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Abstract. The topological derivative concept has been successfully applied in many relevant
physics and engineering problems. In particular, the topological asymptotic analysis has been
fully developed for a wide range of problems modeled by partial differential equations. In this
paper, the topological asymptotic analysis of the energy shape functional associated with a
diffusive/convective steady state heat equation is developed. The topological derivative with
respect to the nucleation of a circular inclusion is derived in its closed form with help of a
non-standard adjoint state. Finally, we provide the estimates for the remainders of the topo-
logical asymptotic expansion and perform a complete mathematical justification for the derived
formulas. The obtained result is new and can be applied in the context of topology design of
heat sinks, for instance.

1. Introduction

The topological derivative concept [16] has been successfully applied in many relevant physics
and engineering problems such as inverse problems [2, 3, 12], topology optimization [8, 10], im-
age processing [14], multi-scale constitutive modeling [9], fracture mechanics [17] and damage
evolution modeling [1]. In particular, the topological asymptotic analysis has been fully devel-
oped for a wide range of problems modeled by partial differential equations. See, for instance,
[4, 5, 6, 7, 11, 13, 15].

In order to introduce these ideas, let us consider an open and bounded domain Ω ⊂ R
2, which

is subject to a non-smooth perturbation confined in a small region ωε(x̂) = x̂ + εω of size ε.
Here, x̂ is an arbitrary point of Ω and ω is a fixed domain of R2. We introduce a characteristic
function x 7→ χ(x), x ∈ R

2, associated to the unperturbed domain, namely χ = 1Ω. Then, we
define a characteristic function associated to the topologically perturbed domain of the form
x 7→ χε(x̂;x), x ∈ R

2. In the case of a hole, for example, χε(x̂) = 1Ω − 1ωε(x̂) and the singulary
perturbed domain is given by Ωε(x̂) = Ω\ωε(x̂). Then, we assume that a given shape functional
ψ(χε(x̂)), associated to the topologically perturbed domain, admits the following topological
asymptotic expansion

ψ(χε(x̂)) = ψ(χ) + f(ε)DTψ(x̂) +R(f(ε)), (1.1)

where ψ(χ) is the shape functional associated to the unperturbed domain and f(ε) is a positive
function such that f(ε) → 0 when ε → 0. The function x̂ 7→ DTψ(x̂) is called the topological
derivative of ψ at x̂. Finally, R(f(ε)) is the remainder of the topological asymptotic expansion,
namely R(f(ε)) = o(f(ε)). Therefore, the term f(ε)DTψ(x̂) represents a first order correction
of ψ(χ) to approximate ψ(χε(x̂)).

In this paper, the topological asymptotic analysis of the energy shape functional associated
with a diffusive/convective steady state heat equation is developed. The topological derivative
DTψ(x̂) with respect to the nucleation of a circular inclusion ωε(x̂) := Bε(x̂) = {‖x − x̂‖ < ε}
is derived in its closed form with help of a non-standard adjoint state. Finally, we provide the
estimates for the remainders of the topological asymptotic expansion and perform a complete
mathematical justification for the derived formulas. The obtained result is not available in the
literature yet and can be applied in the context of topology design of heat sinks, for instance.

This paper is organized as follows. In Section 2, the mathematical formulation of the diffu-
sive/convective steady state heat problem as well as the energy shape functional are introduced
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for both, original unperturbed and topologically perturbed domains. In addition, arguments
on the existence of the associated topological derivative are provided. The explicit form of the
topological derivative is derived in Section 3. The estimates for the remainders of the topological
asymptotic expansion are presented in Section 4. Finally, the paper ends with some concluding
remarks in Section 5.

2. Model Problem

In this section the mathematical model of the diffusive/convective steady state heat problem as
well as the energy shape functional are introduced. The original unperturbed and topologically
perturbed problems are presented, together with arguments on the existence of the associated
topological derivative.

