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Abstract. Topology optimization methods application for viscous flow problems is currently
an active area of research. A general approach to deal with shape and topology optimization
design is based on the topological derivative. This relatively new concept represents the first
term of the asymptotic expansion of a given shape functional with respect to the small parameter
which measures the size of singular domain perturbations, such as holes and inclusions. In
previous topological derivative-based formulations for viscous fluid flow problems, the topology
is obtained by nucleating and removing holes in the fluid domain which creates numerical
difficulties to deal with the boundary conditions for these holes. Thus, we propose a topological
derivative formulation for fluid flow channel design based on the concept of traditional topology
optimization formulations in which solid or fluid material is distributed at each point of the
domain to optimize the cost function subject to some constraints. By using this idea, the
problem of dealing with the hole boundary conditions during the optimization process is solved
because the asymptotic expansion is performed with respect to the nucleation of inclusions –
which mimic solid or fluid phases – instead of inserting or removing holes in the fluid domain,
which allows for working in a fixed computational domain. To evaluate the formulation, an
optimization problem which consists in minimizing the energy dissipation in fluid flow channels
is implemented. Results from considering Stokes and Navier-Stokes are presented and compared,
as well as two- (2D) and three-dimensional (3D) designs. The topologies can be obtained in a
few iterations with well defined boundaries.

1. Introduction

The application of topology optimization methods for viscous fluid flow problems is an active
area of research. The objective of optimization is to distribute fluid or solid in a design domain
to extremise a defined objective function subjected to some constraints. Following this way,
we can find many works in the literature that apply topology optimization methods based on
a material model definition to perform optimization of fluid flow channels. We can cite the
work [12] who minimized the dissipated power in a flow channel by considering a 2D Brinkman
medium. The flow modelling is restricted to the incompressible Stokes flow, and a porous flow
model is introduced to relax the optimization problem from an integer (black–white) problem,
in which either fluid or solid property is allowed in an element, to a continuous problem where
a continuous (grey) permeability design variable for each element is defined. Thus, in the op-
timization problem, flow and (almost) non-flow regions are obtained by allowing interpolation
schemes between the upper and lower values of the permeability [19, 20]. Some works have
improved this formulation and implemented topology optimization approach in other flow con-
ditions [12, 17, 18, 22, 33, 38]. Thus, for example, the topology optimization method is extended
to full Navier-Stokes flow to cover from low to moderate Reynolds numbers into 2D domains in
[19] and [21].

Another general approach to deal with shape and topology optimization design is based
on the topological derivative. In fact, this relatively new concept represents the first term
of the asymptotic expansion of a given shape functional with respect to the small parameter
which measures the size of singular domain perturbations, such as holes, inclusions, source-terms
and cracks. The topological asymptotic analysis was introduced in the fundamental paper [35]
and has been successfully applied to the treatment of problems such as topology optimization
[9], inverse analysis [27], image processing [26], multi-scale constitutive modeling [8], fracture
mechanics sensitivity analysis [37] and damage evolution modeling [1]. For an account of new
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developments in this branch of shape optimization we refer to the book by Novotny & Soko lowski
[31].

Alternatively to topological derivative and density-based approaches, we can mention the level
set method, which has successfully been applied to the context of topology optimization of fluids
in Stokes flow [14].

In this work, the topological derivative is applied in the context of topology optimization of
steady-state fluid flow channels. A first work dealing with such a problem was published in
[24]. In their work, the topological sensitivity analysis with respect to the insertion of a small
hole or obstacle inside a domain has been used to perform the shape optimization considering
Stokes equations. The paper [5] extends this work to Navier-Stokes equations by considering an
incompressible fluid and a no-slip condition prescribed on the boundary of an arbitrary shaped
obstacle. So far the implemented methods can only create small holes inside the domain. Once
these holes have been created, they usually remain unchanged during the topological phase of
the optimization algorithm. Thus, in [23] a new topological derivative method is introduced,
which allows the decision of whether an existing hole must be removed or not for improving
the cost function. In addition, in [11] a shape optimization problem with Stokes constraints
within the class of axisymmetric domains is studied by using topological derivatives. Finally, in
[16] the topological derivative is combined with standard level-set method for the optimal shape
design of Stokes flow. For the theoretical development of shape and topology optimization in
the context of compressible Navier-Stokes see, for instance, the book [34].

As mentioned, in these previous topological derivative works the topology is obtained by nu-
cleating and/or removing holes in the fluid domain which creates numerical difficulties to deal
with the boundary conditions in these holes. We thus, propose a topological derivative formu-
lation for fluid flow channel design based on the concept of traditional topology optimization
formulations where solid or fluid material is distributed in a porous medium to optimize the
cost function and satisfy constraints. This is achieved by combining Stokes or Navier–Stokes
equations with Darcy’s law equations as first proposed in [12]. By using this idea, the problem
of dealing with the hole boundary conditions in topological derivatives during the optimization
process is solved. Note that holes can be interpreted as solid obstacles. Thus, inclusions mimick-
ing solid or fluid phases are created, instead of inserting/removing holes, which allow for working
in a fixed computational domain. Thus, the asymptotic expansion is performed with respect to
the nucleation of inclusions instead of inserting or removing holes in the fluid domain (see Fig.
2). The theoretical results are then used to devise a topology design algorithm of remarkably
simple computational implementation, which features only a minimal number of user-defined
algorithmic parameters. To evaluate the formulation, an optimization problem which consists
of minimizing the energy dissipation in fluid flow channels is implemented. Results consider-
ing Stokes and Navier-Stokes equations combined with Darcy’s law equation are presented and
compared, as well as two- (2D) and three-dimensional (3D) designs.

