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Abstract. In this paper we present an approach for robust compliance topology opti-
mization under volume constraint. The compliance is evaluated considering a point-wise
worst case scenario. Analogously to Sequential Optimization and Reliability Assess-
ment, the resulting robust optimization problem can be decoupled into a deterministic
topology optimization step and a reliability analysis step. This procedure allows us to
use topology optimization algorithms already developed with only small modifications.
Here, the deterministic topology optimization problem is addressed with an efficient
algorithm based on the topological derivative concept and a level-set domain represen-
tation method. The reliability analysis step is handled as in the Performance Measure
Approach. Several numerical examples are presented showing the effectiveness of the
proposed approach.

1. Introduction

Compliance topology optimization of continuum structures has been subject of intense
research over the last decades. See for instance the book [9]. In this case, one seeks
the optimum distribution of material inside a given domain that leads to a structure
with minimal compliance for a given amount of material. Results obtained by topology
optimization have a valuable field of application in the design of structures and mechanical
components. To deal with this problems, several approaches for topology optimization
have been proposed. Among these approaches, we highlight methods based on the concept
of topological derivatives. This concept allows the development of efficient and robust
topology optimization algorithms. See for instance the book [30].

On the other hand, in most cases of practical interest, the parameters of the optimiza-
tion problem are not deterministic variables. Applied forces intensities, for example, may
not be completely known or may present stochastic variations. Optimization consider-
ing uncertainties has been extensively studied in the last decades and several strategies
to tackle the problem have been proposed, see for example the reviews presented in
[10, 26, 31, 35] and references therein for details.

In particular, most works on the subject can be grouped into three main classes: Reli-
ability Based Design Optimization, Robust Optimization and Risk Based Optimization.
In the case of Reliability Based Design Optimization the constraints of the optimization
problem are stated as to impose a maximum failure probability of the system [23, 27, 28].
In the case of Robust Optimization, the goal is to obtain an optimum design that is least
sensitive to variations and uncertainties of the variables [6, 14, 33, 38]. In the case of Risk
Based Optimization, the failure probability of the system is used to evaluate the total cost
of failures, that together with other costs compose the objective function of the problem
[8].

Topology optimization of continuum structures considering uncertainties has already
been addressed in the literature. In the context of Reliability Based Design Optimization,
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volume minimization with stress constraints has been studied in [15, 27, 32], while design
of Microelectromechanical systems has been presented in [24, 28]. Regarding the Robust
Optimization, compliance based topology design under uncertain loads has been studied
in [4, 14, 19, 39], synthesis of compliant mechanism together with design of structures
with minimum compliance have been tackled in [12, 25], whereas boundary uncertainties
have been investigated in [18]. Some applications of Risk Based Optimization to problems
concerning structural optimization have been presented in [7, 8], while a general review
of select applications have been presented in [16].

It has been observed that uncertainties consideration may lead to solutions conceptu-
ally different from deterministic optimization. This fact supports the application of op-
timization under uncertainties in several cases of practical interest. However, in general,
uncertainty based optimization requires much more computation effort than its determin-
istic counterpart. This fact limits the range of practical applications of uncertainty based
optimization.

In this context, the goal of this paper is to present an approach for robust compliance
topology optimization that is both general and computationally efficient. The compliance
is evaluated considering a point-wise worst case scenario, found within an event set of
possible outcomes of the random parameters. Analogously to Sequential Optimization and
Reliability Assessment [13], the resulting robust optimization problem can be decoupled
into a deterministic topology optimization step with modified parameters and a reliability
analysis step. Since the proposed approach decouples the nested robust optimization
problem, it is computationally efficient and easy to implement provided that it requires
only existing algorithms. In the reliability analysis step the point-wise worst case scenarios
are found as in the Performance Measure Approach. The topology optimization algorithm
proposed in [3] is used to solve the associated deterministic problem, which is based on
the topological derivative concept and a level-set domain representation method. From
the mathematical point of view, the topological derivative concept has been proved to
be robust with respect to uncertainties on the data [22]. In this paper therefore, the
theory developed in [22] is also confirmed from the numerical point of view. In addition,
the resulting decoupled topology optimization problem with modified parameters can
also be treated by using the topological derivative concept [30]. Therefore, the main
contribution of our work consists in presenting a simple and general formulation for the
robust topology optimization problem, by combining well established methods together
with existing theoretical results. The proposed alternating algorithm is very efficient and
of simple computational implementation. In particular, the numerical examples presented
at the end of this paper address the case of topology optimization with load intensities
as random variables. The general statement of the problem is also presented and can be
extended to other random variables as well, which however may require some additional
computational effort.

