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Abstract. The topological derivative measures the sensitivity of a shape functional with re-
spect to an infinitesimal singular domain perturbation, such as the insertion of holes, inclu-
sions or source-terms. The topological derivative has been successfully applied in obtaining
the optimal topology for a large class of physics and engineering problems. In this paper the
topological derivative is applied in the context of topology optimization of structures subject to
multiple load-cases. In particular, the structural compliance under plane stress or plane strain
assumptions is minimized under volume constraint. For the sake of completeness, the topolog-
ical asymptotic analysis of the total potential energy with respect to the nucleation of a small
circular inclusion is developed in all details. Since we are dealing with multiple load-cases, a
multi-objective optimization problem is proposed and the topological sensitivity is obtained as
a sum of the topological derivatives associated with each load-case. The volume constraint is
imposed through the Augmented Lagrangian Method. The obtained result is used to devise
a topology optimization algorithm based on the topological derivative together with a level-
set domain representation method. Finally, several finite element-based examples of structural
optimization are presented.

1. Introduction

The topological derivative measures the sensitivity of a given shape functional with respect
to an infinitesimal singular domain perturbation, such as the insertion of holes, inclusions or
source-terms [51]. The topological derivative was introduced in 1999 through the fundamental
paper [53] and has been successfully applied in a wide range of problems such as inverse problems
[10, 17, 18, 23, 31, 33, 35, 37, 43], image processing [13, 14, 32, 34, 40] and topology optimization
[1, 8, 11, 12, 15, 16, 29, 30, 39, 41, 48, 49, 50, 56]. See also applications of the topological derivative
in the context of multiscale constitutive modeling [9, 26, 27, 28, 52], fracture mechanics sensitivity
analysis [4, 57] and damage evolution modeling [2]. Regarding the theoretical development of
the topological asymptotic analysis, see for instance [5, 6, 19, 20, 24, 25, 36, 38, 42, 44, 45, 46,
47, 54, 55], as well as the book by Novotny & Sokołowski, 2013 [51].

In this paper the topological derivative is applied in the context of topology optimization of
structures into two spatial dimensions subject to multiple load-cases. In particular, the struc-
tural compliance under plane stress or plane strain assumptions is minimized subject to volume
constraint, which is imposed through the Augmented Lagrangian Method. For the sake of com-
pleteness, the topological asymptotic analysis of the total potential energy with respect to the
nucleation of a small circular inclusion is developed in all details. These derivations can be found
in the literature (see for instance [51] and references therein). However, our idea is to present
them in a simplified and pedagogical manner by using simple arguments from the Analysis. In
addition, we claim that the topological derivative obeys the basic rules of the Differential Calcu-
lus (see the examples on the introduction of the book [51] and also the paper [9] for application of
these rules). Thus, since we are dealing with multiple load-cases, a multi-objective optimization
problem is proposed and the topological sensitivity is obtained as a sum of the topological deriva-
tives associated with each load-case. It is also worth to mention that the topological derivative
is defined through a limit passage when the small parameter governing the size of the topolog-
ical perturbation goes to zero. However, it can be used as a steepest-descent direction in an
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optimization process like in any method based on the gradient of the cost functional. Therefore,
the obtained result is used to devise a topology optimization algorithm based on the topological
derivative together with a level-set domain representation method, as proposed by Amstutz &
Andrä, 2006 [8]. The algorithm is presented in a pseudo-code format easy to implement. Finally,
several finite element-based examples of structural optimization are presented. In summary, a
comprehensive account on the application of the topological derivative in the context of compli-
ance structural optimization is given. The theoretical development, interpretation of the results
and computational aspects are discussed, and some misunderstandings currently found in the
literature are elucidated.

This paper is organized as follows. In Section 2 we firstly introduce the topological derivative
concept and state the mechanical problem which we are dealing with, then two main results
are derived: the existence and the closed formula for the topological derivative associated to the
strain energy shape functional. In Section 3 the compliance topology optimization problem under
volume constraint is stated together with its associated topological derivative. The topology
optimization algorithm based on the topological derivative and a level-set domain representation
method is described in Section 4. The numerical results are presented in Section 5. The paper
ends with some concluding remarks in Section 6. Finally, the closed formula for the topological
derivative presented in Section 2 is derived in Appendix A by using standard arguments from
the Analysis.

2. Topological Asymptotic Analysis

Let us consider an open and bounded domain denoted by Ω ⊂ R
2. Associated with this

domain, we introduce a characteristic function χ : R2 → {0, 1}, χ = 1Ω such that

|Ω| =

∫

R2

χ, (2.1)

where |Ω| is the Lebesgue measure of Ω. Suppose that Ω is subject to a singular perturbation
confined in a small region ωε(x̂) = x̂ + εω with size ε, where x̂ is an arbitrary point in Ω and
ω is a fixed domain in R

2. We define a characteristic function χε(x̂;x), x ∈ R
2, associated with

the topologically perturbed domain. In the case of a perforation, for instance, χε : R
2 → {0, 1},

χε(x̂;x) = 1Ω−1ωε and the perforated domain is obtained as Ωε = Ω\ωε. Then we assume that
a given shape functional ψ(χε(x̂)) associated with the topologically perturbed domain, admits
the following topological asymptotic expansion

ψ(χε(x̂)) = ψ(χ) + f(ε)T (x̂) + o(f(ε)), (2.2)

where ψ(χ) is the shape functional associated to the unperturbed domain Ω and f(ε) is a positive
function such that, f(ε) → 0 when ε → 0. The function x̂ 7→ T (x̂) is called the topological
derivative of ψ at x̂. Therefore this derivative can be seen as a first order correction on ψ(χ) to
approximate ψ(χε). In addition, after rewriting (2.2) we obtain the classical definition for the
topological derivative [53]:

T (x̂) = lim
ε→0

ψ(χε(x̂))− ψ(χ)

f(ε)
. (2.3)

Note that the topological derivative is defined through the limit passage ε → 0. However,
according to (2.2), it can be used as a steepest-descent direction in an optimization process
similar to any gradient-based method, as shall be presented later.