The paper is organized as follows. In Section 2, the topology optimization problem is defined.
In Section 3 the topological asymptotic analysis of the energy shape functional associated with
the Stokes system combined with Darcy’s law equation is developed. In Section 4, the topological
derivative with respect to the nucleation of a circular inclusion of the energy shape functional
associated with the Navier-Stokes systems combined with Darcy’s law equation is obtained in
its closed form. In Section 5, the topology optimization algorithm is presented and in Section
6, its numerical implementation is discussed. In Section 7, some numerical experiments of
topology optimization of fluid flow channels are presented. Finally, some concluding remarks
and perspectives are inferred in Section 8.

2. Topology Optimization Problem

Let us consider an open and bounded domain Ω ⊂ Rd, d ≥ 2, with Lipschitz continuous
boundary ∂Ω. The domain Ω is subjected to a perturbation confined in a small ball Bε(x̂)
of radius ε and center at an arbitrary point x̂ of Ω, namely Bε(x̂) := {‖x − x̂‖ < ε}, for
x̂ ∈ Ω. We introduce a characteristic function x 7→ χ(x), x ∈ Rd, associated to the unperturbed
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domain, namely χ = 1Ω. Then, we define a characteristic function associated to the topologically
perturbed domain of the form x 7→ χε(x̂;x), x ∈ Rd. In the case of a hole, for example,

χε(x̂) = 1Ω − 1
Bε(x̂)

and the perturbed domain is given by Ωε(x̂) = Ω \ Bε(x̂), where Bε(x̂)

denotes the closure of the domain of the inserted hole. Then, we assume that a given shape
functional j(χε(x̂)), associated to the topologically perturbed domain, admits the following
topological asymptotic expansion [31]

j(χε(x̂)) = j(χ) + f(ε)DT j(x̂) + o(f(ε)) , (2.1)

where j(χ) is the shape functional associated to the unperturbed domain and f(ε) is a positive
function such that f(ε) → 0 when ε → 0. The function x̂ 7→ DT j(x̂) is called the topological
derivative of j at x̂. Therefore, the term f(ε)DT j(x̂) represents a first order correction of j(χ)
to approximate j(χε(x̂)).

2.1. A Simple Example. The notion of topological derivative extends the conventional defi-
nition of derivative to functionals whose variable is a geometrical domain subjected to singular
topology changes. The analogy between DT j(x̂) and the corresponding expressions for a conven-
tional derivative should be noted. To illustrate the application of this concept, let us consider
the (very simple) functional

j(χ) := |Ω| =
∫

Ω
1, (2.2)

with Ω ⊂ R2 subject to the class of topological perturbations given by the nucleation of circular
holes. See Fig. 1. For two-dimensional domains Ω the functional j(χ) represents the area of the
domain. The expansion of (2.1) in this case can be obtained trivially as

j(χε) = |Ωε| =
∫

Ω
1−

∫
Bε

1 = j(χ)− πε2, (2.3)

and the topological derivative DT j(x̂) and function f(ε) promptly identified as

DT j(x̂) = −1; f(ε) = πε2. (2.4)

In this particular case, DT j is independent of x̂ and the rightmost term of the topological
asymptotic expansion (2.1) is equal to zero.

 

Figure 1. An example of topological domain perturbation.
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2.2. Problem Setting. Now, considering the fluid flow channel design problem the energy
shape functional can be introduced in the form

j(χ) := J (u) = µ

∫
Ω
‖∇u‖2 +

∫
Ω
α‖u‖2 , (2.5)

where 0 < µ <∞ is the kinematic viscosity, α is the inverse permeability and u is the solution to
the unperturbed fluid flow problems (3.2) or (4.2). The topological perturbation we are dealing
with is defined as

γε = γε(x) :=

{
1 if x ∈ Ω \Bε ,
γ if x ∈ Bε ,

(2.6)

where 0 < γ < ∞ is the contrast parameter and Bε(x̂) is a ball of radius ε and center at
x̂ ∈ Ω. The topologically perturbed counterpart of the inverse permeability is obtained by
setting αε = γεα. Therefore, the topologically perturbed energy shape functional is given by

j(χε(x̂)) := Jε(uε) = µ

∫
Ω
‖∇uε‖2 +

∫
Ω
αε‖uε‖2 , (2.7)

where uε is solution to the topologically perturbed fluid flow problems (3.6) or (4.8). Now, let
us split the domain Ω into two subdomains Ω \ ω and ω, with ω ⊂ Ω. The inverse permeability
α = α(x) is written as

α(x) :=

{
αU if x ∈ Ω \ ω ,
αL if x ∈ ω , (2.8)

where αU and αL are the upper and lower limits for the inverse permeability. Therefore, Ω \ ω
and ω are used to represent the solid and fluid phases, respectively. To distribute solid and
fluid, the topological derivative formulation does not use a material model concept such as in
the topology optimization formulation based on density methods. Thus, the fact that we are
not using an interpolation scheme for α eliminates the gray scale from the problem, i.e. there
is no domain with intermediate porosities. Concerning the values of αU and αL, we refer to the
paper [12]. According to (2.8), the contrast γ is defined as follows (refer to Fig. 2)

γ = γ(x) :=

{
αL/αU if x ∈ Ω \ ω ,
αU/αL if x ∈ ω . (2.9)

Now, we introduce a volume constraint in ω of the form |ω| ≤M . For the sake of simplicity,
the volume constraint is here trivially imposed by using a linear penalization method. For more
sophisticated topological derivative-based methods to deal with the volume constraint see, for
instance, [13]. Therefore, the optimization problem we are dealing with can be written as follows:

Minimize
ω⊂Ω

Fω(u) = J (u) + β|ω| , (2.10)

where β is a fixed multiplier. The topological derivative of the volume constraint is trivial, which
is given by DT |ω|(x) = k(x), where

k(x) :=

{
+1 if x ∈ Ω \ ω ,
−1 if x ∈ ω , (2.11)

with function f(ε) = |Bε| and null remainder. Yet, the derivation of the topological derivative of
the energy shape functional J (u) is much more involved and will be presented for each problem
under analysis in what follows. The case associated to singular domain perturbations can be
found in [5], in which the topological derivative with respect to the nucleation of a small hole
endowed with homogeneous Dirichlet boundary condition has been rigorously derived for the
Navier-Stokes system.

