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Abstract. In the field of shape and topology optimization the new concept is the topo-
logical derivative of a given shape functional. The asymptotic analysis is applied in order
to determine the topological derivative of shape functionals for elliptic problems. The
topological derivative (TD) is a tool to measure the influence on the specific shape func-
tional of insertion of small defect into a geometrical domain for the elliptic boundary
value problem (BVP) under considerations. The domain with the small defect stands
for perturbed domain by topological variations. This means that given the topological
derivative, we have in hand the first order approximation with respect to the small pa-
rameter which governs the volume of the defect for the shape functional evaluated in
the perturbed domain. TD is a function defined in the original (unperturbed) domain
which can be evaluated from the knowledge of solutions to BVP in such a domain. This
means that we can evaluate TD by solving only the BVP in the intact domain. One can
consider the first and the second order topological derivatives as well, which furnish the
approximation of the shape functional with better precision compared to the first order
TD expansion in perturbed domain. In this work the topological derivative is applied in
the context of Electrical Impedance Tomography (EIT). In particular, we are interested
in reconstructing a number of anomalies embedded within a medium subject to a set
of current fluxes, from measurements of the corresponding electrical potentials on its
boundary. The basic idea consists in minimize a functional measuring the misfit between
the boundary measurements and the electrical potentials obtained from the model with
respect to a set of ball-shaped anomalies. The first and second order topological deriva-
tives are used, leading to a non-iterative second order reconstruction algorithm. Finally,
a numerical experiment is presented, showing that the resulting reconstruction algorithm
is very robust with respect to noisy data.

1. Introduction

Shape and topology optimization techniques are used in the wide domain of applica-
tions, in particular for solution of inverse problems. The modern theory of shape and
topology optimization is a branch of calculus of variations, differential geometry, analy-
sis of boundary value problems for partial differential equations, numerical methods in
engineering and structural mechanics, among others. The mathematical analysis of such
problems provides the existence of optimal shapes and optimal topologies, together with
the necessary conditions for optimality and the numerical schemas for evaluation of ap-
proximate solutions as well as the convergence of the proposed schemas. Since the shape
optimization problems are in general non-convex, the numerical results are obtained for
local solutions only.

The class of inverse problems considered can be formulated as minimizations of shape
functionals. Given a geometrical domain Ω with the boundary Γ = ∂Ω and a boundary
value problem defined in Ω whose solution is denoted by u∗, we are able to observe the
response of the system on the boundary Γ. For example we know the response to the
Dirichlet boundary conditions given by the Dirichlet-to-Neumann map for the second
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order elliptic equation [18],

Λω∗ : u∗ = U 7→ Q :=
∂u∗

∂n
on Γ.

Assuming that the couple (U,Q) is known however the real defect ω∗ is unknown we
have an inverse problem. Therefore, given (U,Q) we want to determine the size and the
position of a small defect ω∗ ⊂ Ω inside of the hold-all domain. The mathematical model
of the system furnishes the mapping ω 7→ Λω for a family of defects ω. Thus, taking U
we can generate the output of the model Λω(U) and compare with the given function
Q = Λω∗(U). In this way a sequence of approximate solutions to the inverse problem is
constructed. In general such a sequence converges to a local solution of the minimization
procedure for the distance between the real data and the data obtained from the model.

Hence, using the mathematical model we can consider the associated shape-topological
optimization problem based on the distance minimization between the observation (U,Q)
and the model response (U,Λω(U)) over the family of admissible defects ω. This is a
numerical method which uses the shape and topological derivatives of the specific shape
functional defined for the inverse problem.

The topological derivative represents the first term of the asymptotic expansion of a
given shape functional with respect to the small parameter which measures the size of
singular domain perturbations, such as holes, inclusions, source-terms and cracks. This
relatively new concept was introduced in the fundamental paper [56] and has been suc-
cessfully applied to many relevant fields such as shape and topology optimization [1, 8, 11,
12, 15, 17, 29, 38, 40, 48, 49, 50, 59], inverse problems [10, 19, 20, 21, 23, 30, 32, 34, 36, 42],
imaging processing [13, 14, 31, 33, 39], multiscale material design [9, 26, 27, 28, 52] and
mechanical modeling including damage [2] and fracture [60] evolution phenomena. Re-
garding the theoretical development of the topological asymptotic analysis, see for instance
[6, 7, 22, 24, 25, 35, 37, 41, 43, 44, 45, 46, 47, 57, 58]. For an account of new developments
in this branch of shape optimization we refer to the book by Novotny & Soko lowski [51].
In this paper the topological derivative is applied in the context of Electrical Impedance
Tomography.