This paper is organized as follows. The robust design optimization problem is stated
in Section 2. In particular, we describe how the Sequential Optimization and Reliability
Assessment concept can be used to decouple the nested robust optimization problem into
a deterministic optimization step and a reliability analysis step. The resulting determin-
istic topology optimization problem is presented in Section 3, which is solved using the
topological derivative concept together with a level-set domain representation method.
Some numerical examples are presented in Section 4, showing the efficiency and simplic-
ity of the proposed approach as well as the importance of considering uncertainties in
the topology optimization problem. Finally, some concluding remarks are presented in
Section 5.
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2. Proposed Approach

Let us introduce a hold-all structural domain D ⊂ R2 and a subdomain Ω ⊂ D. We
consider the minimization of the structural compliance under volume constraint, which
can be written as:

FindΩd ⊂ D , such that:






Minimize
Ω⊂D

KΩ =

∫

D

σΩ · εΩ ,

Subject to |Ω| ≤ M ,

(2.1)

where |Ω| is the Lebesgue measure of Ω (i.e. volume of the structure) andM is a prescribed
amount of material. The quantity σΩ ·εΩ is twice the strain energy density, with σΩ and εΩ
used to denote the stress and the strain tensors, respectively, obtained from the solution
of a linear elasticity system in Ω.

When some parameters of the problem (e.g. load intensities) are random variables,
the compliance becomes a random variable itself. In this case the compliance is not
known in the deterministic sense and the deterministic problem from Eq. (2.1) can result
in inefficient designs in practice. In order to take into account such uncertainties it is
necessary to apply some Robust Optimization strategy. An interesting approach is to
minimize the expected value or the standard deviation of the compliance, for example
[14]. However, we point out that the resulting problem is not a Reliability Based Design
Optimization problem in the strict sense since there are no failure probabilities involved,
and thus we classify it as a Robust Optimization problem.

Since uncertainties based optimization problems can easily become intractable from
the computational effort point of view, it is essential to approach the problem in a way
that allow efficient computational solution. A common approach is to transform the
uncertainties based problem into an equivalent deterministic problem. In this way, once
we find the equivalent deterministic problem, efficient existing algorithms can be applied.

According to [6, 17], Robust Optimization methods can be broadly classified into those
based on probabilistic modeling and those based on non-probabilistic modeling. In prob-
abilistic modeling we consider that the probability distribution functions (PDF) of some
random variables are known and then take into account failure probabilities of the con-
straints, mean value of the objective function or variance of the objective function, for
example. On the other hand, non-probabilistic approaches often assume that some pa-
rameters are unknown but belong to a bounded set, but no other statistical information
is used.

A common approach used in the case of non-probabilistic modeling is known as Worst
Case Design Optimization [17]. In this approach, the deterministic optimization problem
is solved considering a Worst Case Scenario among the possible outcomes of the unknown
parameters. The worst Case Scenario [21] is given by the combination of parameters that
lead to the worst performance of the system being optimized. One important aspect that
requires special attention in the context of Worst Case Design Optimization is related
to the properties of the problem that gives the Worst Case Scenario. When the original
problem is convex, the Worst Case Scenario problem frequently becomes non-convex. This
issue is thoroughly discussed in [6, 17].

Another important aspect of Worst Case Design Optimization is how the set of possi-
ble outcomes is defined. Taking the set too large may result in too conservative designs.
Taking the set too small, on the other hand, can lead to non robust solutions. In this
work we follow the Worst Case Design Optimization approach, since it leads to a com-
putationally efficient decoupling of the Robust Optimization problem. However, we use
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statistical information of the unknown parameters in order to build the bounded set of
possible outcomes.