The Stokes problem is considered first to show a rigorous mathematical formalism for deriving
the topological derivative. Then the same procedure is repeated in the derivation of the topolog-
ical derivative associated with the Navier-Stokes system, however without mathematical proofs.
The well-posedness of both Stokes and Navier-Stokes systems comes out from an application of
the Lax-Milgram Lemma. See, for instance, [36, App. 1, pp 458]. Finally, the consistency of
the topological derivatives formulae obtained is verified through some numerical experiments.
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Figure 2. Sketch of the problem setting.

3. Topological Derivative for the Stokes System

In this section the topological asymptotic analysis of the energy shape functional associated
with the Stokes system combined with Darcy’s law equation is developed. The topological de-
rivative with respect to the nucleation of a circular inclusion is derived in its closed form. In
addition, a complete mathematical justification for the derived formula is provided. In partic-
ular, arguments concerning the existence of the associated topological derivative are presented
together with the estimates for the remainders of the topological asymptotic expansion.

3.1. Unperturbed Problem. The Stokes system combined with Darcy’s law equation reads:
Find u and p, such that [12] −µ∆u+ αu+∇p = 0 in Ω ,

div(u) = 0 in Ω ,
u = u0 on ∂Ω ,

(3.1)

where u0 ∈ H1/2(Ω;Rd) :
∫
∂Ω u0 · ν = 0, with ν used to denote the outward unit normal of the

boundary ∂Ω. Thus, when the inverse permeability is equal to 0 the point is made of fluid and
when it is equal to a maximum value the point is made of solid. The weak form associated with
(3.1) reads:

u ∈ U : µ

∫
Ω
∇u · ∇v +

∫
Ω
αu · v = 0 ∀v ∈ V , (3.2)

where U and V are given by

U = {ϕ ∈ H1(Ω;Rd) : div(ϕ) = 0, ϕ|∂Ω
= u0} , (3.3)

V = {ϕ ∈ H1(Ω;Rd) : div(ϕ) = 0, ϕ|∂Ω
= 0} , (3.4)
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The energy shape functional is given by (2.5).

3.2. Perturbed Problem. The topologically perturbed counterpart of the Stokes system reads:
Find uε and pε, such that −µ∆uε + αεuε +∇pε = 0 in Ω ,

div(uε) = 0 in Ω ,
uε = u0 on ∂Ω .

(3.5)

The weak form associated with (3.5) reads:

uε ∈ U : µ

∫
Ω
∇uε · ∇v +

∫
Ω
αεuε · v = 0 ∀v ∈ V , (3.6)

The topologically perturbed counterpart of the shape functional is given by (2.7).

Lemma 1. Let uε and u be solutions to the perturbed (3.6) and original (3.2) variational
problems, respectively. Then, the following estimate holds true

‖uε − u‖H1(Ω;Rd) ≤ Cε
d
2

+δ . (3.7)

where 0 < δ ≤ 1 and C is used to denote a generic constant independent of control parameter ε.

Proof. By subtracting (3.2) from (3.6), we have:

µ

∫
Ω
∇(uε − u) · ∇v +

∫
Ω

(αεuε − αu) · v = 0 ∀v ∈ V . (3.8)

Let us set v = uε − u as a test function in (3.8). Then

µ

∫
Ω
‖∇(uε − u)‖2 +

∫
Ω

(αεuε − αu) · (uε − u) = 0. (3.9)

From the definition of the contrast γε given by (2.6), the second term in the above equation can
be written as∫

Ω
(αεuε − αu) · (uε − u) =

∫
Ω\Bε

α‖uε − u‖2 +

∫
Bε

α(γuε − u) · (uε − u) , (3.10)

since αε = γεα. In addition, using again definition (2.6), we obtain∫
Ω

(αεuε − αu) · (uε − u) =

∫
Ω
αε‖uε − u‖2 −

∫
Bε

(1− γ)αu · (uε − u) . (3.11)

Therefore, eq. (3.9) can be rewritten as

µ

∫
Ω
‖∇(uε − u)‖2 +

∫
Ω
αε‖uε − u‖2 =

∫
Bε

(1− γ)αu · (uε − u) . (3.12)

Taking into account the Cauchy-Schwarz inequality and the Lebesgue differentiation theorem
[28], we have:

µ

∫
Ω
‖∇(uε − u)‖2 +

∫
Ω
αε‖uε − u‖2 ≤ C1ε

d
2 ‖uε − u‖L2(Bε;Rd) . (3.13)

In addition, by making use of the Hölder inequality together with the Sobolev embedding theo-
rem [15, Ch. IV, §8, Sec. 1.2, pp 140], we have

‖uε − u‖L2(Bε;Rd) ≤ C2ε
d
2q

(∫
Bε

‖uε − u‖2p
) 1

2p

= C2ε
d
2q ‖uε − u‖L2p(Bε;Rd)

