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Abstract. The inverse source problem consists in reconstructing a mass distribution in a
geometrical domain from boundary measurements of the associated potential and its normal
derivative. In this paper the inverse source problem is reformulated as a topology optimization
problem, where the support of the mass distribution is the unknown variable. The Kohn-
Vogelius functional is minimized. It measures the misfit between the solutions of two auxiliary
problems containing information about the boundary measurements. The Newtonian potential
is used to complement the unavailable information on the hidden boundary. The resulting
topology optimization algorithm is based on an analytic formula for the variation of the Kohn-
Vogelius functional with respect to a class of mass distributions consisting of a finite number
of ball-shaped trial anomalies. The resulting reconstruction algorithm is non-iterative and very
robust with respect to noisy data. Finally, in order to show the effectiveness of the devised
reconstruction algorithm, some numerical experiments in two and three spatial dimensions are
presented.

1. Introduction

The inverse source problem consists of determining the mass density distribution in a geomet-
rical domain from boundary measurements of the associated potential and its normal derivative.
It is understood here as a mathematical model used to comprehend many relevant problems in
geophysics, such as the determination of the mass density inside Earth from measurements of the
gravitational field. Potential applications have fueled research into new numerical algorithms
of reconstruction [11]. In particular, there are mainly two applications of the inverse source
problem: the reconstruction of the mass density distribution inside the whole Earth, which is
done with the purpose of obtaining information of the dynamical processes taking place inside
Earth; and the reconstruction of the mass density distribution of small regions of Earth, located
close to its surface. This second application is particularly important in mining and engineering.

The model problem of source reconstruction we are dealing with is notoriously ill-posed [10].
In order to handle the question of uniqueness, strong assumptions, which usually do not hold, are
made on the class of mass distributions to be reconstructed. For instance, it is well known that
uniqueness holds in the class of mass distributions corresponding to single star-shaped anomalies
[11]. The stability of the reconstruction can be obtained by introducing a regularization of the
inverse operator, such as total variation techniques or Tikhonov regularization, but the numerical
difficulties usually prevent the reconstruction algorithms from obtaining good results. Additional
practical issues, such as partial boundary measurements, make the problem of reconstruction
even more difficult.

In this paper we assume that measurements of the Newtonian potential and its normal deriva-
tive are simultaneously taken on the same part of the boundary of the domain of interest. Using
these measurements, a numerical method for the source reconstruction is formulated following
some of the ideas presented in [7]. In that paper the inverse problem was reformulated as a topol-
ogy optimization problem, where the support of the mass distribution is the unknown variable.
The method relies on the minimization of the Kohn-Vogelius functional [13], which measures the
misfit between the solutions of two auxiliary problems. One of these problems contains infor-
mation about the measurement of the potential, and the other one contains information about
the measurement of its normal derivative. The solutions of these auxiliary problems coincide
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once the inverse problem is solved. The resulting topology optimization algorithm is based on
an analytic formula for the variation of the Kohn-Vogelius functional with respect to a class of
mass distributions consisting of a finite number of ball-shaped trial anomalies. The numerical
implementation of this algorithm is straightforward, and it has shown to be effective in the
solution of the two-dimensional problems with complete boundary measurements.

In this paper we extend the ideas of [7] to cover the two and three spatial dimensions cases
with partial boundary measurements. In [7] the case of complete boundary measurements was
treated in two dimensions, but for incomplete measurements we need to modify the approach.
The additional difficulty that arises from the incomplete boundary measurements is directly
addressed by modifying the auxiliary problems considered in [7], where the Newtonian potential
is used to complement the unavailable information on the hidden boundary. The present method
remains straightforward as the one proposed in [7]. In contrast to existing approaches, it does
not use a numerical continuation technique as a previous step to obtain a complete measurement
on a fictitious boundary.

Important contributions in the solution of the inverse source problem have relied on the so-
called point-mass methods [3, 4, 8, 15], which have been successfully applied to treat real data in
geophysical problems. The proposed approach bears relation to the point-mass methods, since
the effect of a ball in the boundary measurements is exactly the same as that of a point-mass of
same total mass. However, our method differs from the point-mass methods in several impor-
tant features. First of all, point-mass methods were designed to treat real data in geophysical
problems, so that these methods use several complex and sometimes ad hoc procedures, whereas
we consider a more idealized situation, for which we can perform a rigorous mathematical anal-
ysis. In addition, instead of using a cost functional concentrated on the boundary, the proposed
approach is based on the so-called Kohn-Vogelius cost functional [14], which is defined in the
whole domain. The Kohn-Vogelius functional has proved to be more stable than boundary cost
functionals for several classes of inverse problems (see [14] for details). A third fundamental
difference with respect to point-mass [3, 4, 8, 15] and level-set approaches [12, 16] is that the
method presented here is of second-order, since we consider the second derivative with respect
to topology changes, whereas existing methods are based on first-order sensitivity analysis. In
our case the second derivative allows to evaluate exactly the variation of the cost functional
with respect to the simultaneous creation of several ball-shaped anomalies, which leads to a
direct and very accurate reconstruction. In fact, we show through some examples, that our
method can give a precise idea of important qualitative and quantitative features of the solution
to the inverse problem we are dealing with. Unlike other methods, the resulting reconstruction
algorithm is non-iterative and thus very robust with respect to noisy data. In short, we claim
that the idea of quantifying the effect of several ball-shaped anomalies in the Kohn-Vogelius
functional by performing a second-order topological asymptotic analysis leads to a new method
– substantially different to those referred above – with potential applications to other classes of
inverse problems.