2.1. Unperturbed Problem. The original unperturbed problem is stated as

θ ∈ H1
0 (Ω) :

∫

Ω
k∇θ · ∇η +

∫

Ω
(β · ∇θ)η =

∫

Ω
bη, ∀η ∈ H1

0 (Ω), (2.1)

where β is a given velocity vector field and b is a heat source. In addition, we assume that β is
a divergence-free vector field, namely div(β) = 0. The energy shape functional is defined by

ψ(χ) := J (θ) =
1

2

∫

Ω
k‖∇θ‖2. (2.2)

In order to simplify further analysis, we introduce the adjoint problem

ϕ ∈ H1
0 (Ω) :

∫

Ω
k∇ϕ · ∇η +

∫

Ω
(β · ∇η)ϕ = −

∫

Ω
k∇θ · ∇η, ∀η ∈ H1

0 (Ω). (2.3)

2.2. Perturbed Problem. The topological perturbation is defined as

γωε = γωε(x) :=

{

1 if x ∈ Ω \ ωε

γ if x ∈ ωε
, (2.4)

where 0 < γ <∞ is the contrast parameter and ωε(x̂) := Bε(x̂) = {‖x− x̂‖ < ε} for x̂ ∈ Ω. By
setting kε = γωεk and bε = γωεb, the topologically perturbed problem is stated as

θε ∈ H1
0 (Ω) :

∫

Ω
kε∇θε · ∇η +

∫

Ω
(β · ∇θε)η =

∫

Ω
bεη, ∀η ∈ H1

0 (Ω). (2.5)

The topologically perturbed counterpart of the shape functional is given by

ψ(χε(x̂)) := Jε(θε) =

∫

Ω
kε‖∇θε‖2. (2.6)

For the sake of simplicity, we assume that k, β and b behave like a constant in the neighborhood
of Bε(x̂). So that k(x) = k(x̂), β(x) = β(x̂) and b(x) = b(x̂) in Bε(x̂).

2.3. Preliminaries. Let us subtract (2.1) from (2.5). After some manipulations taking into
account the contrast (2.4), there are:

∫

Ω
k∇(θε − θ) · ∇η +

∫

Ω
(β · ∇(θε − θ))η = (1− γ)

∫

Bε

k∇θε · ∇η − (1− γ)

∫

Bε

bη, (2.7)

and equivalently
∫

Ω
kε∇(θε − θ) · ∇η +

∫

Ω
(β · ∇(θε − θ))η = (1− γ)

∫

Bε

k∇θ · ∇η − (1− γ)

∫

Bε

bη. (2.8)

By setting η = θε − θ as test function in (2.8), we have the equality
∫

Ω
kε‖∇(θε−θ)‖2+

∫

Ω
(β·∇(θε−θ))(θε−θ) = (1−γ)

∫

Bε

k∇θ·∇(θε−θ)−(1−γ)
∫

Bε

b(θε−θ). (2.9)
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Since θε − θ = 0 on ∂Ω and div(β) = 0 by assumption, the second term on the left hand side of
(2.9) vanishes. So that we obtain the following important result

∫

Ω
kε‖∇(θε − θ)‖2 = (1− γ)

∫

Bε

k∇θ · ∇(θε − θ)− (1− γ)

∫

Bε

b(θε − θ). (2.10)

2.4. Existence of the Topological Derivative. The original and perturbed shape functionals
in which we are dealing with were introduced through equations (2.2) and (2.6), respectively.
Now we are in position to state the following import result associated with the existence of the
topological derivative for the problem under analysis:

Lemma 1. Let θε and θ be solutions to the perturbed (2.5) and original (2.1) variational prob-
lems, respectively. Then, the following estimate hold true

‖θε − θ‖H1(Ω) ≤ Cε, (2.11)

where C is used to denote a generic constant independent of the control parameter ε.