In our frame the applications of topological derivatives is of twofold interest. First of
all, for one defect and the associated shape functional which measures the discrepancy
between unknown ω∗ and the actual ω in the model we can define the first order asymptotic
expansion for solutions uε of the model with small defect of the size |ωε| → 0 located at
x̂ ∈ Ω,

J(ωε, uε) = J(∅, u0) + |ωε|T (x̂) + o(|ωε|),
where u0 = uε for ε = 0. If we minimize the shape functional for the purposes of inverse
problem solution, the selection of small ωε uses for its centre x̂ the condition

T (x̂) < 0.

In addition, the size of the defect |ωε| can be deduced from the second order expansion of
the shape functional

J(ωε, uε) = J(∅, u0) + |ωε|T (x̂) + |ωε|2T 2(x̂) + o(|ωε|2).

It is clear that the proposed procedure strongly depends on the choice of the shape
functional which should be of energy type, if possible.

In the paper the tomography framework is considered for the purposes of numerical
solution of inverse problems. The special attention is paid to the electrical impedance
tomography which is a robust technique in the field of noninvasive detection of small
defects.
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The tomography techniques for solution of inverse problems are developed in Poland,
see e.g., [54] on the impedance and optical tomography, [55] on industrial and biological
tomography, as well as [53] on electrical capacitance tomography.

In the present paper, a new method for solution of inverse problems based on the
topological derivative concept is proposed. The method is useful for identification of
small defects and it is based on asymptotic analysis of associated PDEs with respect to
the size of defects, for the size which tends to zero. The characteristics of defects are given
by the shape functionals, and the numerical methods employ the asymptotic expansions
of the functional with respect to the size of defects.

2. Problem Formulation

Let us consider a domain Ω ⊂ R
2 with Lipschitz continuous boundary ∂Ω, which

represents a body endowed with the capability of conducting electricity. Its electrical
conductivity coefficient is denoted by k∗(x) ≥ k0 > 0, with x ∈ Ω and k0 ∈ R+. If the
body Ω is subjected to a given electric flux Q on ∂Ω, then the resulting electric potential
in Ω is observed on a part of the boundary Γm ⊂ ∂Ω. The objective is to reconstruct the
electrical conductivity k∗ over Ω from the obtained boundary measurement U := u∗|Γm

,

solution of the following over-determined boundary value problem
div[q(u∗)] = 0 in Ω,

q(u∗) = −k∗∇u∗,
q(u∗) · n = Q on ∂Ω,

u∗ = U on Γm.

(2.1)

Without loss of generality, we are considering only one boundary measurement U on Γm.
The extension to several boundary measurements is trivial. Furthermore, we assume that
the unknown electrical conductivity k∗ we are looking for belongs to the following set

Cγ(Ω) :=

{
ϕ ∈ L∞(Ω) : ϕ = k

(
1Ω −

N∑
i=1

(1− γi)1ωi

)}
, (2.2)

where k ∈ R+ is the electrical conductivity of the background. The sets ωi ⊂ Ω, with
i = 1, · · · , N , are such that ωi ∩ ωj = ∅, for i 6= j. In addition, 1Ω and 1ωi

are used
to denote the characteristics functions of Ω and ωi, respectively. Finally, γi ∈ R+ are
the contrasts with respect to the electrical conductivity of the background k. We assume
that the electrical conductivity of the background k and the associated contrasts γi are
known. Therefore, the inverse problem we are dealing with can be written in the form
of a topology optimization problem with respect to the sets ω∗ =

⋃N
i=1 ωi. See sketch

in Figure 1. Let us introduce the following auxiliary Neumann boundary value problem:

Figure 1. Body with anomalies.
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Find u, such that 
div[q(u)] = 0 in Ω

q(u) = −k∇u
q(u) · n = Q on ∂Ω∫

∂Ω
Q = 0∫

Γm
u =

∫
Γm
U,

(2.3)

where Q and U are the boundary excitation and boundary measurement, respectively.
Finally, we introduce the following shape functional measuring the misfit between the
boundary measurement U and the solution u of (2.3) evaluated on Γm, namely

Minimize
ω∗⊂Ω

J (u) =

∫
Γm

(u− U)2, (2.4)

which will be solved by using the first and second order topological derivatives concepts.
See related works [3, 4, 5, 16, 34].