Admittedly, the approximation of the solution by a finite number of balls can be seen as a
limitation of our approach. However, the reconstruction obtained may serve as an initial guess
for other well-established and more computational intensive iterative methods [3, 6, 9, 12, 16, 20].
We emphasize that our choice of using ball-shaped trial anomalies is just a particular case of
topology optimization techniques [18]. Actually, the analysis performed in this paper can be
extended to the case of arbitrary-shaped anomalies, whereas such an extension is not possible
for other available methods. This would require a more complicated asymptotic expansion,
but the core idea of the algorithm would be identical. In addition, our approach could be the
basis for alternative numerical methods of reconstruction, for instance using the topological
derivative concept coupled with level-set methods [1]. Thus, the minimization of the Kohn-
Vogelius functional by following a second-order topology optimization approach introduces a
new perspective.
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The paper layout goes as follows. Section 2 states the inverse source problem and formulates it
as a topology optimization problem. Section 3 introduces the asymptotic expansion of the Kohn-
Vogelius functional with respect to a finite number of ball-shaped trial anomalies. Section 4
describes the numerical approach and presents various examples in two and three dimensions
with partial boundary measurements, showing that the proposed technique can effectively find
the shape and topology of the unknown mass distribution. Some concluding remarks are drawn
in the last section.

2. Problem Formulation

Let Ω ⊂ Rn be an open and bounded domain (n = 2, 3), with Lipschitz boundary ∂Ω.
Introduce ΓM ⊂ ∂Ω the boundary where the measurements are taken and Γ = ∂Ω \ ΓM the
remainder (hidden) boundary, where there is no information. Let us introduce the following
boundary value problem:  −∆u = b∗ in Ω ,

u
−∂nu

=
=

u∗

q∗

}
on ΓM .

(2.1)

Problem 1. The inverse source problem reads: given q∗ ∈ H−1/2(ΓM ) and u∗ ∈ H1/2(ΓM ), find
the unknown source b∗ ∈ PCγ(Ω) such that there exists u[b∗] ∈ H1(Ω) satisfying (2.1), where

PCγ(Ω) := {b ∈ L∞(Ω) : b = γχω, ω ⊂ Ω is measurable} . (2.2)

Here, χω denotes the indicator function of the set ω and γ ∈ R is given. In addition, we assume
that the sets ω in PCγ(Ω) are of the form:

ω =
⋃
i∈I

ωi with ωi ∩ ωj = ∅ for i 6= j . (2.3)

where m > 0 is a given integer, I = {1, ...,m} and each ωi is assumed to be measurable and
simply connected. See the sketch in Figure 1.

Consider a source term b∗ = γχω∗ ∈ PCγ(Ω) and define the associated potential by

u[b∗](x) =

∫
Ω
K(x, y)b∗(y) dy , (2.4)

where the kernel K(x, y) is given by

K(x, y) =


1

4π|x− y|
for n = 3 ,

− 1

2π
ln |x− y| for n = 2 .

(2.5)

Define then

u∗ := u[b∗]|ΓM and q∗ := −∂nu[b∗]|ΓM . (2.6)

To address Problem 1, we propose to reformulate it as an optimization problem. The idea is
to minimize the misfit between the solutions of two auxiliary problems that contain information
on the boundary measurements. Since one of them uses the Dirichlet data u∗ and the other one
uses the Neumann data q∗ as boundary conditions, then the auxiliary problems are referred to
as Dirichlet and Neumann boundary value problems, respectively. In other words, we minimize
the so-called Kohn-Vogelius functional [13]:

min
b∈PCγ(Ω)

J(b) :=
1

2

∫
Ω

(
uD[b]− uN [b]

)2
, (2.7)

where uD[b] is solution to the Dirichlet boundary value problem −∆uD[b] = b in Ω ,
uD[b] = u∗ on ΓM ,
uD[b] = uT [b] on Γ ,

(2.8)
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and uN [b] is solution to the Neumann boundary value problem −∆uN [b] = b in Ω ,
−∂nuN [b] = q∗ on ΓM ,

uN [b] = uT [b] on Γ .
(2.9)

The Newtonian potential

uT [b] =

∫
Ω
K(x, y)b(y) dy , (2.10)

is used to complement the information on the hidden boundary Γ. Note that the domain Ω and
the part Γ of its boundary ∂Ω do not represent physical quantities and are introduced to get
a meaningful mathematical model. Actually, the inverse source problem may e.g. be defined in
the whole half space Rn−1 × (−∞, 0), as represented in Figure 1. The only constraint on Ω is
that it has to be large enough to contain any possible anomaly, since (2.10) is correct only if
this requirement is satisfied. In the following we assume that any possible anomaly is in Ω.

Figure 1. The inverse source problem.