≤ C3ε
δ‖uε − u‖H1(Ω;Rd) , (3.14)

where 1/p+ 1/q = 1, with q ≥ d/2, and δ = d/2q. Therefore,

µ

∫
Ω
‖∇(uε − u)‖2 +

∫
Ω
αε‖uε − u‖2 ≤ C4ε

d
2

+δ ‖uε − u‖H1(Ω;Rd) . (3.15)
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From the coercivity of the bilinear form on the left hand side of the above inequality, we obtain

c‖uε − u‖2H1(Ω;Rd) ≤ µ
∫

Ω
‖∇(uε − u)‖2 +

∫
Ω
αε‖uε − u‖2 , (3.16)

where the constant C = C4/c is independent of the small parameter ε. �

3.3. Topological Derivative. By setting v = uε − u in (3.2) and (3.6) and after taking into
account (2.5) and (2.7), we respectively obtain

J (u) = µ

∫
Ω
∇uε · ∇u+

∫
Ω
αuε · u , (3.17)

and

Jε(uε) = µ

∫
Ω
∇uε · ∇u+

∫
Ω
αεuε · u . (3.18)

Let us evaluate the difference between the above results. Then, from the definition of the contrast
γε in (2.6), we have

Jε(uε)− J (u) = −
∫
Bε

(1− γ)αuε · u

= −
∫
Bε

(1− γ)α‖u‖2

−
∫
Bε

(1− γ)α(uε − u) · u . (3.19)

From the Cauchy-Schwarz inequality we have∫
Bε

α(uε − u) · u ≤ C1ε
d
2 ‖uε − u‖L2(Bε;Rd)

≤ C2ε
d
2 ‖uε − u‖H1(Ω;Rd) = o(εd) . (3.20)

where we have used the Lebesgue differentiation theorem [28] together with Lemma 1. Finally,

Jε(uε)− J (u) = −
∫
Bε

(1− γ)α‖u‖2 + o(εd) . (3.21)

On the other hand, the Lebesgue differentiation theorem yields∫
Bε

(1− γ)α‖u‖2 = |Bε(x̂)| (1− γ(x̂))α(x̂) ‖u(x̂)‖2 + o(εd) , (3.22)

for almost every x̂ ∈ Ω. Now, we have all the necessary elements to state the main result of this
work, which is:

Theorem 2. Let Jε(uε) be the topologically perturbed shape function (2.7). Then, it admits the
following topological asymptotic expansion

Jε(uε) = J (u)− |Bε(x̂)|(1− γ(x̂))α(x̂)‖u(x̂)‖2 + o(εd) , (3.23)

for almost every x̂ ∈ Ω. According to (2.1), the function f(ε) = |Bε(x̂)| ∼ εd and the topological
derivative is given by

DTJ (x̂) = −(1− γ(x̂))α(x̂)‖u(x̂)‖2 , (3.24)

where α is given by (2.8) and u is the solution to the unperturbed problem (3.2).

Corollary 3. By setting the contrast γ according to (2.9), the topological derivative of Fω(u)
associated with the Stokes system leads to

DTFω(x) = −k(x)(αU − αL)‖u(x)‖2 + k(x)β , (3.25)

for almost every x ∈ Ω. Here, αU � αL are given constants and k(x) is defined by (2.11).
Finally, u is the solution to the unperturbed problem (3.2).
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4. Topological Derivative of the Navier-Stokes System

In this section the topological derivative with respect to the nucleation of a circular inclusion
of the energy shape functional associated with the Navier-Stokes systems combined with Darcy’s
law is obtained in its closed form. In contrast to the Stokes system, only the formal derivations
are presented.

4.1. Unperturbed Problem. The Navier-Stokes system combined with Darcy’s law equation
reads: Find u and p, such that −µ∆u+ (∇u)u+ αu+∇p = 0 in Ω ,

div(u) = 0 in Ω ,
u = u0 on ∂Ω ,

(4.1)

where u0 ∈ H1/2(Ω;Rd) :
∫
∂Ω u0 · ν = 0, with ν denoting the outward unit normal of the

boundary ∂Ω. Thus, again, when the inverse permeability is equal to 0 the point is made of
fluid and when it is equal to a maximum value the point is made of solid. The weak form
associated with (4.1) reads:

u ∈ U : µ

∫
Ω
∇u · ∇v +

∫
Ω

(∇u)u · v +

∫
Ω
αu · v = 0 ∀v ∈ V , (4.2)

where U and V are given by

U = {ϕ ∈ H1(Ω;Rd) : div(ϕ) = 0, ϕ|∂Ω
= u0} , (4.3)

V = {ϕ ∈ H1(Ω;Rd) : div(ϕ) = 0, ϕ|∂Ω
= 0} . (4.4)

The energy shape functional is defined by (2.5). In order to simplify further analysis, we intro-
duce the adjoint problem [25]: Find ua and pa, such that −µ∆ua + (∇u)>ua − (∇ua)u+ αua +∇pa = 2(αu− µ∆u) in Ω ,

div(ua) = 0 in Ω ,
ua = 0 on ∂Ω .

(4.5)

The weak form associated with (4.5) reads:

ua ∈ V : µ

∫
Ω
∇ua · ∇v +

∫
Ω

((∇u)>ua − (∇ua)u) · v +

∫
Ω
αua · v =

2µ

∫
Ω
∇u · ∇v + 2

∫
Ω
αu · v ∀v ∈ V , (4.6)

4.2. Perturbed Problem. The topologically perturbed counterpart of the Navier-Stokes sys-
tem combined with Darcy’s law equation reads: Find uε and pε, such that −µ∆uε + (∇uε)uε + αεuε +∇pε = 0 in Ω ,

div(uε) = 0 in Ω ,
uε = u0 on ∂Ω .

(4.7)

The weak form associated with (4.7) reads:

uε ∈ U : µ

∫
Ω
∇uε · ∇v +

∫
Ω

(∇uε)uε · v +

∫
Ω
αεuε · v = 0 ∀v ∈ V , (4.8)

The topologically perturbed counterpart of the shape functional is given by (2.7).