3. Topological Asymptotic Expansion

Let us consider that the domain Ω is perturbed by the nucleation of N ball-shaped
inclusions Bεi(xi) with contrast γi, i = 1, · · · , N . We assume that Bεi(xi) ⊂ Ω is a
ball with center at xi ∈ Ω and radius εi, such that Bεi(xi) ∩ Bεj(xj) = ∅ for i 6= j.
We introduce the notations ξ = (x1, · · · , xN) and ε = (ε1, · · · , εN). The topologically
perturbed counterpart of the shape functional (2.4) is given by

J (uε) =

∫
Γm

(uε − U)2, (3.1)

where uε is solution of the following boundary value problem

div[qε(uε)] = 0 in Ω
qε(uε) = −γεk∇uε

qε(uε) · n = Q on ∂Ω∫
∂Ω
Q = 0∫

Γm
uε =

∫
Γm
U

JuεK = 0 on
⋃N
i=1 ∂Bεi(xi)

Jqε(uε)K · n = 0 on
⋃N
i=1 ∂Bεi(xi)

(3.2)

with the contrast defined as

γε = γε(x) =

{
1, if x ∈ Ω \

⋃N
i=1 Bεi(xi)

γi, if x ∈ Bεi(xi).
(3.3)

From these elements, the topological asymptotic expansion the shape functional J (uε)
is given by

J (uε) = J (u) + d(ξ) · α +
1

2
H(ξ)α · α + E(ε), (3.4)

where d(ξ) and H(ξ) is the first and second order topological derivatives, respectively. In
addition, α = (ε2

1, · · · , ε2
N) and E(ε) is the remainder. Some terms in the above expression

still require explanations. The vector d(ξ) and the matrix H(ξ) are defined as

d(ξ) :=

 d1
...
dN

 and H(ξ) :=


h11 h12 · · · h1N

h21 h22 · · · h2N
...

...
. . .

...
hN1 hN2 · · · hNN ,

 (3.5)
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where each component di is given by

di = −2

∫
Γm

ρi(u− U)(gi + ũi), (3.6)

while each entry hij is defined as

hii = 4

∫
Γm

(u− U)(ρihi + ρig̃i + ˜̃ui) + 2

∫
Γm

(ρigi + ũi)
2, (3.7)

hij = 2

∫
Γm

(u− U)(ρjθ
j
i + ρiθ

i
j + uji + uij) + 2

∫
Γm

(ρigi + ũi)(ρjgj + ũj), j 6= i. (3.8)

In addition,

ρi =
1− γi
1 + γi

, (3.9)

and the functions gi(x), hi(x), g̃i(x) and θji (x) are respectively given by

gi(x) =
1

‖x− xi‖2
∇u(xi) · (x− xi), (3.10)

hi(x) =
1

2

1

‖x− xi‖4
∇2u(xi)(x− xi)2, (3.11)

g̃i(x) =
1

‖x− xi‖2
∇ũi(xi) · (x− xi), (3.12)

θji (x) =
1

‖x− xj‖2
A(xj)∇u(xi) · (x− xj). (3.13)

where the second order tensor A(x) is written as

A(x) =
1

‖x− xi‖2

[
I − 2

(x− xi)⊗ (x− xi)
‖x− xi‖2

]
. (3.14)

Finally, the auxiliary function ũi is solution to: Find ũi, such that
div[q(ũi)] = 0, in Ω,

q(ũi) = −k∇ũi, in Ω,
q(ũi) · n = −ρiq(gi) · n, on ∂Ω∫

Γm
ũi = −ρi

∫
Γm
gi,

(3.15)

while the auxiliary function ˜̃ui solves: Find ˜̃ui, such that
div[q(˜̃ui)] = 0 in Ω,

q
(
˜̃ui
)

= −k∇˜̃ui in Ω,
q(˜̃ui) · n = −ρiq(hi + g̃i) · n, on ∂Ω∫

Γm

˜̃ui = −ρi
∫

Γm
hi + g̃i,

(3.16)

and the auxiliary function uji is solution to: Find uji , such that
div[q(uji )] = 0 in Ω,

q
(
uji
)

= −k∇uji in Ω,

q(uji ) · n = −ρjq(θji ) · n, on ∂Ω∫
Γm
uji = −ρj

∫
Γm
θji .