3. Exact variation of the Kohn-Vogelius shape functional

Let us consider a perturbation of ω confined in a small set $ε,x̂ = x̂ + ε$ of size ε > 0, or
the union $e,x̂ := ∪i∈I$εi,x̂i of such sets, where e := {εi}i∈I , x̂ := {x̂i}i∈I . Here, x̂i ∈ Ω and
$ ⊂ Rn, with 0 ∈ $, is fixed. We consider the particular case $e,x̂ = ∪i∈IB(εi, x̂i), where
B(εi, x̂i) is a ball of radius εi and center x̂i ∈ Ω. The perturbed source term is then defined as

be,x̂ = b+ γ
∑
i∈I

χB(εi,x̂i) . (3.1)

where b ∈ PCγ(Ω) is given. We are looking for an expansion of the perturbed counterpart of
the Kohn-Vogelius shape functional J(be,x̂) of the form [18]

J(be,x̂) = J(b) +
∑
i∈I

f1(εi)D
1J(x̂i) +

∑
i,j∈I

f2(εi, εj)D
2J(x̂i, x̂j) +R(e, x̂) , (3.2)

where f1(εi) and f2(εi, εj) are positive functions such that

lim
εi→0

f1(εi) = 0, lim
εi,εj→0

f2(εi, εj)

f1(εi)
= 0 and lim

e→0

R(e, x̂)

f2(εi, εj)
= 0 ∀i, j ∈ I. (3.3)

Then the functions D1J and D2J are called first and second order variations of J . The perturbed
shape functional is written as

J(be,x̂) =
1

2

∫
Ω

(uD[be,x̂]− uN [be,x̂])2 , (3.4)

where uD[be,x̂] and uN [be,x̂] are solutions of −∆uD[be,x̂] = be,x̂ in Ω ,
uD[be,x̂] = u∗ on ΓM ,
uD[be,x̂] = uT [be,x̂] on Γ ,

(3.5)



5 −∆uN [be,x̂] = be,x̂ in Ω ,
−∂nuN [be,x̂] = q∗ on ΓM ,

uN [be,x̂] = uT [be,x̂] on Γ ,
(3.6)

Now, we present the derivation of the expansions for the functions uD[be,x̂] and uN [be,x̂].

First, note that uT [be,x̂] can be expressed as

uT [be,x̂](x) =

∫
Ω
K(x, y)be,x̂(y) dy

= uT [b](x) + γ
∑
i∈I

∫
B(εi,x̂i)

K(x, y) dy . (3.7)

We can simplify the above expression by using some properties of the kernel K(x, y), which is

harmonic with respect to the variable y and does not have any singularity when x ∈ Ω\B(εi, x̂i)
and y ∈ B(εi, x̂i). According to the mean value theorem for harmonic functions we get∫

B(εi,x̂i)
K(x, y) dy = |B(εi, x̂i)|K(x, x̂i) for x ∈ Ω \B(εi, x̂i) , (3.8)

where |B(εi, x̂i)| is the Lebesgue measure of the ball B(εi, x̂i). This yields

uT [be,x̂](x) = uT [b](x) + γ
∑
i∈I
|B(εi, x̂i)|K(x, x̂i) . (3.9)

The function uD[be,x̂] can be expressed as

uD[be,x̂](x) = uD[b](x) +
∑
i∈I
|B(εi, x̂i)|vεi(x) , (3.10)

where each function vεi is solution to
−∆vεi =

γ

|B(εi, x̂i)|
χB(εi,x̂i) in Ω ,

vεi = 0 on ΓM .
vεi = γK(x, x̂i) on Γ .

(3.11)

One may express vεi as a sum of the form vεi = vpεi + vqεi , where vpεi is a particular solution
obtained by using the fundamental solution of the Laplacian, namely:

vpεi(x) =
γ

|B(εi, x̂i)|

∫
B(εi,x̂i)

K(x, y) dy , (3.12)

which, according to (3.8), satisfies

vpεi(x) = γK(x, x̂i) for x ∈ Ω \B(εi, x̂i) , (3.13)

so that the remainder vqεi := vεi − v
p
εi , which is used to compensate the discrepancy left by vpεi

on ∂Ω, is harmonic and solves the homogeneous boundary value problem: −∆vqεi = 0 in Ω ,
vqεi = −vpεi on ΓM .
vqεi = 0 on Γ .

(3.14)

Note that from (3.13), vpεi(x) actually does not depend on εi for x ∈ Ω \ B(εi, x̂i). Then,
from (3.14) we observe that vqεi also does not depend on εi and since vεi = vpεi +vqεi we have that

vεi(x) is also independent of εi for x ∈ Ω \B(εi, x̂i).
For the function uN [be,x̂] we introduce the expansion:

uN [be,x̂](x) = uN [b](x) +
∑
i∈I
|B(εi, x̂i)|(vεi(x) + hi(x)) , (3.15)

with function hi solution to  −∆hi = 0 in Ω ,
−∂nhi = gi on ΓM ,

hi = 0 on Γ ,
(3.16)
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where gi = ∂nvεi on ΓM is actually independent of εi according to the previous comments, with
vεi solution to (3.11).

Finally, after introducing the notation ai := |B(εi, x̂i)|, the expansion of the Kohn-Vogelius
criterion reads using (3.10) and (3.15):

J(be,x̂) =
1

2

∫
Ω

(
uD[be,x̂]− uN [be,x̂]

)2
=

1

2

∫
Ω

[
uD[b] +

∑
i∈I

aivεi −

(
uN [b] +

∑
i∈I

ai(vεi + hi)

)]2

=
1

2

∫
Ω

[
(uD[b]− uN [b])−

∑
i∈I

aihi

]2

= J(b)−
∫

Ω
(uD[b]− uN [b])

∑
i∈I

aihi +
1

2

∫
Ω

(∑
i∈I

aihi

)2

. (3.17)

In particular, we can state the following result:

Proposition 2. The closed formula for the variation of the Kohn-Vogelius shape functional with
respect to a class of finite number of ball-shaped trial anomalies is given by

J(be,x̂) = J(b)−
∫

Ω
(uD[b]− uN [b])