Proof. Let us consider the equality (2.10). From the Cauchy-Schwarz inequality we obtain

∫

Ω
kε‖∇(θε − θ)‖2 ≤ C1‖∇θ‖L2(Bε)‖∇(θε − θ)‖L2(Bε) + C2‖b‖L2(Bε)‖θε − θ‖L2(Bε). (2.12)

The interior elliptic regularity of θ yields,
∫

Ω
kε‖∇(θε − θ)‖2 ≤ C3ε ‖θε − θ‖H1(Ω), (2.13)

since by assumption b(x) = b(x̂) in the neighborhood of Bε(x̂). From the Poincaré inequality
on the left hand side of (2.13), there is

c‖θε − θ‖2H1(Ω) ≤
∫

Ω
kε‖∇(θε − θ)‖2, (2.14)

which leads to the result with the constant C = C3/c independent of the small parameter ε. �

3. Topological Asymptotic Analysis

By subtracting (2.2) from (2.6) and using (2.10), it follows

ψ(χε(x̂))− ψ(χ) =

∫

Ω
k∇θ · ∇(θε − θ)− 1− γ

2

∫

Bε

k∇θε · ∇θ −
1− γ

2

∫

Bε

b(θε − θ). (3.1)

Let us set η = θε − θ in (2.3). Then we have the following equality

∫

Ω
k∇ϕ · ∇(θε − θ) +

∫

Ω
(β · ∇(θε − θ))ϕ = −

∫

Ω
k∇θ · ∇(θε − θ). (3.2)

By setting η = ϕ solution to the adjoint problem (2.3) in (2.7) we obtain the equality

∫

Ω
k∇(θε − θ) · ∇ϕ+

∫

Ω
(β · ∇(θε − θ))ϕ = (1− γ)

∫

Bε

k∇θε · ∇ϕ− (1− γ)

∫

Bε

bϕ. (3.3)

After comparing (3.2) with (3.3), together with (3.1), we obtain the following import result

ψ(χε(x̂))− ψ(χ) = −1− γ

2

∫

Bε

k∇θε · ∇(θ + 2ϕ) + (1− γ)

∫

Bε

bϕ− 1− γ

2

∫

Bε

b(θε − θ). (3.4)
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3.1. Asymptotic Analysis of the Solution. Let us introduce the following ansätz for the
solution θε to the perturbed boundary value problem (2.5)

θε(x) = θ(x) + εϑ(x/ε) + θ̃ε(x). (3.5)

Some terms in the above expansions require explanations. Function θ is solution to the unper-
turbed boundary value problem (2.1), while function ϑ is solution to an exterior boundary value

problem and θ̃ε is the remainder. The strong form of problem (2.5) reads: Find θε, such that














−div(kε∇θε) + β · ∇θε = bε in Bε ∪ (Ω \Bε),
θε = 0 on ∂Ω,

JθεK
Jkε∇θεK · n

=
=

0
0

}

on ∂ωε.
(3.6)

After introducing the ansätz (3.5) in (3.6), we obtain

−εdiv(kε∇ϑ)− div(kε∇θ̃ε) + ε(β · ∇ϑ) + β · ∇θ̃ε = 0, (3.7)

since θ is solution to (2.1). Now, let us consider a change of variables of the form x = εy,
which implies ∇yϑ(y) = ε∇ϑ(x/ε). Therefore, in the fast variable y the first term of the above
equation has order O(ε−1), allowing us to choose ϑ such that

divy(γωk∇yϑ) = 0 in B1 ∪ (R2 \B1), (3.8)

where ω = B1, with B1 used to denote a ball of unitary radius and

γω =

{

1 in R
2 \ ω,

γ in ω.
(3.9)

Now, let us consider the transmission conditions on ∂ωε = ∂Bε that appear in (3.6). In partic-
ular, taking into account that the outward unit normal to the boundary ∂Bε can be written as
n = (x− x̂)/ε, we have