In this paper the domain is topologically perturbed by the nucleation of a small inclusion,
as shown in Fig. 1. More precisely, the perturbed domain is obtained when a circular hole
ωε(x̂) := Bε(x̂), the ball of radius ε > 0 and center at x̂ ∈ Ω, is introduced in Ω. Next,
this region is filled by an inclusion with different material property from the background. In
particular, χε(x̂) = 1Ω − (1− γ)1Bε(x̂) and a piecewise constant function γε is introduced:

γε = γε(x) :=

{
1, if x ∈ Ω \Bε,
γ, if x ∈ Bε,

(2.4)
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Figure 1. Topological derivative concept.

where γ ∈ R
+ is the contrast in the material property.

2.1. Unperturbed Problem. As mentioned before, the topological asymptotic expansion of
the total potential energy associated with the elasticity system into two spatial dimensions is
obtained. Thus, the unperturbed shape functional is defined as:

ψ(χ) := Jχ(u) =
1

2

∫

Ω
σ(u) · ∇su−

∫

Ω
b · u−

∫

ΓN

q · u, (2.5)

where the vector function u is the solution to the variational problem:




Find u ∈ U , such that∫

Ω
σ(u) · ∇sη =

∫

Ω
b · η +

∫

ΓN

q · η, ∀η ∈ V,
(2.6)

with b a constant body force distributed in the domain,

σ(u) = C∇su (2.7)

the Cauchy stress tensor,

∇su =
1

2
(∇u+∇Tu) (2.8)

the linearized strain tensor and C the constitutive tensor given by

C = 2µI+ λI⊗ I, (2.9)

where I and I are the second and fourth identity tensors, respectively, µ and λ are the Lamé’s
coefficients, both considered constants everywhere. In the plane stress assumption we have

µ =
E

2(1 + ν)
and λ =

νE

1− ν2
, (2.10)

while in plane strain assumption they are

µ =
E

2(1 + ν)
and λ =

νE

(1 + ν)(1− 2ν)
, (2.11)

where E is the Young modulus and ν the Poisson ratio. The set of admissible displacements U
and the space of admissible displacements variations V are respectively defined as

U := {ϕ ∈ H1(Ω) : ϕ|ΓD
= u} and V := {ϕ ∈ H1(Ω) : ϕ|ΓD

= 0}. (2.12)

Here, ΓD and ΓN respectively are Dirichlet and Neumann boundaries such that ∂Ω = ΓD ∪ ΓN

with ΓD ∩ ΓN = ∅, u is the displacement prescribed on ΓD and q is the load prescribed on ΓN ,
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Figure 2. Mechanical problem defined in the unperturbed domain.

both assumed to be smooth enough. See details in Fig. 2. The strong system associated with
the variational problem (2.6) is given by:





Find u, such that
divσ(u) = b inΩ,

σ(u) = C∇su,
u = u on ΓD,

σ(u)n = q on ΓN .

(2.13)

2.2. Perturbed Problem. Now let us state the associate topologically perturbed problem. In
this case, the total potential energy is given by

ψ(χε) := Jχε(uε) =
1

2

∫

Ω
σε(uε) · ∇

suε −

∫

Ω
bε · uε −

∫

ΓN

q · uε, (2.14)

where the vector function uε is the solution to the variational problem:




Find uε ∈ Uε, such that∫

Ω
σε(uε) · ∇

sη =

∫

Ω
bε · η +

∫

ΓN

q · η, ∀η ∈ Vε,
(2.15)

with

σε(uε) = γεC∇
suε and bε = γεb, (2.16)

where γε is defined by (2.4). The set Uε and the space Vε are defined as

Uε := {ϕ ∈ U : JϕK = 0 on ∂Bε} and Vε := {ϕ ∈ V : JϕK = 0 on ∂Bε}, (2.17)

with the operator JϕK used to denote the jump of the function ϕ on the boundary of the inclusion
∂Bε, namely JϕK := ϕ|Ω\Bε

− ϕ|Bε
on ∂Bε. See details in Fig. 3. The strong system associated

to the variational problem (2.15) reads:




Find uε, such that
divσε(uε) = bε in Ω,

σε(uε) = γεC∇
suε,

uε = u on ΓD,
σε(uε)n = q on ΓN ,

JuεK
Jσε(uε)Kn

=
=

0
0

}
on ∂Bε.

(2.18)
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Figure 3. Mechanical problem defined in the perturbed domain.

2.3. Existence of the Topological Derivative. The following result ensures the existence of
the topological derivative associated with the problem under analysis.

Lemma 1. Let u and uε be solutions to (2.6) and (2.15), respectively. Then we have that the

estimate ‖uε − u‖H1(Ω) = O(ε) holds true.