2.1. The bounded set of possible outcomes. Here we assume that the unknown
parameters are represented by a random vector x with known statistical information. In
order to write the bounded set of possible outcomes in a concise manner we assume that
the random vector x is composed by independent Gaussian components xi. Then we can
obtain the normalized random vector u by using the transformation T : x→ u given by

ui =
xi − µi

si
, (2.2)

where ui are independent Normal random variables with mean equal to zero and unitary
standard deviation and µi and si are the mean and the standard deviation of the random
variable xi.

Using the normalized random vector u = T (x) we can define the event set as

E = {x ∈ Rm : ‖T (x)‖ ≤ βt}, (2.3)

where βt is some prescribed parameter. Note that the event set is composed only by
outcomes as distant as βt from the mean value T (x) = 0. In other words, only outcomes
obtained within βt standard deviations from the mean value are considered.

From the definition of the cumulative distribution function (CDF)

P (u ≤ βt) = Φ(βt) (2.4)

where Φ is the cumulative distribution function (CDF) of a Normal random variable.
Consequently, by imposing ‖T (x)‖ ≤ βt we are actually imposing a target probability of
occurrence

Pt = P (‖T (x)‖ ≤ βt) = Φ(βt). (2.5)

From Eq. (2.5) we note that by prescribing a given value βt we are actually prescribing
that the set E is comprised only by outcomes which CDF correspond to a target probability
Pt. Consequently, we can obtain the value of βt for a given Pt from

βt = Φ−1(Pt). (2.6)

consider a larger or smaller portion of the possible outcomes as needed. Finally, we note
that βt is related to the Hasofer-Lind reliability index [20, 29], in the sense that it defines
a distance from the expected value in the normalized space.

2.2. The robust optimization approach . In order to build a Robust Optimization
approach, we search for the Worst Case Scenario point-wisely inside the structural domain.
At each point of the domain, the strain energy density Worst Case Scenario x∗ for events
in the set E can be found by solving the following problem:

Findx∗ ∈ Rm , such that:
{

Maximize
x∈E

σΩ(x) · εΩ(x) ,

Subject to ‖T (x)‖ ≤ β ,

(2.7)

where β is a given parameter representing the reliability index. The constraint ‖T (x)‖ ≤ β
states that we are searching for a solution in the set E as defined in Eq. (2.3). Finally,
the notation σΩ · εΩ = σΩ(x) · εΩ(x) represents the fact that the strain energy depends on
unknown parameters x.
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Minimization of the strain energy density considering a point-wise Worst Case Scenario
can be achieved by substitution of x∗ into (2.1). The resulting optimization problem is:

FindΩp ⊂ D , such that:






Minimize
Ω⊂D

KΩ =

∫

D

σΩ(x
∗) · εΩ(x

∗) ,

Subject to |Ω| ≤ M ,

(2.8)

where σΩ(x
∗) · εΩ(x

∗) indicates that the strain energy density is evaluated considering the
point-wise Worst Case Scenario x∗ as defined in (2.7).

In the context of this work it is important to note the difference between Ωd, solution
to (2.1), and Ωp solution to (2.8). Note that Ωp is the optimum solution of the Robust
Optimization problem while Ωd is the solution of the deterministic optimization problem.

2.3. Sequential Optimization and Reliability Assessment . Unfortunately, it is not
efficient to address the problem from (2.8) directly, since x∗ is defined implicitly by means
of (2.7). This leads to a nested optimization problem, where it is necessary to solve the
maximization problem (2.7) at each point of the domain before evaluating the objective
function from (2.8).

However, it is possible to decouple these two optimization problems using concepts from
Sequential Optimization and Reliability Assessment. We first define the solution of the
problem from (2.8) as the pair (Ωp,xp). We note that, x∗ is defined as the Worst Case
Scenario obtained for an arbitrary topology, while xp is defined as the special Worst Case
Scenario obtained with the optimum topology Ωp.