∑
i∈I

aihi +
1

2

∫
Ω

(∑
i∈I

aihi

)2

. (3.18)

Therefore, from (3.2) we have f1(ai) = ai, f2(ai, aj) = 1
2aiaj and R(e, x̂) ≡ 0. In addition,

D1J(x̂i) =

∫
Ω

(uD[b]− uN [b])hi and D2J(x̂i, x̂j) =

∫
Ω
hihj . (3.19)

Remark 3. Note that hi depends on x̂i through the boundary data gi in problem (3.16), since it
also depends on x̂i through the source term in (3.11). Consequently, (3.11) and (3.16) must be
solved for each x̂i in order to evaluate the expansion of J at x̂i. However, the solutions of these
auxiliary problems do not depend on the given source b, so that they can be solved once before
the reconstruction process and the values for hi and D2J(x̂i, x̂j) can be tabulated. Therefore,
during the reconstruction process only D1J(x̂i) has to be calculated, which implies the solution
of only the two auxiliary problems for uD and uN , respectively depending on the boundary data
u∗ and q∗.

4. Numerical results

When using perturbations of the form $e,x̂ = ∪i∈IB(εi, x̂i), the shape optimization problem
(2.7) reduces to the minimization of J(be,x̂) with respect to e and x̂. We introduce the change
of variables ai := |B(εi, x̂i)|, i ∈ I and a := {ai}i∈I . For a fixed point x̂ we look for the areas
minimizing Jx̂(a) := J(be,x̂). The following proposition shows the convenience of this approach:

Proposition 4. The function Jx̂(a) is a convex quadratic function of the variable a. In addition,
if the functions {hi}i∈I , solutions to (3.16) for the points {x̂i}i∈I are linearly independent, then
Jx̂(a) is a strictly convex quadratic function.

Proof. These results follow from Proposition 2, Theorems 3.3.7 and 3.3.8 in [5]. In effect, from
Proposition 2 we have

Jx̂(a) = Jx̂(0) +
∑
i∈I

aiD
1J(x̂i) +

1

2

∑
i,j∈I

aiajD
2J(x̂i, x̂j) , (4.1)
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then, the Hessian matrix of Jx̂(a) has components D2J(x̂i, x̂j). This matrix is positive semidef-
inite since, from (3.19):

∑
i,j∈I

D2J(x̂i, x̂j)aiaj =

∫
Ω

(∑
i∈I

aihi

)2

≥ 0 , (4.2)

and is positive definite if the functions {hi}i∈I are linearly independent, since in this case the
sum is zero only if a = 0. �

To find the optimal a we differentiate (4.1) with respect to ai to obtain the first order opti-
mality conditions: ∑

j∈I
D2J(x̂i, x̂j)aj = −D1J(x̂i) for i ∈ I , (4.3)

where D1J(x̂i) and D2J(x̂i, x̂j) are given by (3.19). Note that from Proposition 4, the matrix
of the linear system (4.3) is always positive semidefinite and becomes positive definite if the
functions {hi}i∈I are linearly independent. In this last case, the solution to (4.3) always exists,
and is the unique global minimum of Jx̂(a).

Denote M = {Mij}i,j∈I2 the matrix with coefficients Mij = D2J(x̂i, x̂j) and v = {vi}i∈I ,
with vi = D1J(x̂i). Then (4.3) is equivalent to

Ma = −v . (4.4)

Assume that M is invertible, then the solution to (4.4) is a? = −M−1v.
We say that the point x̂ = {x̂i}i∈I is feasible if (4.3) has a meaningful solution in the sense

that ai > 0, i ∈ I. The numerical practice shows us that it is not necessary to consider additional
constraints to avoid the overlapping between different balls or to have $e,x̂ ⊂ Ω. Meaningful
solutions are found by imposing the positivity requirement only.

After solving the linear system (4.4), we have to optimize Jx̂(a?) with respect to x̂ in a certain
set of feasible points. Equation (4.1) can also be written as

Jx̂(a) = Jx̂(0) + v · a +
1

2
a ·Ma , (4.5)

Now using (4.4) and since M is symmetric we get

Jx̂(a?) = Jx̂(0) +
1

2
v · a?

= Jx̂(0)− 1

2
v ·M−1v . (4.6)

Then the optimum x̂, denoted as x̂?, can be easily retrieved through the above formula, namely

x̂? := arg min
x̂∈X

Jx̂(a?) , (4.7)

where X is the set of feasible points x̂ = {x̂i}i∈I , with x̂i ∈ Ω for each i ∈ I. Here, an exhaustive
search in the set X is performed to find the optimal x̂?. Thus, due to the computational
complexity of such a procedure, it is doable only if the number of balls m is small, and other
algorithms for combinatorial optimization problems should be used to deal with a large m.

The next two propositions refer to the question of uniqueness of the solution of the inverse
source problem in the class of sources composed by a finite number of balls. Proposition 5 gives
a response in the very specific situation where the domain is a circle or a sphere, and complete
boundary measurements are available. It shows that in this case the Kohn-Vogelius functional
can have only one minimum. Proposition 6 considers any bounded simply-connected domain,
and the possibility of having incomplete measurement of the normal derivative. However, it
is valid only in the two-dimensional case, and needs a complete boundary measurement of the
potential.
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Proposition 5. Consider the domain Ω = {x ∈ Rα | ‖x‖ < R} with α = 2 or α = 3.
Then, for the case with complete boundary measurements, the minimum of the Kohn-Vogelius
functional (3.4) in the class

A :=

{
be,x̂ = γ

n∑
i=1

χB(εi,x̂i) , n ∈ N, x̂i 6= x̂j for i 6= j, and $e,x̂ ⊂ Ω

}
, (4.8)

is unique. In particular, Problem (2.7) can have at most one solution in A.