Proof. We start by subtracting the variational problem (2.6) from (2.15) to obtain:
∫

Ω
(σε(uε)− σ(u)) · ∇

sη =

∫

Ω
(bε − b) · η ±

∫

Ω
σε(u) · ∇

sη, ∀η ∈ Vε. (2.19)

From the above equation, we have:
∫

Ω
(σε(uε)− σε(u)) · ∇

sη = −

∫

Ω
(σε(u)− σ(u)) · ∇

sη +

∫

Ω
(bε − b) · η. (2.20)

Recalling that: σε(uε) = σ(uε), bε = b in Ω \ Bε and σε(uε) = γσ(uε), bε = γb in Bε, we have
from (2.19):

∫

Ω
σε(uε − u) · ∇

sη = (1− γ)

∫

Bε

σ(u) · ∇sη + (γ − 1)

∫

Bε

b · η. (2.21)

By taking η = uε − u as test function in the above equation we obtain the following equality
∫

Ω
σε(uε − u) · ∇

s(uε − u) = (1− γ)

∫

Bε

σ(u) · ∇s(uε − u) + (γ − 1)

∫

Bε

b · (uε − u). (2.22)

From the Cauchy-Schwartz and Poincaré inequalities it follows that
∫

Ω
σε(uε − u) · ∇

s(uε − u) ≤ C1‖σ(u)‖L2(Bε)‖∇
s(uε − u)‖L2(Bε) + C2‖b‖L2(Bε)‖uε − u‖L2(Bε)

≤ C3ε‖∇
s(uε − u)‖L2(Bε) + C4ε‖uε − u‖L2(Bε)

≤ C5ε‖uε − u‖H1(Bε) ≤ C6ε‖uε − u‖H1(Ω), (2.23)

where we have used the elliptic regularity of function u and the continuity of the function b at
the point x̂ ∈ Ω. Finally, from the coercivity of the bilinear form on the left-hand side of (2.22),
namely

c‖uε − u‖
2
H1(Ω) ≤

∫

Ω
σε(uε − u) · ∇

s(uε − u), (2.24)

we obtain the result with the constant C = C6/c independent of the small parameter ε. �
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2.4. The Topological Derivative Formula. According to [51] the topological asymptotic
expansion of the energy shape functional takes the form (see also Appendix A):

ψ(χε(x̂)) = ψ(χ)− πε2(Pγσ(u(x̂)) · ∇
su(x̂) + (1− γ)b(x̂) · u(x̂)) + o(ε2), (2.25)

where the polarization tensor Pγ is given by the following fourth order isotropic tensor

Pγ =
1

2

1− γ

1 + γα2

(
(1 + α2)I+

1

2
(α1 − α2)

1− γ

1 + γα1
I⊗ I

)
, (2.26)

with

α1 =
λ+ µ

µ
and α2 =

λ+ 3µ

λ+ µ
. (2.27)

Finally, in order to extract the main term of the above expansion, we choose f(ε) = πε2, which
leads to the final formula for the topological derivative, namely:

T (x̂) = −Pγσ(u(x̂)) · ∇
su(x̂)− (1− γ)b(x̂) · u(x̂). (2.28)

Remark 2. Formally we can take the limit cases γ → 0 and γ →∞. For γ → 0, the inclusion

leads to a void and the transmission condition on the interface of the inclusion degenerates to

homogeneous Neumann boundary condition. In this case the polarization tensor is given by

P0 =
λ+ 2µ

λ+ µ

(
I−

µ− λ

4µ
I⊗ I

)
. (2.29)

In addition, for γ → ∞, the elastic inclusion leads to a rigid one and the polarization tensor is

stated as

P∞ = −
λ+ 2µ

λ+ 3µ

(
I+

µ− λ

4(λ + µ)
I⊗ I

)
. (2.30)

In the case of plane strain linear elasticity, the above formulas are written as

P0 =
1− ν

2

[
4I+

1− 4ν

1− 2ν
I⊗ I

]
and P∞ = −(1− ν)

[
1

3− 4ν
I+

1− 4ν

2(3 − 4ν)
I⊗ I

]
, (2.31)

while in the case of plane stress linear elasticity the formulas are explicitly given by

P0 =
1

1 + ν

[
2I−

1− 3ν

2(1 − ν)
I⊗ I

]
and P∞ = −

1

3− ν

[
2I+

1− 3ν

2(1 + ν)
I⊗ I

]
. (2.32)

Remark 3. The polarization tensor Pγ and theirs associated particular representations lead

to isotropic fourth order tensors because we are dealing with circular inclusions as topological

perturbations. For arbitrary shaped inclusions the reader may refer to the book by Ammari &

Kang [3], for instance. On the other hand, there are two main advantages in using circular

inclusions in the context of topology optimization, which are:

• The associated topological derivative is given by a closed formula depending on the solution

to the original unperturbed problem.

• There are optimality conditions rigorously derived in [7], allowing for use the topological

derivative together with a level-set domain representation method as a steepest-descent

direction in a topology optimization algorithm [8].

3. The Topology Optimization Problem

We consider the compliance topology optimization of structures subject to multiple load-cases
under volume constraint. Therefore, the topology optimization problem can be stated as

P1 :





Minimize
Ω⊂D

FΩ(ui) = −
NLC∑

i=0

Jχ(ui),

subject to |Ω| ≤M,

(3.1)

where NLC is the number of load-cases, M > 0 is the required volume at the end of the opti-
mization process and ui is solution to:
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Figure 4. Computational domain.

• for i = 0 



Find u0, such that
divσ(u0) = ρb in D,

σ(u0) = ρC∇su0,
u0 = 0 on ΓD,

σ(u0)n = 0 on ΓN ;

(3.2)

• for i = 1, . . . ,NLC




Find ui, such that
divσ(ui) = 0 in D,

σ(ui) = ρC∇sui,
ui = 0 on ΓD,

σ(ui)n = qi on ΓN .