(1− γ)∇θ(x̂) · n+ Jγωk∇yϑ(y)K · n+ ε(1 − γ)(∇∇θ(ξ))n · n+ Jkε∇θ̃ε(x)K · n = 0, (3.10)

where ∇θ(x) have been expanded in Taylor series around x̂, so that ξ is used to denote an
intermediate point between x and x̂. After collecting the terms of the same power of ε, we
obtain the following exterior problems for ε→ 0 defined in the new variable y = x/ε















divy(γωk∇yϑ) = 0 in B1 ∪ (R2 \B1),
ϑ → 0 at ∞,

JϑK
Jγωk∇yϑK · n

=
=

0
g0

}

on ∂ω,
(3.11)

with g0 = −(1− γ)∇θ(x̂) · n. Finally, the remainder θ̃ε is solution to a boundary value problem
that compensates for the discrepancies introduced by the boundary layers ϑ and by the higher
order terms of the Taylor series expansion of ∇θ(x) around the point x̂ ∈ Ω, namely















div(kε∇θ̃ε)− β · ∇θ̃ε = ε(β · ∇ϑ) in Bε ∪ (Ω \Bε),

θ̃ε = ε2θ0 on ∂Ω,

Jθ̃εK

Jkε∇θ̃εK · n
=
=

0
εg1

}

on ∂ωε,

(3.12)

where θ0 := −ε−1ϑ|∂Ω , g1 = −(1− γ)(∇∇θ(ξ))n ·n, with ξ used to denote an intermediate point
between x and x̂.

Lemma 2. Let θ̃ε be solution to (3.12). Then, the estimate ‖θ̃ε‖H1(Ω) = o(ε) holds true.

Proof. The proof is left to Section 4.1 �
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3.2. Topological Derivative Calculation. We replace (3.5) into (3.4) to obtain the following
result,

ψ(χε(x̂))− ψ(χ) = −1− γ

2

∫

Bε

k(x̂)(∇θ · ∇(θ + 2ϕ))(x̂)−

1− γ

2
ε

∫

Bε

k(x̂)∇ϑ · ∇(θ + 2ϕ)(x̂) + (1− γ)

∫

Bε

(bϕ)(x̂) + E(ε), (3.13)

where E(ε) =
5

∑

i=1

Ei(ε) = o(ε2) as can be seen in Section 4.2, with:

E1(ε) = −1− γ

2

∫

Bε

k(x̂)∇θ̃ε · ∇(θ + 2ϕ), (3.14)

E2(ε) = −1− γ

2

∫

Bε

k(x̂)[∇θ · ∇(θ + 2ϕ) − (∇θ · ∇(θ + 2ϕ))(x̂)], (3.15)

E3(ε) = −ε1− γ

2

∫

Bε

k(x̂)[∇ϑ · (∇(θ + 2ϕ)−∇(θ + 2ϕ)(x̂))], (3.16)

E4(ε) = +(1− γ)

∫

Bε

b(x̂)(ϕ − ϕ(x̂)), (3.17)

E5(ε) = −1− γ

2

∫

Bε

b(x̂)(θε − θ), (3.18)

since k(x) = k(x̂), β(x) = β(x̂) and b(x) = b(x̂) in Bε(x̂) by assumption. Let us consider again
a change of variable in the form x = εy. Then, the difference (3.13) can be written as:

ψ(χε(x̂))− ψ(χ) = −ε2 1− γ

2

∫

B1

k(x̂)(∇θ · ∇(θ + 2ϕ))(x̂)−

ε2
1− γ

2

∫

B1

k(x̂)∇yϑ(y) · ∇(θ + 2ϕ)(x̂) + ε2(1− γ)

∫

B1

(bϕ)(x̂) + E(ε). (3.19)

The solution to the exterior problem (3.11) is known in the literature since it has exactly the
same structure as the Laplace boundary value problem. In addition, for the particular case
associated with circular inclusions such solution is explicitly known (see for instance [5] and [16,
Ch. 5, pp. 144]). Namely, the solution to (3.11) in B1 is given by

ϑ(y)|B1
=

1− γ

1 + γ
∇θ(x̂) · (y − ŷ). (3.20)