Proof. The proof is based on Proposition 4 and the linear independence of the functions hi
which, in the case of the disk or the sphere, can be obtained analytically, see [7] and Section 4.1.
The proof for the two-dimensional case is given in [7]. For the three-dimensional case the proof
is completely analogous. �

Proposition 6. Consider a bounded simply-connected two-dimensional domain Ω ⊂ R2. As-
sume we have a complete measurement u∗ ∈ H1/2(∂Ω), and a measurement q∗ ∈ H−1/2(ΓM ).
Then, a source b∗ in the class A of Proposition 5 such that there exists u ∈ H1(Ω) satisfying −∆u = b∗ in Ω ,

u = u∗ on ∂Ω ,
−∂nu = q∗ on ΓM .

(4.9)

is unique.

Proof. Assume bj ∈ A with j = 1, 2 are solutions of the inverse problem and that uj are the
corresponding solutions to the problems: −∆uj = bj in Ω ,

uj = u∗ on ∂Ω ,
−∂nuj = q∗ on ΓM .

(4.10)

Then, the difference w = u2 − u1 solves the problem:
−∆w =

m∑
i=1

βi χB(εi,x̂i) in Ω ,

w = 0 on ∂Ω ,
−∂nw = 0 on ΓM ,

(4.11)

for some m, βi, εi ∈ R and x̂i ∈ R2, i = 1, ...,m, defined implicitly by (4.11), where the numbers
βi, i = 1, ...,m, are not required to be positive. In the two-dimensional case, by using the
Riemann mapping theorem and the Poisson integral, we can always construct functions f j ,
j = 1, ...,m, satisfying  −∆f j = 0 in Ω ,

f j = 0 on ∂Ω \ ΓM ,
f j(x̂i) = δij ,

(4.12)

where δij is the Kronecker delta, see [19]. By applying the second Green identity to w and f j

we have: ∫
Ω
f j∆w = 0 . (4.13)

Since f j are harmonic, the mean value theorem of harmonic functions gives∫
Ω
f j∆w =

m∑
i=1

f j(x̂i)βi|B(εi, x̂i)| = βj |B(εj , x̂j)| = 0 . (4.14)

Then ∆w = 0, so that b1 = b2. �
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4.1. Example with a closed-form solution. Let us consider the sphere Ω = {x ∈ R3 : ‖x‖ <
R}, in the case of complete boundary measurements, i.e. ΓM = ∂Ω. In this case problem (3.16)
has only Neumann boundary conditions, so that the field equation of (3.16) must be changed
to −∆hi = −γ/(2πR3) and the constraint

∫
Ω hi = 0 must be introduced, see [7].

Consider a generic point x̂i. We introduce a spherical coordinate system so that a generic

point x has coordinates (r, θ, ϕ), and it is oriented in such a way that x̂i has coordinates (r̂i, θ̂i =

0, ϕ̂i = 0) with 0 < r̂i < R. Let x̃i be the point of polar coordinates (r̃i, θ̃i = 0, ϕ̃i = 0) with
r̃i = R2/r̂i. We define the functions ŝi(x) = ‖x − x̂i‖, and s̃i(x) = ‖x − x̃i‖. Note that for a
generic point x ∈ ∂Ω of coordinates (R, θ, ϕ) we have

1

ŝi

∣∣∣∣
r=R

=
1√

R2 + r̂2
i − 2r̂iR cos(θ)

=
r̃i/R√

R2 + r̃2
i − 2r̃iR cos(θ)

=
r̃i
Rs̃i

∣∣∣∣
r=R

, (4.15)

so that it is easy to verify by direct differentiation that a solution to (3.11) for a perturbation
of radius εi and center x̂i is

vεi =


γ

4π

[
3ε2
i − ŝ2

i

2ε3
i

− r̃i
Rs̃i

]
in B(εi, x̂i) ,

γ

4π

[
1

s̃i
− r̃i
Rs̃i

]
in Ω \B(εi, x̂i) .

(4.16)

From this expression we have

∂nvεi = − γ

4π

[
R2 − r̂2

i

Rŝ3
i

]
r=R

on ∂Ω . (4.17)

To obtain hi we consider the following useful formula [2, Chap. 12]:[
R2 + r̂2

i − 2r̂iR cos(θ)
]−1/2

=
1

R

∞∑
`=0

(
r̂i
R

)`
P`(cos(θ)) , (4.18)

where

P`(t) =
1

2``!

d`

dt`

[
(t2 − 1)`

]
,

are the Legendre polynomials, which satisfy the following orthogonality property [2, Chap. 12]:∫ π

0
sin(θ)P`(cos(θ))Pk(cos(θ)) dθ =

2

2`+ 1
δ`k , (4.19)

with δ`k being the Kronecker delta. In addition, we have∫ 2π

0
P`(cos(θ) cos(φ) + sin(θ) sin(φ) cos(ϕ)) dϕ = 2πP`(cos(θ))P`(cos(φ)) . (4.20)

By considering (4.15) and (4.18), we have that the harmonic function r̃i/(Rs̃i) can be ex-
pressed as:

r̃i
Rs̃i

=
1

R

∞∑
`=0

(
r̂i
R

)` ( r
R

)`
P`(cos(θ)) in Ω . (4.21)

Let us assume that the function hi has the following form:

hi =
γ

4π

[
r2

2R3
+
Ar̃i
Rs̃i

+
1

R

∞∑
`=0

A`

( r
R

)`
P`(cos(θ))

]
in Ω . (4.22)

where the real parameters A and A`, ` ∈ N have to be determined in order to have hi solution
to (3.16), with −∆hi = −γ/(2πR3).