(3.3)

Here, D is used to denote a hold-all domain. In order to simplify the numerical implementation
we consider that the elastic body D is decomposed into two sub-domains Ω and ω. The domain
Ω = D \ ω represents the elastic part while ω ⊂ D is filled with a very complacent material,
used to mimic voids. See the sketch in Fig. 4. This procedure allows us to work in a fixed
computational domain. Therefore, we define a characteristic function of the form

x 7→ χ(x) =

{
1, if x ∈ D,
0, if x ∈ R

2 \ D.
(3.4)

In addition, we introduce a piecewise constant function ρ, such that

ρ(x) =

{
1, if x ∈ Ω,
ρ0, if x ∈ ω,

(3.5)

with 0 < ρ0 ≪ 1 used to mimic voids. That is, the original optimization problem, where the
structure itself consists of the domain Ω of given elastic properties and the remaining empty part
ω, is approximated by means of the two-phase material distribution given by (3.5) over D where
the empty region ω is filled by a material (the soft phase) with Young’s modulus, ρ0E, much
lower than the given Young’s modulus, E, of the structure material (the hard phase).

3.1. Augmented Lagrangian. The volume constraint is imposed through the Augmented La-
grangian Method. It consists in transform the inequality constraint in Problem P1 given by (3.1)
into an equality by introducing a slack function s, namely

P2 :





Minimize
Ω⊂D

FΩ(ui) = −
NLC∑

i=0

Jχ(ui),

subject to hΩ(s) = gΩ + s2,

(3.6)

where gΩ = (|Ω| −M)/M . Note that for an optimal value s = s∗ the equivalence P2 ≡ P1 holds
true. Let us introduce two Lagrange multipliers α and β. Then, the Problem P2 in (3.6) can be
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rewritten as

P3 :





Minimize
Ω⊂D

F̃Ω(ui) = −
NLC∑

i=0

Jχ(ui) + αhΩ(s) +
β

2
hΩ(s)

2,

subject to hΩ(s) = gΩ + s2.

(3.7)

Note that if hΩ(s
∗) = 0, then P3 ≡ P2 ≡ P1. Thus, let us minimize (3.7) with respect to the

slack function s, namely
{
αh′Ω(s) + βhΩ(s)h

′
Ω(s) = 0,

h′Ω(s) = 2s.
(3.8)

Then, s = 0 or s2 = −(α/β + gΩ). Therefore

(s∗)2 = max{0,−(α/β + gΩ)}. (3.9)

It follows that:

hΩ(s
∗) = gΩ +max{0,−(α/β + gΩ)}

= max{gΩ,−α/β} := g+Ω . (3.10)

Finally, by setting s = s∗ we have P4 ≡ P3 ≡ P2 ≡ P1, that allows us to rewrite the constrained
Problem P1, given by (3.1), in its equivalent unconstrained form, namely

P4 :

{
Minimize

Ω⊂D
F̃Ω(ui) = −

NLC∑

i=0

Jχ(ui) + αg+Ω +
β

2
(g+Ω )

2 . (3.11)

In addition we have that β, the parameter associated to the quadratic term, controls the updating
of the parameter α, which is associated with the linear term. Therefore, we can specify the
required volume fraction at the final of the optimization process by solving the following recursive
formula for the parameter α:

α0 = 0

αn+1 = max{0, αn + βgΩ}, (3.12)

where β > 0 is a fixed number. This updating process shall be repeated until the volume
constraint is reached, as can be seen in Algorithm 1 at the end of Section 4.

3.2. Topological Derivative. Let us consider two extremal situations. When ρ = 1, then
γ = ρ0. On the other hand, if ρ = ρ0, then γ = 1/ρ0. Therefore, in order to simplify the
numerical implementation, we can eliminate the contrast parameter γ by considering the limit
cases discussed in Remark 2. In addition, since the topological derivative satisfies the basic rules
of the Differential Calculus [51] and taking into account the linearity of the elasticity problem,
we have

T (x̂) =





NLC∑

i=0

(P0σ(ui(x̂)) · ∇
sui(x̂) + bi · ui)−max{0, α + βgΩ}, if x̂ ∈ Ω,

NLC∑

i=0

(P∞σ(ui(x̂)) · ∇
sui(x̂)− bi · ui) + max{0, α + βgΩ}, if x̂ ∈ ω.

(3.13)

Therefore, the topological derivative associated with Problem P4 is obtained as a sum of the
topological derivatives for each load-case together with the topological derivative of the aug-
mented Lagrangian terms, which is trivially obtained by considering the limit cases in Remark
2.
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4. The Topology Optimization Algorithm

In this section a topology optimization algorithm based on the topological derivative together
with a level-set domain representation method is presented. It has been proposed by Amstutz &
Andrä [8] and consists basically in looking for a local optimality condition for the minimization
problem (3.11), written in terms of the topological derivative and a level-set function. Therefore,
the elastic part Ω as well as the complacent material ω are characterized by a level-set function
Ψ ∈ L2(D) of the form:

Ω = {Ψ(x) < 0 a.e. in D} and ω = {Ψ(x) > 0 a.e. in D}, (4.1)

where Ψ vanishes on the interface ∂ω. A local sufficient optimality condition for Problem (3.11),
under the considered class of domain perturbation given by circular inclusions, can be stated as
[7]

T (x) > 0 ∀x ∈ D. (4.2)

Therefore, let us define the quantity

g(x) :=

{
−T (x), if Ψ(x) < 0,
T (x), if Ψ(x) > 0,

(4.3)

allowing for rewrite the condition (4.2) in the following equivalent form

{
g(x) < 0, if Ψ(x) < 0,
g(x) > 0, if Ψ(x) > 0.

(4.4)

We observe that (4.4) is satisfied wether the quantity g coincides with the level-set function Ψ
up to a strictly positive number, namely ∃ τ > 0 : g = τΨ, or equivalently

θ := arccos

[
〈g,Ψ〉L2(D)

‖g‖L2(D)‖Ψ‖L2(D)

]
= 0, (4.5)

which shall be used as optimality condition in the topology design algorithm, where θ is the
angle between the functions g and Ψ in L2(D).