If, for some reason, xp was known beforehand, it would not be necessary to solve the
problem from (2.7) before solving the problem from (2.8). In this case, the optimum
topology Ωp can be found directly by taking the Worst Case Scenario xp in the problem
from (2.8). This puts in evidence that, once the Worst Case Scenario xp is known, the
problem (2.8) becomes a deterministic topology optimization problem. On the other
hand, if the optimum topology Ωp is known, the Worst Case Scenario xp can be found
directly by solving (2.7) point-wisely with the optimum topology Ωp.

The problem from (2.7) is stated in the same form frequently encountered in Reliability
Based Design Optimization using the Performance Measure Approach [26, 34, 37]. Con-
sequently, it can be solved by efficient schemes already developed in the literature. Here
this problem is solved using the Advanced Mean Value algorithm, originally proposed in
[36] and described in details in [37]. A brief explanation of the algorithm is presented in
Appendix A.

Obviously, neither Ωp nor xp are known beforehand, unless the problem is already
solved. However, it is possible to start from initial approximations and iterate until
accurate solutions are found. In fact, let us indicate some iteration number with (k), then
an iterative algorithm for solving the Robust Optimization problem can be summarized
as presented in the alternating Algorithm 1. The procedure is started with an arbitrary
topology Ω(0). With this topology we find the Worst Case Scenario x(0) at each point
of interest by solving (2.7) with Ω(0). With the Worst Case Scenario x(0) we find a new
topology Ω(1) and so on, until convergence is achieved.

Convergence of the solution can be checked on changes of Ω or x between two succes-
sive iterations. We claim however that there are no mathematical proofs showing that
the proposed alternating algorithm converges. In any case, at least for the numerical ex-
periments presented in Section 4, we did not observe any convergence or stability issues.
Besides, the point-wise Worst Case Scenario x is evaluated only at interest points of the
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domain. In this work the Worst Case Scenario is evaluated at the integration points of
the finite elements mesh.

It is also interesting to note that, conceptually, at each iteration of the alternating algo-
rithm we require the solution of a deterministic topology optimization problem. However,
in practice it seems to be more efficient to carry only a few iterations of the deterministic
topology optimization algorithm before proceeding to the next step of the Robust Opti-
mization algorithm. In this work we carry only a single step of the deterministic topology
algorithm before updating the Worst Case Scenario point-wisely.

Algorithm 1: Alternating Robust Optimization Algorithm

input : Initial topology Ω(0)

output: (Ωp, xp)

1 Set k ← 0;

2 Compute x(0) by solving (2.7) with Ω = Ω(0);
3 while convergence is not achieved do

4 Make k ← k + 1;

5 Compute Ω(k) by solving (2.8) with x∗ = x(k−1);

6 Compute x(k) by solving (2.7) with Ω = Ω(k);
7 end while

8 Return (Ωp, xp) as solution.

3. Structural Topology Optimization Problem

The robust topology optimization we are dealing with consists in solving problem (2.8)
evaluated at the worst case scenario, solution to the problem (2.7). Without loss of
generality, we restrict ourselves to uncertainties on the intensity of the applied loads
(note that the problem stated through (2.7) and (2.8) is general and can be applied when
other parameters are random variables). In this case, we can use linear superposition of
the effects in order to save computational effort. Let us consider that the applied load
can be written as a linear combination of qi independent loads, with i = 1, ..., m. Then,
the stress σΩ and strain εΩ tensors at each point can be written as

σΩ :=

m
∑

i=1

x∗iσ(ui) and εΩ :=

m
∑

i=1

x∗i ε(ui) , (3.1)

where, in this context, x∗i can be interpreted as load scale factors. The canonical strain
ε(ui) and stress σ(ui) tensors are obtained from each individual load qi. For this pur-
pose, we must to solve the following set of canonical variational problems related to the
structural response when each load qi is applied:

Find ui ∈ V , such that






∫

D

σ(ui) · ε(η) =

∫

ΓN

qi · η ∀η ∈ V ,

with σ(ui) := ρCε(ui),

(3.2)

where

ε(ϕ) =
1

2
(∇ϕ+ (∇ϕ)⊤) (3.3)

is the linearized Green tensor,

C =
E

1− ν2
((1− ν)I+ νI⊗ I) (3.4)
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is the elasticity tensor, I and I are the second and fourth identity tensors, respectively, E
is the Young modulus and ν the Poisson ratio. The piecewise constant function ρ