By differentiating the previous equation, using (4.15), (4.17), and r̃i = R2/r̂i, we have

∂nhi+∂nvεi =
γ

4π

[
−R

2 + (A− 1)r̂2
i −Ar̂iR cos(θ)

Rŝ3
i

+
1

R2
+

1

R2

∞∑
`=1

`A`P`(cos(θ))

]
r=R

, (4.23)
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which, taking A = 2 reduces to

∂nhi + ∂nvεi =
γ

4π

[
− 1

Rŝi
+

1

R2
+

1

R2

∞∑
`=1

`A`P`(cos(θ))

]
r=R

. (4.24)

Then, after taking into account (4.15) and the expansion (4.18), we have that the boundary
condition in (3.16) is satisfied provided `A` = (r̂i/R)` for each ` ≥ 1. The parameter A0 can
be defined to obtain

∫
Ω P0(cos(θ))hi =

∫
Ω hi = 0. In fact, by replacing the expansion (4.18)

in (4.22), and by using the orthogonality property (4.19) we easily obtain A0 = −23/10. There-
fore, the solution to (3.16) with −∆hi = −γ/(2πR3) is:

hi =
γ

4π

[
r2

2R3
+

2r̃i
Rs̃i
− 23

10R
+

1

R

∞∑
`=1

1

`

(
r̂i
R

)` ( r
R

)`
P`(cos(θ))

]
in Ω . (4.25)

It is also interesting to note that after differentiating the previous equation and comparing
with (4.17) we obtain a formula similar to (4.18):

[
R2 + r̂2

i − 2r̂iR cos(θ)
]−3/2

=
1

R(R2 − r̂2
i )

∞∑
`=0

(1 + 2`)

(
r̂i
R

)`
P`(cos(θ)) . (4.26)

To obtain a better expression for hi, consider the function f defined as

f =
1

R

∞∑
`=1

1

`

(
r̂i
R

)` ( r
R

)`
P`(cos(θ)) . (4.27)

By differentiating this expression with respect to r, and considering (4.21) we have

r
∂f

∂r
+

1

R
=

1

R

∞∑
`=0

(
r̂i
R

)` ( r
R

)`
P`(cos(θ)) =

r̃i
Rs̃i

. (4.28)

From (4.27) we have f(r = 0, θ) = 0, then from the previous equation we obtain

f =

∫ r

0

r̃i − s̃i
rRs̃i

dr = − 1

R
log

(
r̃i + s̃i − r cos θ

2r̃i

)
. (4.29)

By replacing the previous result in (4.25) we have

hi =
γ

4π

[
r2

2R3
+

2r̃i
Rs̃i
− 23

10R
− 1

R
log

(
r̃i + s̃i − r cos(θ)

2r̃i

)]
in Ω . (4.30)

Consider another point x̂j , and denote φij the central angle x̂iOx̂j where O is the center of Ω.
We can orient the spherical coordinate system in such a way that x̂j has coordinates (r̂j , θ =
φij , ϕ = 0). The function hj is given by (4.25) or (4.30), with the subscript ‘j’ instead of ‘i’ and
the angle θ′, satisfying cos(θ′) = cos(θ) cos(φij) + sin(θ) sin(φij) cos(ϕ), instead of θ. The second
order derivatives can be obtained using (3.19), (4.21), (4.25), and the identities (4.19)–(4.20):

D2J(x̂i, x̂j) =
γ2R

4π

[
1

175
+

∞∑
`=1

2`+ 1

`2(2`+ 3)

(
r̂ir̂j
R2

)`
P`(cos(φij))

]
. (4.31)

This last expression can be simplified further in the case x̂j ≡ x̂i by using the Symbolic Math
Toolbox of MATLAB. This gives for t = r̂i/R:

D2J(x̂i, x̂i) =
γ2R

36π

[
1427

525
+ 3 dilog(1− t2)− 4 log(1− t2)− 8

t3
atanh(t) +

8

t2

]
. (4.32)
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4.2. Examples in two spacial dimensions. In this section we present some numerical ex-
periments in two spacial dimensions by setting n = 2 in the obtained formulas. In the examples
we take Ω = (0, 1)× (0, 1) and γ = 1, except the last one where the lack of uniqueness with re-
spect to γ is discussed. Since we are dealing with partial boundary measurements, the observed
boundary ΓM is represented by a dashed line. The domain Ω is discretized with three-node
finite elements. The mesh is generated from a grid of size 100×100, where each resulting square
is divided into four triangles, leading to 40× 103 elements. A fixed subgrid with 20× 20 nodes
is introduced, which is used to evaluate D1J(x̂i) and D2J(x̂i, x̂j). This choice has been shown
to be a good compromise between resolution and computational cost [7].

4.2.1. Example 1: Partial boundary measurements, noiseless data. In this first example, we con-
sider the sensitivity of the reconstruction with respect to a partial boundary measurements. For
a fixed target, we set different ΓM . The target is shown in Fig. 2. The obtained results for
|ΓM | = {1.0, 0.4, 0.2, 0.1} are presented in Figs. 3(a)-(d), respectively. In all cases the recon-
structions match precisely the targets, even when there is very few information available.