4.3. Topological Derivative. From the definition of the contrast (2.6), the difference between
the unperturbed and topologically perturbed shape functionals, respectively given by (2.5) and
(2.7), can be written in the following form

Jε(uε)− J (u) = 2µ

∫
Ω
∇u · ∇(uε − u) + 2

∫
Ω
αu · (uε − u) + µ

∫
Ω
‖∇(uε − u)‖2+∫

Ω
αε‖uε − u‖2 + 2

∫
Bε

(1− γ)αu · (uε − u)−
∫
Bε

(1− γ)α‖u‖2 . (4.9)
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By subtracting (4.2) from (4.8), we have:

µ

∫
Ω
∇(uε − u) · ∇v +

∫
Ω

((∇uε)uε − (∇u)u) · v +

∫
Ω
α(uε − u) · v−∫
Bε

(1− γ)αuε · v = 0 ∀v ∈ V , (4.10)

where we have used the definition for the contrast (2.6). From the integration by parts we have

µ

∫
Ω
∇(uε − u) · ∇v +

∫
Ω

((∇u)>v − (∇v)u) · (uε − u) +

∫
Ω
α(uε − u) · v+∫

Ω
(∇(uε − u))(uε − u) · v −

∫
Bε

(1− γ)αuε · v = 0 ∀v ∈ V . (4.11)

By setting v = ua in the above equation, we obtain the equality

µ

∫
Ω
∇(uε − u) · ∇ua +

∫
Ω

((∇u)>ua − (∇ua)u) · (uε − u) +

∫
Ω
α(uε − u) · ua =∫

Bε

(1− γ)αuε · ua −
∫

Ω
(∇(uε − u))(uε − u) · ua . (4.12)

Now, let us set v = uε − u in the adjoint equation (4.6). Then, we obtain the following equality

µ

∫
Ω
∇ua · ∇(uε − u) +

∫
Ω

((∇u)>ua − (∇ua)u) · (uε − u) +

∫
Ω
αua · (uε − u) =

2µ

∫
Ω
∇u · ∇(uε − u) + 2

∫
Ω
αu · (uε − u) , (4.13)

After comparing (4.12) with (4.13) we obtain the following important result

2µ

∫
Ω
∇u · ∇(uε − u) + 2

∫
Ω
αu · (uε − u) =∫

Bε

(1− γ)αuε · ua −
∫

Ω
(∇(uε − u))(uε − u) · ua . (4.14)

Finally, let us substitute this last result in (4.9) to obtain

Jε(uε)− J (u) = −
∫
Bε

(1− γ)αu · (u− ua) + E(ε), (4.15)

where E(ε) is given by

E(ε) = µ

∫
Ω
‖∇(uε − u)‖2 +

∫
Ω
αε‖uε − u‖2 −

∫
Ω

(∇(uε − u))(uε − u) · ua+∫
Bε

(1− γ)αua · (uε − u)− 2

∫
Bε

(1− γ)αu · (uε − u) . (4.16)

Now, from the Lebesgue differentiation theorem [28] we finally obtain

Jε(uε) ≈ J (u)− |Bε(x̂)|(1− γ(x̂))α(x̂)u(x̂) · (u(x̂) + ua(x̂)) , (4.17)

for almost every x̂ ∈ Ω. According to (2.1), the function f(ε) = |Bε(x̂)| ∼ εd and the topological
derivative is given by

DTJ (x̂) = −(1− γ(x̂))α(x̂)u(x̂) · (u(x̂)− ua(x̂)) , (4.18)

where α is defined through (2.8). In addition, u is the solution of the direct problem (4.2)
and ua is solution of the adjoint problem (4.6), both associated with the unperturbed domain
Ω. Finally, by setting the contrast γ according to (2.9), the topological derivative of Fω(u)
associated to the Navier-Stokes system combined with Darcy’s law equation leads to

DTFω(x) = −k(x)(αU − αL)u(x) · (u(x)− ua(x)) + k(x)β, (4.19)
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for almost every x ∈ Ω, where αU � αL are given constants and k(x) is defined through (2.11).
In addition, u and ua are solutions of the direct (4.2) and adjoint (4.6) unperturbed problems,
respectively.

5. Topology Optimization Algorithm

The topological derivative is defined through a limit passage when the small parameter gov-
erning the size of the topological perturbation goes to zero. Therefore, it can be used as a
steepest-descent direction in an optimization process such as in any method based on the gra-
dient of the cost functional. Thus, following the original ideas due to Amstutz & Andrä [7], the
results given by (3.25) and (4.19) are used to devise a topology optimization algorithm based on
the topological derivative together with a level-set domain representation method. For the sake
of completeness, the algorithm for the solution of the topology optimization problem proposed
in [7] is presented. The basic idea consists in seeking a local optimality condition for the mini-
mization problem (2.10), written in terms of the topological derivative and a level-set function.
Such a local optimality condition has been rigorously derived in [6]. Therefore, fluid ω as well
as solid Ω \ ω are characterized by a level-set function ψ ∈ L2(Ω) of the form:

ω = {ψ(x) < 0, for x ∈ Ω}, (5.1)

Ω \ ω = {ψ(x) > 0, for x ∈ Ω}, (5.2)

where ψ vanishes in interface ∂ω. A locally sufficient optimality condition for Problem (2.10),
under the considered class of domain perturbation given by circular inclusions, can be stated as
[6]

DTFω?(x) > 0 ∀x ∈ Ω . (5.3)

where ω? is a local minimum for Problem (2.10). Therefore, let us define the quantity

g(x) :=

{
−DTFω(x), if ψ(x) < 0 ,
+DTFω(x), if ψ(x) > 0 .