Now, let us consider this last result in (3.19), which allows us to evaluate the integral over B1

explicitly, leading to

ψ(χε(x̂))− ψ(χ) = −πε2 1− γ

1 + γ
k(x̂)∇θ(x̂) · ∇(θ + 2ϕ)(x̂) + πε2(1− γ)b(x̂)ϕ(x̂) + E(ε). (3.21)

Finally, we have all necessary elements to state the main result of the paper, which is:

Theorem 3. Let Jε(θε) be the topologically perturbed energy shape functional given by (2.6).
Then, it admits the topological asymptotic expansion of the form

Jε(θε) = J (θ)− πε2ρ‖∇θ‖2 − 2πε2ρ∇θ · ∇ϕ+ πε2(1− γ)b ϕ+ E(ε), (3.22)

with the function f(ε) = πε2, E(ε) = o(ε2) according to Section 4.2 and the topological derivative

given by

DTJ (x̂) = −ρ‖∇θ(x̂)‖2 − 2ρ∇θ(x̂) · ∇ϕ(x̂) + (1− γ)b(x̂)ϕ(x̂), (3.23)

where θ and ϕ are solutions to the direct (2.1) and adjoint (2.3) problems, respectively, both

associated to the original unperturbed domain Ω. Finally, ρ = k(x̂)(1 − γ)/(1 + γ).
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4. Estimation for the Remainders

In this section, the proof of Lemma 2 and the estimation for the remainder E(ε) left in the
asymptotic expansion (3.13) are presented. We assume that the topological perturbation Bε(x̂)
doesn’t touch the boundary ∂Ω, namely, Bε(x̂) ⋐ Ω.

4.1. Proof of Lemma 2 . For the sake of completeness, we introduce the explicit solution to
the scalar exterior problem (3.11), which can be found in many references (see for instance [16,
Ch. 5, pp. 144]). Namely,

ϑ(x/ε)|Ω\Bε
=

ε

‖x− x̂‖2∇θ(x̂) · (x− x̂) (4.1)

ϑ(x/ε)|Bε
= ε−1∇θ(x̂) · (x− x̂). (4.2)

From the above formulas, we observe that ϑ|∂Ω = −εθ0, with function θ0 independent of the small

parameter ε. In addition, from a simple calculation there are ‖ϑ‖L2(∂Bε) = O(
√
ε), ‖ϑ‖L2(Bε) =

O(ε) and ‖ϑ‖L2(Ω) = O(ε
√

| log ε|) = o(εδ), with δ < 1. Now, we have all elements to proof

Lemma 2. We start by decomposing the solution to (3.12) as θ̃ε = θ̃hε + θ̃pε . Therefore:

Lemma 4. Let θ̃hε be solution to the following variational problem:

θ̃hε ∈ Ũε :

∫

Ω
kε∇θ̃hε · ∇η +

∫

Ω
(β · ∇θ̃hε )η = ε

∫

∂Bε

g1η, ∀η ∈ H1
0 , (4.3)

where Ũε = {ϕ ∈ H1(Ω) : ϕ|∂Ω = ε2θ0}. Then, the estimate ‖θ̃hε ‖H1(Ω) = O(ε2) holds true.

Proof. By taking η = θ̃hε − ε2ϕθ in (4.3), we have the equality
∫

Ω
kε∇θ̃hε · ∇θ̃hε +

∫

Ω
(β · ∇θ̃hε )θ̃hε = ε

∫

∂Bε

g1 θ̃
h
ε + ε2

∫

∂Ω
k(∇θ̃hε · n)θ0, (4.4)

where ϕθ ∈ H1(Ω) is the lifting of the Dirichlet boundary data θ0. The second term on the left
hand side of (4.4) can be replace by

∫

Ω
(β · ∇θ̃hε )θ̃hε =

ε2

2

∫

∂Ω
(β · n)θ0 θ̃hε , (4.5)

since div(β) = 0 by assumption and θ̃hε = ε2θ0 on ∂Ω. Therefore,
∫

Ω
kε∇θ̃hε · ∇θ̃hε = ε

∫

∂Bε

g1 θ̃
h
ε + ε2

∫

∂Ω
k(∇θ̃hε · n)θ0 −

ε2

2

∫

∂Ω
(β · n)θ0 θ̃hε , (4.6)