Figure 2. Example 1: true source term.

(a) |ΓM | = 1.0 (b) |ΓM | = 0.4

(c) |ΓM | = 0.2 (d) |ΓM | = 0.1

Figure 3. Example 1: reconstructions for different ΓM .

4.2.2. Example 2: Partial boundary measurements, noisy data. The first example is revisited,
but the data is corrupted with noise. In order to obtain noisy synthetic data, the true source term
b∗ is corrupted with white Gaussian noise of zero mean and 0.2 of standard deviation, as shown
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in Fig. 4. The obtained results for |ΓM | = {1.0, 0.4, 0.2, 0.1} are presented in Figs. 5(a)-(d),
respectively. Now, we observe that the less information available, the worst is the reconstruction.

Figure 4. Example 2: noisy source term.

(a) |ΓM | = 1.0 (b) |ΓM | = 0.4

(c) |ΓM | = 0.2 (d) |ΓM | = 0.1

Figure 5. Example 2: reconstructions for different ΓM .

4.2.3. Example 3: Hidden anomaly. Let us reconstruct again two anomalies, when one of them
is complete hidden by the other one. The target and the obtained result for |ΓM | = 0.1 are
shown in Fig. 6. Again, the reconstruction matches precisely the target. Note that there is very
few information available.

(a) true source term (b) reconstruction

Figure 6. Example 3: hidden anomaly.



13

4.2.4. Example 4: Probing for the number of anomalies. Now we suppose that the number of
anomalies is unknown and proceed with successive trials to find the correct number of balls.
We start with one trial ball and increment the number of balls every step until the algorithm
provides the same result from one iteration to the next. In particular, we are looking for three
anomalies, as shown in Fig. 7. The obtained results considering |ΓM | = 1.0 for one, two, three
and four trial balls are shown in Fig. 8. We note that the results obtained with three and four
balls are the same up to a (very) small fourth trial ball (Fig. 8(d)), allowing us to conclude that
there are only three main anomalies, which corroborates with the target we are reconstructing
(Fig. 7). Therefore, such a problem can be solved in one shot by supposing that the number
m > m∗, with m∗ used to denote the actual number of anomalies, is a priori known.

Figure 7. Example 4: true source term.

(a) one ball (b) two balls

(c) three balls (d) four balls

Figure 8. Example 4: looking for three anomalies.

4.2.5. Example 5: Shape and topology reconstruction. In this example we detect the topology as
well as the shape of the anomalies. In particular, we approximate an L-shaped anomaly and a
circular one by four balls considering |ΓM | = 1.0, as shown in Fig. 9. Through this example, we
show that the proposed method is able to reconstruct approximately the shape and the topology
of the mass distribution from partial boundary measurements.
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(a) true source term (b) reconstruction

Figure 9. Example 5: shape and topology reconstruction.

4.3. Example 6: Lack of uniqueness. It is well-known that Problem 1 suffers from lack of
uniqueness of solution ω∗. Counter-examples are easy to construct: a body with small support
and high density may produce the same traces on ΓM as another body with larger support and
lower density. For instance, in the two-dimensional problem, two concentric circles of same total
mass give exactly the same boundary measurements. A ring of same total mass concentric to
the circles gives also the same boundary measurements, so that the lack of uniqueness persists
even knowing the mass density. In conclusion, even if the intensities γ are known, there is
non-uniqueness of the solution ω∗, since different supports ω∗ may produce the same boundary
data (u∗, q∗). In order to fix these ideas, let us consider three anomalies with different sizes
and intensities, whose product between each pair of these quantities leads to the same resulting
total mass. The target is shown in Fig. 10(a), where the grayscale represents the intensity of the
source. By setting γ = 1 in the algorithm, we obtain the reconstruction shown in Fig. 10(b). The
barycenters and the total mass are perfectly reconstructed, whereas the sizes of two anomalies are
missed. In fact, any combination between size and intensity, whose resulting product coincides
with the mass of each target, is also solution to this problem. However, if the values of γ are
known on different parts of the domain Ω, the real sizes of the anomalies can be promptly
obtained, since the total mass of each ball is well estimated.

(a) true source term (b) reconstruction

Figure 10. Example 6: lack of uniqueness.

4.4. Examples in three spacial dimensions. In this section we present some numerical
experiments in three dimensions by setting n = 3 in the obtained formulas. We use the software
package FEniCS for the implementation; see [17] for an introduction. In the examples we take
the cube Ω = (0, 1) × (0, 1) × (0, 1) and γ = 1. The partial boundary measurements are taken
on the side of the cube ΓM = {x = 1} ∩ Ω. The domain Ω is discretized using linear Lagrange
elements. The mesh is generated from a grid of size 32 × 32 × 32, where each resulting cube
is divided into six tetrahedrons, leading to 6 × 323 = 196608 elements. The subgrid used to
evaluate D1J(x̂i) and D2J(x̂i, x̂j) is set to 10× 10× 10 nodes.

4.4.1. Example 7: three balls, noiseless data. In this example we aim at reconstructing three balls
with centers (0.7, 0.7, 0.4), (0.6, 0.3, 0.3), (0.5, 0.4, 0.8) and with radii 0.17, 0.2, 0.15 respectively.
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We use synthetic measurements without noise in the data. The results are given in Table 1. We
observe that the algorithm reconstructs the positions of the three balls exactly. The result is
shown in Fig. 11. This example shows that the method gives a precise idea of qualitative as well
as quantitative features of the real anomalies, such as location, size and even topology.