(5.4)

allowing for rewriting the condition (5.3) in the following equivalent form{
g(x) < 0, if ψ(x) < 0,
g(x) > 0, if ψ(x) > 0.

(5.5)

Note that (5.5) is satisfied whenever quantity g coincides with level-set function ψ up to a strictly
positive number, namely ∃ τ > 0 : g = τψ, or equivalently [6]

θ := arccos

[
〈g, ψ〉L2(Ω)

‖g‖L2(Ω)‖ψ‖L2(Ω)

]
= 0, (5.6)

which shall be used as the optimality condition in the topology design algorithm, where θ is the
angle between the functions g and ψ in L2(Ω).

Let us now explain the algorithm. We start by choosing an initial level-set function ψ0 ∈
L2(Ω). In a generic iteration n, we compute function gn associated with the level-set function
ψn ∈ L2(Ω). In order to evaluate gn, two cases are considered according to eqs. (3.25) or (4.19),
respectively. For the Stokes problem, it is necessary to solve only (3.2) to obtain un associated
with ψn. Whereas, for the Navier-Stokes problem, it is necessary to solve (4.2) and then the
corresponding adjoint system (4.6) to obtain un and uan, both associated with ψn. Thus, the
new level-set function ψn+1 is updated according to the following linear combination between
the functions gn and ψn

ψ0 ∈ L2(Ω) , ψn+1 =
1

sin θn

[
sin((1− κ)θn)ψn + sin(κθn)

gn
‖gn‖L2(Ω)

]
, ∀n ∈ N, (5.7)

where θn is the angle between gn and ψn. Step size κ is determined by a line search performed
in order to decrease the value of the objective function Fωn(un) = J (un) + β|ωn| associated
with ψn, where ωn is used to denote the region in Ω filled by the fluid at iteration n. Since the
shape functional depends on the state, the governing Stokes or Navier–Stokes systems have to
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be solved at each step of the internal loop associated with the line search procedure. In any case,
we observe that the step size parameter κ generally starts to diminish only at the end of the
iterative process, close to the convergence. Furthermore, since in this case an analytical – exact
– expression for the topological sensitivity is available, the number of iterations to obtain the
optimized solution is here drastically reduced. Finally, the algorithm ends when the condition
θn ≤ εθ is satisfied in some iteration, where εθ is a given small numerical tolerance. Particularly,
we can choose

ψ0 ∈ S = {ϕ ∈ L2(Ω) : ‖ϕ‖L2(Ω) = 1}, (5.8)

and by construction ψn+1 ∈ S, ∀n ∈ N. If at some iteration n the line search step size κ is
found to be smaller then a given numerical tolerance εκ > 0 and the optimality condition is not
satisfied, namely θn > εθ, a uniform mesh refinement of the whole domain Ω is carried out and
the iterative process is continued.

However, current, the algorithm solves the governing equations (Stokes or Navier-Stokes)
every function evaluation which is not so efficient if a nonlinear governing equation (such as
Navier-Stokes) is considered. This limits the application of this algorithm for large computa-
tional problems. Thus, as a future work, it can be implemented a onestep approach where the
governing equations and line search would be solved simultaneously [32, 18].

6. Numerical Implementation

The FEniCS environment and its Python interface are used herein. The FEniCS system [30]
is a free collection of software components for automating the solution of PDEs by using the
finite element method. It has as input the weak formulation of the problem, in a language very
similar to the math syntax. It is thus, necessary to use a software capable of interpreting this
high-level language and to transform it into a numerical routine. This interpretation software
is the FEniCS Form Compiler (FFC), that receives a discrete form of the weak variational
equation given in Unified Form Language (UFL) [2], similar to the mathematical formulation,
and generates a C++ code of the finite element assembly in the format of the Unified Form-
Assembly Code (UFC) [3]. This assembly is an optimised low-level code that evaluates the local
element tensors.

The local tensors are used by DOLFIN [29], a library that handles the communication between
all the FEniCS modules. This library also provides various data structures to interface meshes,
function spaces, functions and solvers. The FEniCS environment allows using many linear
algebra, such as PETSc used in this work.

To solve the Navier-Stokes problem, the FEniCS system offers pre-installed support to meth-
ods such as Generalized Minimal RESidual (GMRES). However, some external solvers can be
used, and the MUltifrontal Massively Parallel Sparse direct solver (MUMPS) [4] was chosen
here because it offers features such as input of the matrix in assembled format (distributed or
centralized), error analysis and parallel analysis.

To illustrate how user-friendly the FEniCS API is, a small example of the implementation for
the Navier-Stokes system is shown below.

1 F = (

2 #Momentum

3 mu ∗ i nne r ( grad (u) , grad ( v ) ) ∗ dx \
4 + inner ( grad (u) ∗ u , v ) ∗ dx \
5 + alpha ∗ i nne r ( u , v ) ∗ dx \
6 − p ∗ div ( v ) ∗ dx

7

8 #Continuity

9 + q∗div (u) ∗dx \
10 )

Listing 1. Variational problem in FEniCS notation
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7. Numerical Experiments

Five implementation examples are presented in this section. In all of them, the fluid density
is set as ρ = 1.0 while the kinematic viscosity µ varies for each example. According to the
paper [12], the inverse permeability α is set as αU = 2.5µ/1002 and αL = 2.5µ/0.012 for all
the examples. Note that the limit cases αL → 0 and αU → ∞ have to be justified. Since
it is out of the scope of this work, we refer to the paper [10], where these limit cases are
discussed together with the concept of degenerated topological derivative. The Reynolds number
Re = uL/µ is obtained by considering the inlet length and inlet radius as characteristic length
(L), for 2D and 3D examples, respectively. For cases with two inlets, only the length (or
radius) of one inlet is considered. In the figures, the fluid domain is represented by an orange
path whereas the solid domain is represented by a blue path. Finally, the thresholds for the
external topology optimization and internal line search loops, described in the algorithm of
Section 5, are respectively given by εθ = 0.1◦ and εκ = 10−4. These parameters were fixed after
some trials allowing to represent a good compromise between the quality of the results and the
computational cost.