From the Cauchy-Schwarz inequality we obtain
∫

Ω
kε∇θ̃hε · ∇θ̃hε ≤ ε2C1‖θ̃hε ‖H1/2(∂Bε) + ε2C2‖∂nθ̃hε ‖H−1/2(∂Ω) + ε2C3‖θ̃hε ‖H1/2(∂Ω), (4.7)

where we have used the interior elliptic regularity of function θ. Taking into account the trace
theorem, we have

∫

Ω
kε∇θ̃hε · ∇θ̃hε ≤ ε2C4‖θ̃hε ‖H1(Ω). (4.8)

Finally, from the Poincaré inequality on the left hand side of (4.8), namely,

c‖θ̃hε ‖2H1(Ω) ≤
∫

Ω
kε∇θ̃hε · ∇θ̃hε , (4.9)

we have,

‖θ̃hε ‖H1(Ω) ≤ Cε2, (4.10)

which leads to the result, with C = C4/c independent of ε. �
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Lemma 5. Let θ̃pε be solution to the following variational problem:

θ̃pε ∈ H1
0 :

∫

Ω
kε∇θ̃pε · ∇η +

∫

Ω
(β · ∇θ̃pε)η = −ε

∫

Ω
(β · ∇ϑ)η, ∀η ∈ H1

0 . (4.11)

Then, the estimates ‖θ̃pε‖H1(Ω) = o(ε) holds true.

Proof. By setting η = θ̃pε in (4.11), we have the equality
∫

Ω
kε∇θ̃pε · ∇θ̃pε + (β · ∇θ̃pε)θ̃pε = −ε

∫

Ω
(β · ∇ϑ)θ̃pε . (4.12)

The second term on the left hand side of (4.12) vanishes, since θ̃pε = 0 on ∂Ω and div(β) = 0 by
assumption. Let us consider the right hand side of (4.12). Integration by parts yields

∫

Ω
(β · ∇ϑ)θ̃pε = (1− γ)

∫

∂Bε

(β · n)ϑ θ̃pε + (1− γ)

∫

Bε

(β · ∇θ̃pε)ϑ−
∫

Ω
(β · ∇θ̃pε)ϑ, (4.13)

From the Cauchy-Schwarz inequality
∫

Ω
(β · ∇ϑ)θ̃pε ≤ C1‖θ̃pε‖L2(∂Bε)‖ϑ‖L2(∂Bε) + C2‖∇θ̃pε‖L2(Bε)‖ϑ‖L2(Bε) + C3‖∇θ̃pε‖L2(Ω)‖ϑ‖L2(Ω),

(4.14)
and the trace theorem, we obtain

∫

Ω
(β · ∇ϑ)θ̃pε ≤ C4‖θ̃pε‖H1(Bε)‖ϑ‖L2(∂Bε) + C5‖θ̃pε‖H1(Ω)‖ϑ‖L2(Ω) ≤ C6ε

1/2‖θ̃pε‖H1(Ω), (4.15)

since ‖ϑ‖L2(∂Bε) = O(
√
ε) and ‖ϑ‖L2(Ω) = o(εδ), with δ < 1. Then, from the above results we

obtain
∫

Ω
kε∇θ̃pε · ∇θ̃pε ≤ C6ε

3/2‖θ̃pε‖H1(Ω). (4.16)

From the Poincaré inequality on the left hand side of (4.16), namely,

c‖θ̃pε‖2H1(Ω) ≤
∫

Ω
kε∇θ̃pε · ∇θ̃pε , (4.17)

we finally obtain

‖θ̃pε‖H1(Ω) ≤ Cε3/2, (4.18)

which leads to the result, with C = C6/c independent of ε. �

Finally, the proof of Lemma 2 follows immediately from the results of Lemma 4 and Lemma
5.