Figure 11. Example 7: true anomalies (first row) and corresponding recon-
structions (second row).

Table 1. Example 7: comparison between the true balls and the reconstruction
without noise in 3D; position of the center of the balls and their radii.

first ball second ball third ball

true ball position (0.7, 0.7, 0.4) (0.6, 0.3, 0.3) (0.5, 0.4, 0.8)

reconstructed ball position (0.7, 0.7, 0.4) (0.6, 0.3, 0.3) (0.5, 0.4, 0.8)

true ball radius 0.17 0.2 0.15

reconstructed ball radius 0.171 0.1995 0.151



16

4.4.2. Example 8: three balls, noisy data. In this example we aim at reconstructing three balls
with centers (0.7, 0.7, 0.4), (0.6, 0.3, 0.3), (0.5, 0.4, 0.8) and with respective radii 0.17, 0.2, 0.15.
In order to obtain noisy synthetic data, the true source term b∗ is corrupted with white Gaussian
noise, where the resulting level of noise on the boundary measurements is computed as follows:

η =
‖u∗ − u∗n‖L2(ΓM ) + ‖q∗ − q∗n‖L2(ΓM )

‖u∗‖L2(ΓM ) + ‖q∗‖L2(ΓM )
× 100 , (4.33)

where u∗n and q∗n are the noisy boundary measurements used as synthetic data.
In Table 2 and Table 3 results of the reconstruction are shown for η = 0.86% and η = 3.54%,

respectively. These results correspond to Fig. 12 for Table 2 and Figs. 13-15 for Table 3. One
observes that for η = 0.86% the positions are perfectly reconstructed except for the z-coordinate
of the third ball, while the radii are also very close to the true value. For η = 3.54% the positions
are reasonably well reconstructed. In this case the reconstructed radii shows some deviation but
are not too far from the true radii.

Figure 12. Example 8: two different views of true anomalies (first row) and
corresponding reconstructions (second row) for η = 0.86%.

4.4.3. Example 9: Two cubes. In this example we aim at reconstructing two cube-shaped anom-
alies with centers (0.6, 0.7, 0.3), (0.4, 0.3, 0.7) and with edge length 0.36 without noise in the
data. The algorithm reconstructs the two cubes by giving two balls of center (0.5, 0.7, 0.3) and
(0.5, 0.3, 0.7) and approximate radii 0.23 and 0.18, respectively. The result is shown in Fig. 16.
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Table 2. Example 8: comparison between the true balls and the reconstruction
with noise; position of the center of the balls and their radii for η = 0.86%.

first ball second ball third ball

true ball position (0.7, 0.7, 0.4) (0.6, 0.3, 0.3) (0.5, 0.4, 0.8)

reconstructed ball position (0.7, 0.7, 0.4) (0.6, 0.3, 0.3) (0.5, 0.4, 0.8)

true ball radius 0.17 0.2 0.15

reconstructed ball radius 0.1727 0.1952 0.1566

Figure 13. Example 8: true anomalies (first row) and corresponding recon-
structions (second row) for η = 3.54%.

We observe that the two (y, z) coordinates are exactly reconstructed whereas the x-coordinate
deviates slightly compared to the true anomalies. The larger ball for the reconstruction is the
one closest to the side ΓM where the measurements are performed. This example shows that
the proposed method is able to give a good approximation of the centers and size of two objects
whose shapes are not balls and from partial boundary measurements.
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Figure 14. Example 8: superposition of true anomalies (red) and corresponding
reconstructions (black wireframe) for η = 3.54%.

Figure 15. Example 8: Solutions uD (left) and uN (right) showing the face
ΓM ⊂ {x = 1} of the cube where the measurements are performed for η = 3.54%.

Table 3. Example 8: Comparison between the true balls and the reconstruction
with noise; position of the center of the balls and their radii for η = 3.54%.

first ball second ball third ball

true ball position (0.7, 0.7, 0.4) (0.6, 0.3, 0.3) (0.5, 0.4, 0.8)

reconstructed ball position (0.7, 0.7, 0.4) (0.7, 0.3, 0.3) (0.5, 0.4, 0.6)

true ball radius 0.17 0.2 0.15

reconstructed ball radius 0.1641 0.1657 0.1775

5. Conclusions

Following the approach introduced in [7], we have proposed a method for solving two and
three-dimensional inverse source problems with partial boundary measurements. The inverse
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Figure 16. Example 9: three different views of true anomalies represented by
solid surfaces (two cubes) and corresponding reconstruction represented by a
black wireframe (two balls).

source problem have been reformulated as a topology optimization problem, where the support
of the mass distribution is the unknown variable and the Kohn-Vogelius functional is minimized.
To solve the inverse problem, the algorithm evaluates an analytic formula, herein given, that
expresses the variation of the Kohn-Vogelius functional with respect to a set of ball-shaped
perturbations on the unknown mass distribution. To complement the unavailable information
on the hidden boundary the Newtonian potential was introduced.

By solving some numerical experiments, we have shown that the proposed algorithm is able
to approximate the unknown mass distribution in the two and three-dimensional cases and
considering different sizes of the hidden boundary and different amounts of noise. The number
of unknown anomalies can be found after some trials. The sizes and positions of anomalies with
possibly very different sizes can be estimated with acceptable accuracy.

From these promising results, we conclude that the proposed algorithm can be used to perform
an initial investigation on the presence of hidden anomalies. In addition, the results provided
by our algorithm can be used as an initial guess in level-sets-based methods, for instance.
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