The results presented in the following sections were computed with a Linux machine with an
Intel Core i7 (3.7GHz) processor and 64Gb of memory.

7.1. Example 1: Stokes Short and Long Double Channel Problems. The first im-
plementation example is the Stokes double channel optimization problem. The corresponding
design domain is shown in Figure 3. The objective is the minimization of energy dissipation
between inlets and outlets. In the following results, the domain is discretized with a regular
mesh of 45,000 triangular elements during the optimization procedure.

Figure 3. Example 1. Design domain for the double channel problem.

As a result, a comparison of topologies generated by considering Stokes equations is presented
for the short (l = 1.0) and long (l = 1.5) channels for low values of Reynolds number (Re = 0.2,
u0 = 1.0). The value of the β coefficient is equal to 1250 and 500 for short and long channel
results, respectively. Also, the values µ = 1.0 and thus αU = 2.5 · 104 and αL = 2.5 · 10−4 are
used. The final topologies are shown in Figure 4.

The optimization process for the short double channels problem took 1533.5 seconds to com-
plete and 25 function evaluations were performed. The convergence curves for both cases can
be seen in Figure 5. The corresponding values of the functional given by equation (2.10) are
presented in Table 1.

In order to compare the results with the literature [12, 14] we define the functional

G(u) =

∫
Ω
µ‖∇u‖2 , (7.1)

which does not have the porosity term. The comparison is shown in Table 2. The results are
close to the analytical solution with small differences that can be addressed to the fact that
the volume fraction (Rvol) is not exactly 0.33 as in the compared cases, given that it is hard to
calibrate the β coefficient to get an exact volume ratio, however they are very close.
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(a) (b)

Figure 4. Example 1. Final topologies for double channel problem considering
Stokes formulation, µ = 1.0 and u0 = 1.0: short double channel l = 1.0 (a) and
long double channel l = 1.5 (b).

Table 1. Example 1. Functional values for resulting topologies of Stokes short
and long double channel problems (µ = 1.0 and u0 = 1.0)

.

Short (l = 1) Long (l = 1.5)

Stokes Fω(u) 205.29 147.78

J (u) 60.71 40.75

|ω| 0.29 0.54

Table 2. Example 1. Functional value comparison for resulting topologies of
double channel problem (µ = 1.0 and u0 = 1.0).

Short (l = 1.0) Long (l = 1.5)

Case G(u) / Rvol G(u) / Rvol

Analytical 32.00 / 0.33 -

Figure 4 34.35 / 0.29 31.01 / 0.35

Borrvall & Petersson 25.67 / 0.33 27.64 / 0.33

Challis & Guest 31.68 / 0.33 32.86 / 0.33

7.2. Example 2: Navier-Stokes Double Channel Problem. The second implementation
example aims to illustrate the behavior of the algorithm for the Navier-Stokes formulation con-
sidering low and high values of Reynolds number. The design domain is the same of Example
1 with l = 1.5 (Fig. 3). The objective is the minimization of energy dissipation between inlets
and outlets. The domain is discretized with a regular mesh of 45,000 triangular elements. The
values of 0.01 for µ and consequently 250.0 for αU and 2.5 · 10−6 for αL are used.

As a result, a comparison of topologies generated by considering Navier-Stokes equations for
low (Re = 2; u0 = 0.1) and high (Re = 200; u0 = 10.0) values of Reynolds number is presented.
The value of the β coefficient is equal to 0.1 and 100.0 for low and high Reynolds number results,
respectively. Figure 6 shows the final topologies. This topology optimization for high Reynolds
number took 584.36 seconds to complete and 8 function evaluations were performed.

For the low Reynolds number (Re = 2), the topologies obtained by considering Stokes or
Navier-Stokes equations are the same. It differs however from Example 1 because of the volume
constraint (β parameter). The corresponding values of functionals given by equation (2.10) are
presented in Table 3.
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(a)

(b)

Figure 5. Example 1. Convergence curves for double channel problem consid-
ering Stokes formulation, µ = 1.0 and u0 = 1.0: short double channel l = 1.0 (a)
and long double channel l = 1.5 (b).

Table 3. Example 2. Functional values for resulting topologies of double channel
problem for low and high Reynold numbers (µ = 0.01).

Re = 2 Re = 200

Navier-Stokes Fω(u) 0.052 112.46

J (u) 0.014 43.01

|ω| 0.380 0.64
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(a) (b)

Figure 6. Example 2. Final topologies for double channel problem (Navier-
Stokes): low (a) and high Reynolds number (b).

7.3. Example 3: Navier-Stokes Obstacle Problem. The third implementation example is
the channel design optimization problem by considering an obstacle. The corresponding design
domain with an obstacle inside is shown in Figure 7. The objective is to minimize energy
dissipation between the inlet and the outlet. In the follow results, the domain is discretized with
a regular mesh of 59,000 triangular elements during the optimization procedure. In this case we
use 0.01 for µ and consequently 250.0 for αU and 2.5 · 10−6 for αL.

Figure 7. Example 3. Design domain for obstacle problem.

As a result, a comparison of topologies generated by considering Navier-Stokes equations with
different initial domains is presented for low (Re = 2; u0 = 0.1) values of Reynolds. The two
initial domains are: one completely filled with fluid and another one composed by solid only. The
value of β coefficient is equal to 0.06 for both cases. Figure 8 shows the sequence of topologies
during the optimization until the convergence is reached for the fluid initialization. Figure 9
shows the final topologies obtained.