Let us now explain the algorithm. We start by choosing an initial level-set function Ψ0 ∈
L2(D). In a generic iteration n, we compute function gn associated with the level-set function
Ψn ∈ L

2(D). Thus, the new level-set function Ψn+1 is updated according to the following linear
combination between the functions gn and Ψn

Ψ0 ∈ L
2(D),

Ψn+1 =
1

sin θn

[
sin((1 − κ)θn)Ψn + sin(κθn)

gn
‖gn‖L2(D)

]
∀n ∈ N,

(4.6)

where θn is the angle between gn and Ψn, and κ is a step size determined by a linear-search

performed in order to decrease the value of the objective function F̃Ωn , with Ωn used to denote
the elastic part associated to Ψn. The process ends when the condition θn ≤ ǫθ and at the same
time the required volume |1−|Ωn|/M | ≤ ǫM are satisfied in some iteration, where ǫθ and ǫM are
given small numerical tolerances. In particular, we can choose

Ψ0 ∈ S = {x ∈ L2(D); ‖x‖L2(D) = 1}, (4.7)

and by construction Ψn+1 ∈ S, ∀n ∈ N. If at some iteration n the linear-search step size κ is
found to be smaller then a given numerical tolerance ǫκ > 0 and the optimality condition is not
satisfied, namely θn > ǫθ, then a uniform mesh refinement of the hold all domain D is carried out
and the iterative process is continued. The resulting topology design algorithm is summarized
in a pseudo-code format as follows:
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Algorithm 1: The topology design algorithm

input : NLC, D, Ψ0, M , α0, β, ǫκ, ǫθ, ǫM
output: The optimal topology Ω⋆

1 n← 0;

2 Ωn ← Ψn; Ept ← 0;

3 for i← 0 : NLC do

4 if i = 0 then

5 solve (3.2);

6 else

7 solve (3.3);

8 end if

9 Ept ← Ept + Jχ(ui);
10 end for

11 Compute F̃Ωn according to (3.11);

12 Compute T (x̂) using (3.13);

13 Compute gn according to (4.3);

14 θn ← arccos

[
〈gn,Ψn〉

‖gn‖L2(D) ‖Ψn‖L2(D)

]
;

15 Ψold ← Ψn; F̃old ← F̃Ωn ; F̃new ← F̃old + 1; κ← 1;

16 while F̃new > F̃old do

17 Ψnew ←
1

sin θn

[
sin((1− κ)θn)Ψold + sin(κθn)

gn
‖gn‖L2(D)

]
;

18 Ψn ← Ψnew;

19 execute lines 2-11;

20 F̃new ← F̃Ωn ;

21 κ← κ/2;

22 end while

23 if κ < ǫκ then

24 try a mesh refinement;

25 Ψn+1 ← Ψn ; n← n+ 1;

26 go to line 2;

27 else if θn > ǫθ then

28 Ψn+1 ← Ψn ; n← n+ 1;

29 go to line 2;

30 else

31 if |1− |Ωn|/M | > ǫM then

32 compute αn+1 according to (3.12);

33 Ψn+1 ← Ψn ; n← n+ 1 ;

34 go to line 2;

35 else

36 Ω⋆ ← Ψn;

37 stop;

38 end if

39 end if

5. Numerical Examples

Since we are dealing with multiple load-cases, two situations denoted by C1 and C2 are
considered. In the first case (C1), the loads are applied simultaneously (single load-case) and
the associated topological derivative is evaluated. On the other hand, in the second case (C2),
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the loads are applied separately (multiple load-cases) and the resulting topological derivative is
obtained as a sum of the topological derivatives associated with each load-case.

In all numerical examples the stopping criterion, the optimality threshold and the tolerance of
the volume requirement are given respectively by ǫκ = 10−3, ǫθ = 1o and ǫM = 1%. The angle θ
has converged to a value smaller than 1o, namely, the optimality condition has been satisfied in
all cases up to a small numerical tolerance. Furthermore, the mechanical problem is discretized
into linear triangular finite elements and three steps of uniform mesh refinement were performed
during the iterative process.

We assume that in the first three examples the structures are under plane strain assumption
while in the last two examples the structures are under plane stress assumption. Finally, the
material property threshold is set as ρ0 = 10−4, while the Young’s modulus is given by E = 1.0.

5.1. Example 1. Let us consider a prismatic bar submitted to a pair of loads, as shown in Fig.
5. The hold-all domain is given by a square section of size 1× 1 supported on the two opposites
bottom corners. The loading consists of a pair of forces q1 = (−1.0, 0.0) and q2 = (1.0, 0.0)
applied on the two opposites top corners. The hold-all domain is discretized into a uniform mesh
with 1600 elements and 841 nodes.

Figure 5. Example 1: initial guess and boundary conditions.

The Poisson ratio is given by ν = 0.3. The required volume fraction is set as M = 50%, while
the parameters of the augmented Lagrangian method are given by α0 = 0.0 and β = 10.0. The
final topologies are obtained after 41 and 31 iterations for the cases C1 and C2, respectively,
as shown in Figs. 6(a) and 6(b). We observe that the obtained result for multiple load-cases is
feasible while the result for single load-case doesn’t make sense from physical point of view.

(a) single load-case (b) multiple load-cases

Figure 6. Example 1: obtained results.
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5.2. Example 2. In this case the hold-all domain consists in a rectangular beam of size 2 × 1
supported on the two opposites bottom corners and subject to a pair of forces q1 = (−0.5,−1.0)
and q2 = (0.5,−1.0), as shown in Fig. 7. The initial mesh is uniform with 1600 elements and
861 nodes.

Figure 7. Example 2: initial guess and boundary conditions.

