On the other hand, in the constrained case (α = 10) the
stress is under control and the final topology is free of hinges, as can be seen in Fig. 8(b). In this
case, the optimal design has been obtained after 37 iterations. Furthermore, the maximal stress
for both considered cases obtained at the end of the iterative process are presented in Table 2.
The amplified deformed configurations are presented in Figs. 9(a) and 9(b) for the unconstrained
and constrained cases, respectively. We observe that the obtained mechanisms perform the desired
movements. Finally, the effectiveness E during the iterative process for both cases are presented in
Fig. 10.
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Figure 8. Example 2: Stress distributions for the unconstrained (a) and con-
strained (b) cases.

Table 2. Example 2: Maximal normalized stress obtained at the end of the iterative process.

α = 0 α = 10

max
Ω

(SM ) 2.46 1.0178

(a) α = 0 (b) α = 10

Figure 9. Example 2: Amplified deformed configurations for the unconstrained
(a) and constrained (b) cases.
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Figure 10. Example 2: Effectiveness E during the iterative process.

4.3. Example 3. In this last example the design of a pliers mechanism is considered. The hold-all
domain, representing the initial guess is given by a rectangle of dimensions 100×50 mm2 with a jaw,
as shown in Fig. 11. It is modeled using horizontal symmetry conditions and an initial mesh with
2832 elements and 1489 nodes. The stiffness of the exterior medium is given by K = 100 N/mm
and the desired output displacement is set as uout = −0.2 mm. Therefore, the pliers is submitted
to two uniformly distributed loading qin = −20 N/mm2 and qout = 4 N/mm2. Finally, we chose
β? = 35 and κ = 9.0.

Figure 11. Example 3: Initial guess and boundary conditions.

The Fig. 12 shows the obtained stress distributions for both considered cases at the end of
the optimization process. The result for unconstrained case (α = 0) has been obtained after 57
iterations. The maximum stress is almost three times the admissible threshold due to the presence
of hinges, as can be seen in Fig. 12(a). On the other hand, in the constrained case (α = 4) the stress
remains under control, as shown in Fig. 12(b). In this case, the result has been obtained after 43
iterations. It is interesting to note that the hinge where the stress blows-up in Fig. 12(a) becomes
an arc-shaped spring in Fig. 12(b), allowing to keep the maximal stress close to the threshold. The
maximal stress for both cases obtained at the end of the iterative process are presented in Table 3.
The amplified deformed configurations are presented in Figs. 13(a) and 13(b) for the unconstrained
and constrained cases, respectively. Finally, the graphic in Fig. 14 shows the effectiveness E during
the iterative process for both cases. Since the hinge is replaced by an arc-shaped spring, the
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effectiveness for α 6= 0 becomes slice less than for α = 0, but the functionality of both mechanisms
is attended.

Figure 12. Example 3: Stress distributions for the unconstrained (a) and con-
strained (b) cases.

Table 3. Example 3: Maximal normalized stress obtained at the end of the iterative process.

α = 0 α = 4

max
Ω

(SM ) 2.8922 0.8767

(a) α = 0 (b) α = 4

Figure 13. Example 3: Amplified deformed configurations for the unconstrained
(a) and constrained (b) cases.
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Figure 14. Example 3: Effectiveness E during the iterative process.

5. Conclusion

In this paper a novel approach to topology design of compliant mechanisms under von Mises
stress constraints has been presented. It relies on an efficient and simple computational procedure
based on the topological derivative concept and a level-set domain representation method. In
order to deal with the local constraints, a class of von Mises stress penalty functions has been
used. Finally, some numerical examples have been presented, showing that the proposed approach
naturally keeps the stress under control by avoiding the undesirable flexible joints (hinges). In
particular, the numerical examples agree well with the results that should be expected by other
methods. Therefore, our approach can be seen as an alternative method for optimum design of
compliant mechanisms under stress constraints.
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[22] J. Soko lowski and A. Żochowski. On the topological derivative in shape optimization. SIAM Journal on Control
and Optimization, 37(4):1251–1272, 1999.
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