The topologies obtained by considering the fluid and solid initialization are quite different.
They can be interpreted as two different local minima. The corresponding values of the functional
given by equation (2.10) are presented in Table 4.

7.4. Example 4: 3D Three-Way Channel Problem. Now, by applying the methodology
presented, the problem of a three-way channel is solved. This example considers a 3D domain
with two fluid inlets of velocity with parabolic profiles, one normal to the x axis and the other
one normal to the y axis, and one outlet, normal to the z axis. The corresponding design domain
is shown in Figure 10. A boundary condition of pressure is imposed on the outlet with value of
p0 = 0.0, and the values of 0.01 for µ, 250.0 for αU and 2.5 · 10−6 for αL are used. The objective
is to minimize energy dissipation between the inlets and outlet. In the following results, the
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Figure 8. Example 3. Sequence of topologies during the optimization process
for the obstacle problem considering fluid initialization.

(a) (b)

Figure 9. Example 3. Final topologies for obstacle problem: fluid initialization
(a) and solid initialization (b).

Table 4. Example 3. Functional values for resulting topologies of obstacle prob-
lem for different initializations (µ = 0.01 and u0 = 0.1).

Fluid Solid

Initialization Initialization

Navier-Stokes Fω(u) 0.019 0.017

J (u) 0.0072 0.0054

|ω| 0.20 0.19

domain is discretized with a regular mesh of 96,000 tetrahedral elements during the optimization
procedure.

The results derived from considering Stokes equations and an intermediate value of Reynolds
number (Re = 40; u0 = 1.0) to facilitate the convergence. The value of the β coefficient is equal
to 1.0. Figure 11 shows the final topologies obtained with this configuration, in which the values
of the shape functionals are given by Fω(u) = 1.6768 and J (u) = 0.6463. The convergence
curve is similar to that of the previous problem.
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Figure 10. Example 4. Design domain for 3D three way channel problem.

(a) (b)

(c) (d)

Figure 11. Example 4. Final topologies (fluid domain) for the 3D cross channel
problem obtained by considering the Stokes system with inlet parabolic velocity:
Y view (a), isometric view (b), Z view (c) and X view (d).

7.5. Example 5: 3D Cross Channel Problem. Finally, considering the stokes formulation,
the problem of a 3D cross channel is solved. This example considers a 3D domain with two fluid
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inlets and two outlets, both normal to the z axis. The corresponding design domain is shown in
Figure 12, in which the velocities have parabolic profiles. The objective is to minimize the energy
dissipation between the inlets and outlet. In the results as follows, the domain is discretized
with a regular mesh of 99,000 tetrahedral elements during the optimization procedure.

Figure 12. Example 5. Design domain for 3D cross channel problem.

The results are obtained by considering Stokes equations, and values of 0.01 for µ, 250.0 for
αU , 2.5 · 10−6 for αL and an intermediate value of Reynolds number (Re = 20; u0 = 1.0). Also,
a boundary condition of pressure is imposed on the outlet with value of p0 = 0.0. The value
of the β coefficient is equal to 1.0. Figure 13 shows the final topologies obtained with this
configuration, in which the respective values of the shape functionals are Fω(u) = 0.3108 and
J (u) = 0.2182.

8. Conclusions

We developed a topological derivative formulation for fluid channel design based on the con-
cept of traditional topology optimization formulations in which solid or fluid material is dis-
tributed at each point of the domain to optimize the cost function and to satisfy constraints.
Since inclusions mimicking solid or fluid phase are created instead of inserting or removing holes,
this strategy solved the numerical difficulty of previous topological derivative formulations in
which the boundary conditions on the holes have to be handled during the optimization process.
Moreover, in contrast to traditional topology optimization methods, the topological derivative
formulation does not require a material model concept based on intermediary porosities. Thus,
interpolation schemes are unnecessary. In addition, the topological derivative has the advantage
of providing an analytical form for the topological sensitivity which allows obtaining the optimal
design in a few iterations. Therefore, the resulting topology optimization algorithm is remark-
ably efficient and of simple computational implementation. In fact, it converges very quickly
and features only a minimal number of user-defined algorithmic parameters.

In particular, the theoretical results are used to devise a topology optimization algorithm
based on the topological derivative together with a level-set domain representation method, as
proposed in [7]. The remarkable simplicity of the closed forms sensitivities (3.25) for Stokes and
(4.19) for Navier-Stokes systems is to be noted. Since in this particular case the topological
derivatives are independent of the polarization tensor, they could be derived using standard
arguments. In any case, our derivations are general and could be applied to more complicated
situations, such as the problems in which the polarization tensor plays a key role [10].
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(a) (b)

(c) (d)

Figure 13. Final topologies (fluid domain) for the 3D cross channel problem
obtained by considering the Stokes system with inlet parabolic velocity: Y view
(a), isometric view (b), Z view (c) and X view (d).

To evaluate the formulation, the minimization of the energy dissipation in two-dimensional
double and with obstacle channels as well as three-dimensional cross and three-way channel
designs have been presented, which confirm the generality of the method. Results from con-
sidering Stokes and Navier-Stokes equations in two and Stokes in three spatial dimensions are
presented and compared. The topologies with well defined solid/fluid interfaces are obtained in
a few iterations (even for 3D problems). This shows that the proposed formulation based on
the topological derivative concept is robust and consistent with existing topology optimization
methods based on material models.

However, current, the algorithm solves the governing equations (Stokes or Navier-Stokes)
every function evaluation which is not so efficient if a nonlinear governing equation (such as
Navier-Stokes) is considered. This limits the application of this algorithm for large computa-
tional problems. Thus, as a future work, it can be implemented a onestep approach where the
governing equations and line search would be solved simultaneously [32, 18].
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