(3.17)

The derivation of the above equations follows the same steps as presented in [34], for
instance.
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4. A Numerical Experiment

In this section we present the resulting non-interactive reconstruction algorithm based
on the expansion (3.4). Let us introduce the quantity

Ψ(ξ, α) = d(ξ) · α +
1

2
H(ξ)α · α. (4.1)

After minimize (4.1) with respect to α we obtain the following linear system

α = α(ξ) = −(H(ξ))−1d(ξ). (4.2)

Let us replace α(ξ) solution of (4.2) in (4.1), to obtain

Ψ(ξ, α(ξ)) = −1

2
d(ξ) · α(ξ). (4.3)

Therefore, the pair of vectors (ξ?, α?) which minimize (4.1) is given by

ξ? := arg min
ξ∈X

{
−1

2
d(ξ) · α(ξ)

}
and α? := α(ξ?), (4.4)

where X is the set of admissible locations of the inclusions. From these elements the
Algorithm 1 is devised. Its input data are:

• The number of anomalies that are going to find;
• The first d and second H order topological derivatives;
• The size of the grid where we are seeking the inclusions, denoted by ng;
• The index ig of the grid.

As a result, the algorithm provides the location and optimum size of the anomalies (ξ?, α?),
and the minimum value of the functional given by (4.3) denoted by by S?.

Finally, let us present a numerical example. We consider a disk of unitary radius. Its
boundary is subdivided into 16 disjoint pieces. Each pair of such a pieces are used for
injecting and draining the current. Therefore, the excitation Q is given by a pair Qin = 1
of injection and Qout = −1 of draining. The remainder part of the boundary becomes
insulated. The associated potential U is measured only on these disjoint pieces, represent-
ing Γm. See sketch in Figure 2. The target consists of three ball-shaped anomalies, which

Figure 2. Model problem.

is corrupted with 10% of White Gaussian Noise, as shown in Figure 3(a). The obtained
reconstruction with 64 partial boundary measurements is shown in Figure 3(b).

From an inspection of Figure 3 we observe that Algorithm 1 is actually very robust
with respect to noisy data. It comes out from the fact that the proposed second-order
reconstruction algorithm is non-iterative.
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Algorithm 1: Reconstruction Algorithm

Data: N , ng, di(ig), Hij(ig)
Result: S?, α?, ξ?

1 Initialization: S? ←∞; α? ← 0; ξ? ← 0;
2 for i1 ← 1 to n do
3 for i2 ← i1 + 1 to n do

...
4 for iN ← iN−1 + 1 to n do

5 d←


d1(i1)
d2(i2)

...
dN(iN)]T

; H ←


H11(i1) H12(i2) · · · H1N(iN)
H21(i1) H22(i2) · · · H2N(iN)

...
...

. . .
...

HN1(i1) HN2(i2) · · · HNN(iN)

;

6 α← −H−1d ;
7 if αk > 0 ∀k ∈ {1, . . . , N} then
8 S ← −1

2
d · α;

9 if S < S? then
10 S? ← S;
11 α? ← α;
12 ξ? ← [i1, i2, ..., iN ];
13 end if
14 end if
15 end for
16 end for
17 end for
18 return S?, α?, ξ?

(a) target (b) result

Figure 3. Target corrupted with 10% of White Gaussian Noise (left) and
obtained result with 64 partial boundary measurements (right).

5. Concluding Remarks

In the paper new methods of numerical solutions for a class of electrical impedance
tomography problems is proposed. The method is based on the topological derivatives of
shape functionals associated with the inverse problems. It is assumed that there is a finite
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number of small defects within the domain (body) and that the influence of the defects on
the Dirichlet-to-Neumann map is observed using the mathematical model in the form of
linear elliptic boundary value problem. The noisy boundary measurements are compared
with the mathematical model in order to identify the number, size and locations of the
hidden imperfections.
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