ρ(x) =

{

1, if x ∈ Ω ,
ρ0, if x ∈ D \ Ω ,

(3.5)

with 0 < ρ0 ≪ 1, is used to mimic voids. That is, the original structural problem, where
the structure itself consists of the domain Ω of given elastic properties and the remaining
part D \ Ω of the hold-all is empty (has no material), is approximated by means of the
two-phase material distribution given by (3.5) over D where the empty region D \ Ω is
occupied by a material (the soft phase) with Young’s modulus, ρ0E, much lower than the
given Young’s modulus, E, of the structure material (the hard phase). The space V is
defined as

V := {ϕ ∈ H1(Ω;R2) : ϕ|ΓD

= 0} . (3.6)

Here, ΓD and ΓN are Dirichlet and Neumann boundaries, respectively, such that ∂D =
ΓD ∪ΓN with ΓD ∩ΓN = ∅, and qi is the prescribed traction on ΓN . See details in Fig. 1.

Figure 1. Sketch of the elasticity problem.

The volume constraint in problem (2.8) is trivially imposed via the Augmented La-
grangian Method [11]. In particular, it can be rewritten as an unconstrained optimization
problem as follows:

Minimize
Ω⊂D

JΩ = KΩ + λ1g
+
Ω +

λ2

2
(g+Ω)

2 , (3.7)

where g+Ω := max{gΩ,−λ1/λ2}, with gΩ = (|Ω| −M)/M , λ2 > 0 is a fixed multiplier and
λ1 is updated according to the following recursive formula:

λ
(0)
1 = 0

λ
(n+1)
1 = max{0, λ

(n)
1 + λ2gΩ} . (3.8)

The deterministic structural compliance optimization problem (2.8) is solved by using
the topological derivative concept, which has been shown to be robust with respect to
uncertainties on the data [22]. The topological derivative measures the sensitivity of
a given shape functional with respect to an infinitesimal singular domain perturbation,
such as the insertion of holes, inclusions or source-terms [30]. It is defined through a
limit passage when the small parameter governing the size of the topological perturbation
goes to zero. Therefore, the topological derivative can be used as a steepest-descent
direction in an optimization process like in any method based on the gradient of the
cost functional. In contrast to traditional topology optimization methods, the topological
derivative formulation does not require a material model concept based on intermediary
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densities. Thus, interpolation schemes are unnecessary. In addition, it has the advantage
of providing an analytical form for the topological sensitivity which allows to obtain the
optimal design in few iterations. In fact, the resulting approach leads to a topology design
algorithm of remarkably efficiency and of simple computational implementation, which
does not require post-processing procedures of any kind and features only a minimal
number of user-defined algorithmic parameters. In particular, the topological derivative
of the shape functional JΩ with respect to the nucleation of a small circular inclusion with
different material property from the background, represented by a contrast γ, is given by
the sum

DTJΩ = DTKΩ ∓max{0, λ1 + λ2gΩ} , (3.9)

where ∓ means that if we remove material the volume becomes smaller, on the other hand,
if we insert material the volume increases. The topological derivative for the compliance
denoted by DTKΩ is know and can be found in the book [30, ch.5 pp.158], for instance.
It is given by:

DTKΩ = PσΩ · εΩ , (3.10)

where the Pólya-Szegö polarization tensor P is

P =
1− γ

1 + γa2

(

(1 + a2)I+
1

2
(a1 − a2)

1− γ

1 + γa1
I⊗ I

)

, (3.11)

with

a1 =
1 + ν

1− ν
and a2 =

3− ν

1 + ν
. (3.12)

In addition, the contrast γ in the material property, is defined as follows

γ(x) =

{

ρ0, if x ∈ Ω ,
1
ρ0
, if x ∈ D \ Ω .