The required volume fraction is given by M = 50% and the parameters of the augmented
Lagrangian method are α0 = 0.0 and β = 10.0. The Poisson ratio is set as ν = 0.3. The final
results are obtained with 27 and 28 iterations for the cases C1 and C2, respectively, as shown in
Figs. 8(a) and 8(b).

(a) single load-case (b) multiple load-cases

Figure 8. Example 2: obtained results.

The convergence of the θn angle and volume fraction, for the cases C1 and C2, are respectively
presented in Figs. 9 and 10. The jumps on the values of θn in the graph of Fig. 9 are due to the
mesh refinement.
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Figure 9. Example 2: convergence history of the θn angle.
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Figure 10. Example 2: convergence history of the volume fraction.

The multiple load-cases C2 allow for a more realistic combination of the applied forces resulting
in topologies that best satisfy the conditions of the problem. Thus in the next three examples
only the results for multiple load-cases are presented.

5.3. Example 3. This example simulates the design of a barrage. The hold-all domain is a
square of size 1 × 1 clamped on its bottom edge, as illustrated by Fig. 11(a). The hydrostatic
pressure is represented by a distributed load on the left-hand side of the barrage. There is also
a constant body force b = (0.0,−0.1) acting in the whole domain. The initial mesh is uniform
with 1600 elements and 841 nodes.

(a) initial guess and boundary conditions (b) obtained result

Figure 11. Example 3: barrage design.

The Poisson ratio is given by ν = 0.2. The required volume fraction is set as M = 50%, while
the parameters of the augmented Lagrangian method are given by α0 = 0.0 and β = 1.0. The
final topology is obtained with 29 iterations, as shown in Fig. 11(b).

5.4. Example 4. Let us consider now a bridge design. The hold-all domain is given by a
rectangle of size 3×1 supported on the two opposites bottom corners. The bridge is submitted to
three uniformly distributed traffic loading q1 = (0.0,−10.0), q2 = (1.0, 0.0) and q3 = (−1.0, 0.0)
applied on the dark strip of height h = 0.05 positioned at the distance c = 0.45 from the top of
the hold-all domain. This strip represents the road, which is simply supported on their opposites
bottom corners, and therefore remains unchanged throughout the optimization process. We also
consider a body force given by b = (0.0,−0.4). See the sketch in Fig. 12. The domain is
discretized into a uniform mesh with 4800 elements and 2481 nodes.
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Figure 12. Example 4: initial guess and boundary conditions.

The parameters of the augmented Lagrangian method are given by α0 = 0.0 and β = 1.0,
while the required volume fraction is set as M = 30%. The Poisson ratio is given by ν = 0.3.
The final topology is obtained after 28 iterations and can be seen in Fig. 13.

Figure 13. Example 4: obtained result.

5.5. Example 5. In this last example the design of an alloy wheel is considered. The hold-all
domain is given by a ring of radii 0.2 and 1.0. The dark strip remains unchanged during the
optimization process. The wheel is clamped on the smaller holes (little circles of radius 0.04).
A uniformly distributed shear load q9 of intensity 1.0 and eight normal loads qi, i = 1, ..., 8, of
intensity 10.0 are applied on the contour of the wheel. All the details are presented in Fig. 14(a).
The initial mesh is nonuniform with 7596 elements and 3937 nodes.

(a) initial guess and boundary conditions (b) obtained result

Figure 14. Example 5: alloy wheel design.

The Poisson ratio is set as ν = 0.3, while the required volume fraction is M = 73%, where the
parameters of the augmented Lagrangian method are given by α0 = 0.0 and β = 12.0. The final
topology is obtained with just 20 iterations and can be seen in Fig. 14(b).
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6. Conclusion

In this paper the topological derivative was applied in the context of topology optimization of
structures subject to multiple load-cases. The structural compliance into two spatial dimensions
was minimized under volume constraint. Since the topological derivative obeys the basic rules
of the Differential Calculus, the topological sensitivity of a multi-objective shape functional was
obtained as a sum of the topological derivatives associated with each load-case. In addition, the
obtained sensitivity has been used as a steepest-descent direction similar to any gradient-based
method. In particular, a fixed-point algorithm based on the topological derivative together with a
level-set domain representation method has been presented, which converges to a local optimum.
The resulting algorithm has been summarized in a pseudo-code format easy to implement and
several finite element-based examples of structural optimization were presented. Finally, for the
reader convenience, the topological asymptotic analysis of the total potential energy with respect
to the nucleation of a small circular inclusion was developed in a simplified and pedagogical
manner by using standard arguments from the Analysis. Therefore, we believe that this paper
would be useful for the readers interested on the mathematical aspects of topological asymptotic
analysis as well as on applications of topological derivatives in structural optimization.
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Appendix A. Asymptotic Analysis

In this appendix the proof of the result (2.25) together with the estimation for the remainder
on the topological asymptotic expansion are presented. The results are derived by using simple
arguments from the Analysis.