4.2. Estimation for the Remainder E(ε) . Let us start by considering the remainder E1(ε)
given by (3.14), namely

E1(ε) = (1− γ)

∫

Bε

k(x̂)∇θ̃ε · (∇(θ + 2ϕ) ±∇(θ + 2ϕ)(x̂)). (4.19)

Taking into account the Cauchy-Schwartz inequality, we have

E1(ε) ≤ C0

(

‖∇(θ + 2ϕ) −∇(θ + 2ϕ)(x̂)‖L2(Bε)‖∇θ̃ε‖L2(Bε) + ‖∇(θ + 2ϕ)(x̂)‖L2(Bε)‖∇θ̃ε‖L2(Bε)

)

.

(4.20)
From the interior elliptic regularity of functions ϕ and θ there is ‖∇(θ+2ϕ)−∇(θ+2ϕ)(x̂)‖ ≤
c1‖x− x̂‖ in Bε(x̂), where c1 is a constant independent of ε. Then, in view of Lemma 2, there is

E1(ε) ≤ C1ε‖∇θ̃ε‖L2(Bε) ≤ C1ε‖θ̃ε‖H1(Ω) = o(ε2), (4.21)

where we have used the fact that ‖∇(θ + 2ϕ)(x̂)‖L2(Bε) = O(ε) and ‖x − x̂‖L2(Bε) = O(ε2).
Regarding the remainder E2(ε) given by (3.15), let us introduce the notation h2 = k(x̂)∇θ ·∇(θ+
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2ϕ). From the interior elliptic regularity of functions θ and ϕ, we have ‖h2(x)−h2(x̂)‖ ≤ c2‖x−x̂‖
in Bε(x̂), where c2 is a constant independent of ε. Therefore,

E2(ε) = −1− γ

2

∫

Bε

(h2(x)− h2(x̂)) ≤ C2

∫

Bε

‖x− x̂‖ = o(ε2). (4.22)

We introduce the notations G3 = k(x̂)∇ϑ and H3 = ∇(θ + 2ϕ). Once again, from the interior
elliptic regularity of the functions ϕ and θ, there is ‖H3(x)−H3(x̂)‖ ≤ c3‖x− x̂‖ in Bε(x̂), where
c3 is a constant independent of ε. Thus the remainder E3(ε) given by (3.16) can be bounded as

E3(ε) = −ε1− γ

2

∫

Bε

G3 · (H3(x)−H3(x̂)) ≤ εC3‖G3‖L2(Bε)‖x− x̂‖L2(Bε) = o(ε2), (4.23)

where we have used the explicit solution to ϑ. From the interior elliptic regularity of function
ϕ, there is ‖ϕ(x)−ϕ(x̂)‖ ≤ c4‖x− x̂‖, with constant c4 independent of ε. So that the remainder
E4(ε) given by (3.17) can be bounded as follows

E4(ε) ≤ C4‖b(x̂)‖L2(Bε)‖ϕ− ϕ(x̂)‖L2(Bε) = o(ε2), (4.24)

where we have used again ‖b(x̂)‖L2(Bε) = O(ε) and ‖x−x̂‖L2(Bε) = O(ε2). Finally, let us consider
the remainder E5(ε) given by (3.18). From the Hölder inequality and the Sobolev embedding
theorem, it comes for any p > 1

E5(ε) ≤ C5ε
1+1/p‖θε − θ‖L2p/(p−1)(Bε)

≤ C6ε
1+1/p‖θε − θ‖H1(Ω) = o(ε2), (4.25)

where we have used Lemma 1.

5. Conclusions

In this paper the topological derivative for the energy shape functional associated with the
diffusive/convective steady state heat equation has been derived in its closed form. In partic-
ular, the existence of the topological derivative has been proved and precise estimates for the
remainders have been derived. The obtained result is new and can be used in many applications
such as topology design of heat sinks, for instance.
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