(3.13)

Remark 1. The polarization tensor P is here given by an isotropic fourth order tensors
because we are dealing with circular inclusions as topological perturbations. For arbitrary
shaped inclusions the reader may refer to the book [1], for instance. On the other hand,
there are two main advantages in using circular inclusions in the context of topology
optimization, which are:

• The associated topological derivative is given by a closed formula depending on the
solution to the original unperturbed problem.
• There are optimality conditions rigorously derived in [2], allowing for using the
topological derivative together with a level-set domain representation method as a
steepest-descent direction in a topology optimization algorithm [3].

In fact, the above result (3.10) together with a level-set domain representation method
proposed in [3] (see also [5] for more details) is used for solving the deterministic compli-
ance topology optimization problem (2.8) with x∗ = x(k) fixed, necessary in step (3) of the
algorithm proposed in Section 2.3.

4. Numerical Examples

In the numerical examples we assume that the structures are under a plane stress
state. The Young’s modulus and the Poisson ratio are respectively given by E = 1.0
and ν = 0.3, while the contrast ρ0 = 10−4. The angle θ defined in [3], representing the
optimality condition, has converged to a value smaller than 1o in all cases. The mechanical
problem is discretized into linear triangular finite elements and two steps of uniform mesh
refinement were performed during the iterative process. Since only load intensities are
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taken as random variables, linear superposition of effects is used wherever it is possible.
We point out that in order to compute the topological derivative associated with each
iteration of the deterministic optimization algorithm [3], one Finite Element Analysis
(FEA) is required per iteration. The robust algorithm, on the other hand, requires one
FEA for each applied load per iteration, since linear superposition of the effects is used.
Finally, the mean compliance and the compliance standard deviation of the structures are
computed using Monte Carlo Simulation with 104 samples [20].

4.1. Example 1. Let us consider a square panel of size 1 × 1 clamped on the top and
submitted to a pair of loads, as shown in Fig. 2. The loading consists of two forces
q1 = (2.0,−1.0) and q2 = (−2.0,−1.0) applied on the middle of the bottom edge. The
hold-all domain is discretized into a uniform mesh with 6400 elements and 3281 nodes.
The required volume fraction is set as M = 25%, while the parameter λ2 = 1.0.

q
1

q
2

Figure 2. Example 1: initial guess and boundary conditions.

If topology optimization is made considering all parameters as deterministic, the opti-
mal topology obtained at iteration 34 is that presented in Fig. 3, which is a benchmark
solution to this problem.

Figure 3. Example 1: result at iteration 34 for the deterministic case.

We now assume that the load scale factors are represented by Gaussian random vari-
ables. The event set is defined with β = 2.0 and the load scale factors have unitary
mean, namely µ1 = µ2 = 1.0. In the first case, the standard deviations are equal and
given by s1 = s2 = 0.20. The optimum topology obtained at iteration 48 is presented in
Fig. 4. As expected, the optimum solution of the robust optimization problem leads to
a V-bracket structure, able to handle the horizontal components of the loads that result
for cases where the two forces do not have the same intensities.
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Figure 4. Example 1: result at iteration 48 for the robust case with s1 =
s2 = 0.20.

The distributions of the load scale factors in the worst case scenario x1 and x2 are shown
in Fig. 5.

(a) index x1 (b) index x2

Figure 5. Example 1: load scale factors x1 and x2 for the robust case with
s1 = s2 = 0.20.

Finally, we repeat the same experiment by setting s1 = 0.20 and s2 = 0.02. As expected,
in this case the final topology, obtained at iteration 47, is not symmetric as can be seen
in Fig. 6.

Figure 6. Example 1: result at iteration 47 for the robust case with s1 =
0.20 and s2 = 0.02.

The distributions of the load scale factors in the worst case scenario x1 and x2 are shown
in Fig. 7.
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(a) index x1 (b) index x2

Figure 7. Example 1: load scale factors x1 and x2 for the robust case with
s1 = 0.20 and s2 = 0.02.