A.1. Polarization Tensor in Elasticity. In order to calculate the difference between the
functionals ψ(χ) and ψ(χε), respectively defined through (2.5) and (2.14), we start by tak-
ing η = uε − u as test function in the variational problems (2.6) and (2.15), leading respectively
to

1

2

∫

Ω
σ(u) · ∇su =

1

2

∫

Ω
σ(u) · ∇suε −

1

2

∫

Ω
b · (uε − u)−

1

2

∫

ΓN

q · (uε − u), (A.1)

1

2

∫

Ω
σε(uε) · ∇

suε =
1

2

∫

Ω
σε(uε) · ∇

su+
1

2

∫

Ω
bε · (uε − u)−

1

2

∫

ΓN

q · (uε − u). (A.2)

So that the shape functionals ψ(χ) and ψ(χε) can be rewritten as:

ψ(χ) =
1

2

∫

Ω
σ(uε) · ∇

su−
1

2

∫

Ω
b · (uε + u)−

1

2

∫

ΓN

q · (uε + u), (A.3)

ψ(χε) =
1

2

∫

Ω
σε(uε) · ∇

su−
1

2

∫

Ω
bε · (uε + u)−

1

2

∫

ΓN

q · (uε + u). (A.4)
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Now, after subtracting (A.3) from (A.4) we obtain:

ψ(χε)− ψ(χ) =
1

2

∫

Ω
σε(uε) · ∇

su−
1

2

∫

Ω
σ(uε) · ∇

su−
1

2

∫

Ω
bε · (uε + u) +

1

2

∫

Ω
b · (uε + u)

=
1

2

[∫

Ω\Bε

σ(uε) · ∇
su+

∫

Bε

γσ(uε) · ∇
su

]
−

1

2

[∫

Ω\Bε

σ(uε) · ∇
su+

∫

Bε

σ(uε) · ∇
su

]

−
1

2

[∫

Ω\Bε

b · (uε + u) +

∫

Bε

γb · (uε + u)

]
+

1

2

[∫

Ω\Bε

b · (uε + u) +

∫

Bε

b · (uε + u)

]

=
1

2

∫

Bε

(γ − 1)σ(uε) · ∇
su−

1

2

∫

Bε

(1− γ)b · (uε + u)

= −
1− γ

2γ

∫

Bε

σε(uε) · ∇
su−

1− γ

2

∫

Bε

b · (uε + u). (A.5)

Note that the resulting terms of the difference between ψ(χ) and ψ(χε) are given by integrals
concentrated over the inclusion Bε.

Now, in order to evaluate the limit in (2.3), we need to know the behavior of the function uε
with respect to ε→ 0. Thus, let us introduce the following ansätz:

uε(x) = u(x) + wε(x) + ũε(x), (A.6)

where wε(x) is the solution to an auxiliary exterior problem and ũε(x) is the remainder. After
applying the operator σε in (A.6), we obtain

σε(uε(x)) = σε(u(x̂)) + γε∇σ(u(ξ))(x − x̂) + σε(wε(x)) + σε(ũε(x)), (A.7)

where σ(u(x)) has been expanded in Taylor series around the point x̂ and ξ is used to denote a
point between x and x̂. From the transmission condition on the interface ∂Bε, we have

Jσε(uε)Kn = 0 ⇒ (σ(uε)|Ω\Bε
− γσ(uε)|Bε)n = 0. (A.8)

Therefore, according to Fig. 3, n = (x− x̂)/ε, and

Jσε(uε)Kn = (1− γ)σ(u(x̂))n+ ε(1− γ)(∇σ(u(ξ))n)n

+ Jσε(wε(x))Kn+ Jσε(ũε(x))Kn = 0. (A.9)

Thus, we can choose σε(wε) such that:

Jσε(wε)Kn = −(1− γ)σ(u(x̂))n on ∂Bε (A.10)

and by a changing variables, we write

wε(x) = εw(x/ε) and y = x/ε, (A.11)

which implies ∇yw(y) = ε∇w(x/ε). In the new variable the following exterior problem is con-
sidered: 




Find σy(w), such that
divy(σy(w)) = 0 in R

2,
σy(w) → 0 at∞,

(γσy(w)|
R2\B1

− σy(w)|B1
)n = û,

(A.12)

with û = −(1− γ)σ(u(x̂))n. The above boundary value problem admits an explicit solution. In
fact, since the tress σy(w) is uniform inside the inclusion, it can be written in a compact form
making use of the Eshelby’s Theorem [21, 22]:

σy(w) = Tσ(u(x̂)), (A.13)

where T is a fourth order isotropic tensor written as

T =
γ(1− γ)

2(1 + γα2)

(
2α2I+

α1 − α2

1 + γα1
I⊗ I

)
, (A.14)

with the constants α1 and α2 given by (2.27).
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Now we can construct σε(ũε) in such a way that it compensates the discrepancies introduced
by the higher-order terms in ε as well as by the boundary-layer σy(w) on the exterior boundary
∂Ω. It means that the remainder ũε must be solution to the following boundary value problem:





Find ũε, such that
div(σε(ũε)) = 0 in Ω,

σε(ũε) = γεC∇
sũε

ũε = −wε on ΓD,
σε(ũε)n = −σy(w)n on ΓN ,

JũεK
Jσε(ũε)Kn

=
=

0
εh

}
on ∂Bε,

(A.15)

with h = −(1 − γ)(∇σ(u(ξ))n)n. Moreover, we can obtain an estimate for the remainder ũε of
the form O(ε). In fact, before proceeding, let us state the following result, which can be found
in the book [51] in its optimal version, namely O(ε2):

Lemma 4. Let ũε be solution to (A.15). Then, the following estimate holds true:

‖ũε‖H1(Ω) ≤ Cε , (A.16)

with the constant C independent of the small parameter ε.