4.2. Example 2. Now, let us consider the design of a tower clamped on the bottom and
submitted to a pair of loads, as shown in Fig. 8. The hold-all domain is given by a T-
bracket structure, whose lengths of the horizontal and vertical branches are respectively
0.4 and 0.6 measured along their center lines and both have identical width of 0.2. It
is discretized into a uniform mesh with 25600 elements and 13001 nodes. The loading
consists of a pair of forces q1 = (0.0,−1.0) and q2 = (0.0,−1.0) applied on the two opposite
bottom corners of the horizontal branch. The required volume fraction is set as M = 40%,
while the parameter λ2 = 2.0. The load scale factors have unitary mean µ1 = µ2 = 1.0
and identical standard deviations given by s1 = s2 = 0.20.

q
1

q
2

Figure 8. Example 2: initial guess and boundary conditions.

The optimal topology considering all parameters as deterministic obtained at iteration
36 is presented in Fig. 9. The mean compliance and the compliance standard deviation of
this structure were found to be 89.26 and 40.32, respectively. This results in a coefficient
of variation of 0.45.
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Figure 9. Example 2: result at iteration 36 for the deterministic case.

Now we consider the robust case, with the load scale factors represented again by
Gaussian random variables. The event set is defined with β = 2.0. The optimum topology
obtained at iteration 45 is presented in Fig. 10. The mean compliance and the compliance
standard deviation of this structure are given respectively by 71.34 and 19.74, which
results in a coefficient of variation of 0.28. This result indicates that the proposed robust
approach is able to obtain much better solutions than its deterministic counterpart.

Figure 10. Example 2: result at iteration 45 for the robust case.

The distributions of the load scale factors in the worst case scenario x1 and x2 are
shown in Fig. 11. It is interesting to note that the point-wise worst case scenarios present
significant variation over the structural domain.
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(a) index x1 (b) index x2

Figure 11. Example 2: load scale factors x1 and x2 for the robust case.

4.3. Example 3. The third example considers the design of a simply supported beam
submitted to the loads shown in Fig. 12. The hold-all domain is rectangular with di-
mensions 6× 1. It is modelled using symmetry conditions and a uniform mesh with 4800
elements. The loading consists of forces q1 = (0.0,−2.0) and q2 = (−1.0, 0.0). In this
case, the horizontal force can be seen as a pre-stress applied to the structure, with the
objective of reducing the tensile stresses in the lower part of the structure. The required
volume fraction is set as M = 50%, while the parameter λ2 = 2.0. Here we assume
that the load scale factors are Gaussian variables with mean equal to µ1 = µ2 = 1.0 and
standard deviation equal to s1 = s2 = 0.2, while β = 2.0.

q
1

q
2

Figure 12. Example 3: initial guess and boundary conditions.

The solution of the deterministic problem obtained at iteration 45 is presented in Fig.
13. Note that the structure is supported by inclined bars, that rely on the horizontal force
q2 in order to be stable. The mean compliance and the compliance standard deviation of
this structure are respectively given by 153.27 and 75.53, which results in a coefficient of
variation of 0.49.

Figure 13. Example 3: result at iteration 45 for the deterministic case.
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The solution of the robust problem obtained at iteration 77 is presented in Fig. 14.
We note that the optimum topology is significantly different from the deterministic case,
mainly because the horizontal force uncertainty results in a optimum structure without
the simple inclined bars near the supports. The mean compliance and the compliance
standard deviation of this structure were found to be 129.79 and 55.84, respectively.
This results in a coefficient of variation of 0.43, which indicates that the proposed robust
approach is indeed able to obtain better solutions than its deterministic counterpart.

Figure 14. Example 3: result at iteration 77 for the robust case.

The distributions of the load scale factors in the worst case scenario x1 and x2 are
shown in Fig. 15. We note that some parts of the structure were designed by reducing
some applied load while the other one is increased. However, the worst case scenario at
some parts of the structure are obtained by increasing both applied loads.

(a) index x1 (b) index x2

Figure 15. Example 3: load scale factors x1 and x2 for the robust case.

5. Concluding Remarks

In this paper an alternative approach for robust topology optimization has been pre-
sented. Thanks to the Sequential Optimization and Reliability Assessment approach, the
problem can be rewritten as a deterministic optimization problem with modified parame-
ters, that are obtained with inverse reliability analysis. This allows standard deterministic
algorithms already developed to be used in the context of robust optimization. Here, the
deterministic topology optimization problem has been solved using an efficient method
based on the topological derivative concept together with a level-set domain representa-
tion method as proposed in [3]. We note that the resulting robust topology optimization
algorithm converges slower than the standard deterministic algorithm, as can be seen by
the increased number of iterations required for convergence. Besides, the computational
effort required per step is also increased, since one FEA is required for each applied load
(in order to apply linear superposition of the effects). However, this increasing on the
computational effort is acceptable in the context of robust optimization and the problem
is still tractable even with standard desktop computers.

The examples presented here considered only the intensities of the applied load as
random variables. In this case, the stress and strain tensors can be written as a linear
combination of the load scale factors and the canonical stress and strain tensors, reducing
drastically the computational effort. The examples presented show that the approach is
able to obtain optimum solutions that take into account uncertainties of some parameters.
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We point out that the structural compliance (the objective function of the problem) does
not depend linearly on the random variables (the load scale factors). Therefore, the mean
value of the structural compliance is not equal to the compliance obtained with the mean
value of the random variables (as would be the case if the objective function depends
linearly on the random variables). Consequently, the use of deterministic approach with
the mean value of the random variables has little meaning from the robust point of view.
For this reason, the deterministic approach gives poor results in comparison with the
proposed robust approach, both in terms of mean values and standard deviations.

Since the proposed approach is simple and general, more realistic problems could be
considered, such as structural topology optimization under point-wise stress constraints
[5]. In addition, our approach could be adapted to deal with more general loading scenar-
ios and distributed parameters as random variables, for instance. Finally, more refined
probabilistic modeling of the random variables shall be considered. These topics are now
under investigation.
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Appendix A. Advanced Mean Value algorithm

In this appendix we describe the Advanced Mean Value (AMV) algorithm [36, 37], used
to solve the problem from (2.7) point-wisely. In the AMV algorithm we assume that the
worst case scenario x∗ satisfies ‖T (x∗)‖ = β, i.e. the worst case scenario occurs at the
boundary of the set of possible outcomes. Note that this is a valid assumption in the
context of this work, since the strain energy (the objective function of the problem from
(2.7)) depends quadratically on the load scale factors (the random variables). In this case,
the problem of finding the worst case scenario can be written in the general form:

Findx∗ ∈ Rm, such that:
{

Maximize g(x) ,
Subject to ‖u‖ = β ,

(A.1)

where g(x) is the performance function (the strain energy σΩ(x) · εΩ(x) in the context
of this work) and u = T (x), as defined in (2.2), is the vector of random variables in the
normal space. The Lagrangian of this problem is written as

L(x, µ) = −g(x) + µ (‖u‖ − β) , (A.2)

where µ is the Lagrange multiplier. The first order optimality conditions are then

∇
x
L(x, µ) = −∇

x
g(x) + µ∇

x
‖u‖ = 0, (A.3)

∂µL(x, µ) = ‖u‖ − β = 0, (A.4)

where ∇
x
represents the gradient with respect to x. Since ∇

x
‖u‖ = u/‖u‖ (as can be

verified by the reader), the first optimality condition gives

u =
‖u‖

µ
∇

x
g(x). (A.5)

Finally, from the equality constraint ‖u‖ = β we conclude that the solution of the problem
must satisfy the fixed point condition

u = β
∇

x
g(x)

‖∇
x
g(x)‖

. (A.6)
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In the AMV algorithm we solve the problem iteratively, by taking an initial guess x(0)

and using the above fixed point condition as an update rule. The resulting algorithm is
given by

u(k+1) = β
∇

x
g(x(k))

‖∇
x
g(x(k))‖

, (A.7)

x(k+1) = T−1(u(k+1)), (A.8)

where the superscripts (k), (k+1) represent the values of the approximation in successive
iterations. The iterations are repeated until some convergence criterion is satisfied. In
this work we use the convergence criterion ‖u(k+1)−u(k)‖ ≤ ǫ, where ǫ is a small tolerance,
taken here as ǫ = 10−9.
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