Proof. From the expansion for uε and making use of the triangular inequality, we can write

|ũε(x)|H1(Ω) = |uε(x)− u(x)− εw(x/ε)|H1(Ω)

≤ |uε(x)− u(x)|H1(Ω) + ε|w(x/ε)|H1(Ω)

≤ ‖uε(x)− u(x)‖H1(Ω) + ε|w(y)|H1(R2)

≤ C1ε , (A.17)

where we have used the change of variables (A.11), the equivalence between the semi-norm
| · |H1(Ω) and the norm ‖ · ‖H1(Ω) and the estimate in Lemma 1. Finally, the result comes out
from the Poincaré inequality. �

Now, we have all the necessary elements to evaluate the integral in (A.5). In fact, after
replacing (A.6) into (A.5) and takin into account (A.11) we have:

ψ(χε)− ψ(χ) = −
1− γ

2γ

[∫

Bε

γσ(u) · ∇su+

∫

Bε

σy(w) · ∇
su+

∫

Bε

σε(ũε) · ∇
su

]

−
1− γ

2

[∫

Bε

2b · u+

∫

Bε

b · (εw + ũε)

]

= −πε2
1− γ

2
σ(u(x̂)) · ∇su(x̂)− πε2(1− γ)b · u(x̂)−

1− γ

2γ

∫

Bε

σy(w) · ∇
su

−
1− γ

2γ

[∫

Bε

σy(w) · (∇
su(x)−∇su(x̂)) +

∫

Bε

σε(ũε) · ∇
su

]

−
1− γ

2

[∫

Bε

σ(u(x)) · ∇su(x)− σ(u(x̂)) · ∇su(x̂) +

∫

Bε

b · (εw + ũε)

]

= −πε2
1− γ

2
σ(u(x̂)) · ∇su(x̂)− πε2(1− γ)b · u(x̂)

−
1− γ

2γ

∫

Bε

σy(w) · ∇
su+

5∑

i=1

Ei(ε), (A.18)

where the remainders Ei(ε) = o(ε2), for i = 1, ..., 5, as shown in Section A.2. Thus the topological
asymptotic expansion of the energy shape functional takes the form:

ψ(χε(x̂)) = ψ(χ)− πε2
1− γ

2γ
(γI+ T)σ(u(x̂)) · ∇su(x̂)− πε2(1− γ)b · u(x̂) + o(ε2). (A.19)
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By defining the function f(ε) = πε2 and the polarization tensor as:

Pγ =
1− γ

2γ
(γI+ T)

=
1− γ

2(1 + γα2)

(
(1 + α2)I+

1

2
(α1 − α2)

1− γ

1 + γα1
I⊗ I

)
, (A.20)

it follows that the topological derivative of the shape functional ψ evaluated at the arbitrary
point x̂ ∈ Ω is given by

T (x̂) = −Pγσ(u(x̂)) · ∇
su(x̂)− (1− γ)b · u(x̂). (A.21)

Note that both tensors Pγ and T are isotropic because we are dealing with circular inclusions.
For arbitrary shaped inclusions the reader may refer to [3].

A.2. Estimation of the Remainders. The first remainder term E1(ε) is estimated as follow:

E1(ε) =

∫

Bε

(ϕ(x) − ϕ(x̂))

≤ ‖1‖L2(Bε)‖ϕ(x) − ϕ(x̂)‖L2(Bε)

≤ C0ε‖x− x̂‖L2(Bε)

≤ C1ε
3 = o(ε2), (A.22)

with ϕ := σ(u) · ∇su, where we have used the Cauchy-Schwartz inequality and the elliptic
regularity of u. From the fact that the stress σy(w) is uniform inside the inclusion and using the
same arguments, we have the following estimate for the second remainder term:

E2(ε) =

∫

Bε

σy(w) · (∇
su(x)−∇su(x̂))

≤ ‖σy(w)‖L2(Bε)‖∇
su(x)−∇su(x̂)‖L2(Bε)

≤ C2ε‖x− x̂‖L2(Bε)

≤ C3ε
3 = o(ε2). (A.23)

Once again, from the Cauchy-Schwartz inequality and the elliptic regularity of u we have the
estimate bellow for the third remainder

E3(ε) =

∫

Bε

σ(ũε) · ∇
su =

∫

Bε

∇sũε · σ(u)

≤ ‖∇sũε‖L2(Bε)‖σ(u)‖L2(Bε)

≤ C4ε‖∇
sũε‖L2(Bε). (A.24)

In addition, making use of the Hölder inequality and the Sobolev embbeding theorem

‖∇sũε‖L2(Bε) ≤

[(∫

Bε

(|∇sũε|
2)p

)1/p (∫

Bε

1q
)1/q

]1/2

= π1/2qε1/q
(∫

Bε

|∇sũε|
2p

)1/2p

= π1/2qε1/q‖∇sũε‖L2p(Bε)

= π1/2qε1/q‖∇sũε‖L2q/(q−1)(Bε)

≤ C5ε
δ‖ũε‖H1(Ω), (A.25)

where 1/p + 1/q = 1, with q > 1, and δ = 1/q. It follows that the estimate for E3(ε) is given by

E3(ε) ≤ C6ε
1+δ‖ũε‖H1(Ω)

≤ C7ε
2+δ = o(ε2), (A.26)
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where we have used Lemma 4. Now, using again the elliptic regularity of u and the continuity
of function b at the point x̂ ∈ Ω, the remainder term E4 is estimate as follows

E4 =

∫

Bε

b · (u(x)− u(x̂))

≤ ‖b‖L2(Bε)‖u(x)− u(x̂)‖L2(Bε)

≤ C8ε‖x− x̂‖L2(Bε)

≤ C9ε
3 = o(ε2). (A.27)

Finally, the last remainder E5(ε) is defined as:

E5(ε) =

∫

Bε

b · (εw + ũε) =

∫

Bε

b · (uε − u). (A.28)

Therefore, from the Cauchy-Schwartz inequality and Lemma 1 we obtain
∫

Bε

b · (uε − u) ≤ ‖b‖L2(Bε)‖uε − u‖L2(Bε)

≤ ‖b‖L∞(Bε)‖uε − u‖H1(Ω)

≤ C10ε|Bε|max
Bε

|b|

≤ C11ε
3 = o(ε2), (A.29)

where we have considered the fact that the function b is assumed to be constant in the neigh-
borhood of the point x̂ ∈ Ω.
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