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Abstract. In this work the topological derivative concept is applied in the context of topology
design of thermo-mechanical devices, where the linear elasticity system (modeled by the Navier
equation) is coupled with the steady-state heat conduction problem (modeled by the Laplace
equation). The mechanical coupling term comes out from the thermal stress induced by the
temperature field. We consider the topology design of bi-metallic devices. The idea is to maxi-
mize the displacement in a given direction defined on the boundary of the thermo-elastic body
with respect to a bi-metallic material distribution. The topological derivative is obtained by
considering the nucleation of a small circular inclusion with different thermal expansion coeffi-
cients. A level-set domain representation method is used, together with the derived topological
sensitivity formula, to devise a topology design algorithm. Finally, some numerical experiments
regarding the conceptual design of thermo-mechanical devices are presented.

1. Introduction

In this paper we are interested in the topology design of thermo-mechanical devices, which
consist of multi-flexible structures that generate an output displacement in a specified direc-
tion produced by thermal expansions/contractions. In particular, the linear elasticity system
(modeled by the Navier equation) is coupled with the steady-state heat conduction problem
(modeled by the Laplace equation). The mechanical coupling term comes out from the ther-
mal stress induced by the temperature field. Since the multi-flexible structure transforms the
thermal expansion/contraction output displacement by amplifying and changing its direction,
then the basic idea consists in maximizing the displacement in a given direction defined on the
boundary of the thermo-elastic body with respect to a bi-metallic material distribution.

However, the development of such thermo-mechanical devices requires the design of multi-
flexible structures which are able to produce complex movements originated from simple expan-
sion/contraction thermal effects. In particular, the performance of these devices can be strongly
enhanced by optimizing the multi-flexible structures with respect to their shape and their topol-
ogy. A quite general approach to deal with shape and topology optimization design is based on
the topological derivative. In fact, this relatively new concept represents the first term of the
asymptotic expansion of a given shape functional with respect to the small parameter which
measures the size of singular domain perturbations, such as holes, inclusions, source-terms and
cracks. The topological asymptotic analysis was introduced in the fundamental paper [10] and
has been successfully applied in the treatment of problems such as topology optimization [4], in-
verse analysis [7], image processing [6], multi-scale constitutive modeling [3], fracture mechanics
sensitivity analysis [12] and damage evolution modeling [1]. For an account of new developments
in this branch of shape optimization we refer to the book by Novotny & Soko lowski [9].

The topological derivative concept is applied here in the context of topology optimization de-
sign of thermo-mechanical devices. The performance of the multi-flexible thermo-elastic struc-
ture is maximized by introducing a set of small inclusions with different thermal expansion
coefficients only. For the sake of simplicity, we consider that the elastic properties remains fixed,
allowing to avoid complicated derivations such as the ones presented in [5], where the topological
asymptotic expansion of the strain energy stored in a thermo-mechanical device, associated with
singular perturbations in the elastic, thermal conductivity and thermal expansion coefficients,
has been derived. In particular, here the topological derivative, obtained in its closed form, is
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used as a steepest descent direction in a topology design algorithm of thermo-mechanical de-
vices. Therefore, the simplified obtained result shall be useful in the conceptual design of such
multi-flexible structures.

The paper is organized as follows. The optimal problem consisting in maximizing the perfor-
mance of thermo-mechanical devices is stated in Section 2. The associated topological asymp-
totic analysis with respect to the nucleation of a small inclusion with different thermal expansion
coefficient is developed in Section 3. Finally, several numerical results associated with topology
design of bi-metallic devices are presented in Section 4. The paper ends in Section 5 with some
concluding remarks.

2. Problem Formulation

In this section the optimization problem in which we are dealing with is introduced. It
consists in maximizing the displacement in a given direction defined on the boundary of the
thermo-elastic body with respect to a bi-metallic material distribution. Thus, let us consider
an open and bounded domain Ω ∈ R

2, with boundary ∂Ω, representing an elastic solid body
subject to thermo-mechanical deformation effects. The following shape functional is introduced:

G(u) := −

∫

Γ⋆

e · u , (2.1)

where e is a given direction prescribed on the boundary Γ⋆ ⊂ ∂Ω. The thermal-mechanical
displacement u is solution to the following thermo-mechanical variational problem

u ∈ UM :

∫

Ω
σ(u) · ∇ηs =

∫

Ω
Q(θ) · ∇ηs ∀η ∈ VM . (2.2)

The displacement field on the boundary ΓD ⊂ ∂Ω satisfies u|ΓD

= ū, being ū a prescribed

displacement. Therefore, the set UM and the space VM are defined as

UM :=
{
ϕ ∈ H1(Ω;R2) : ϕ|ΓD

= ū
}

and VM :=
{
ϕ ∈ H1(Ω;R2) : ϕ|ΓD

= 0
}
. (2.3)

We assume that Γ⋆ ∩ ΓD = ∅. The Cauchy stress tensor σ(u) is defined as:

σ(u) := C∇us , (2.4)

where ∇us is used to denote the symmetric part of the gradient of the displacement field u, i.e.

∇us :=
1

2
(∇u+ (∇u)⊤) . (2.5)

The induced thermal stress tensor Q(θ) is defined as:

Q(θ) := CBθ . (2.6)

In addition, C denotes the four-order elasticity tensor and B denotes the second-order thermo-
elastic coupled tensor. In the case of isotropic elastic body, theses tensors are given by:

C = 2µII + λ(I ⊗ I) and B = αI ⇒ CB = 2α(λ + µ)I, (2.7)

with µ and λ denoting the Lame’s coefficients, and α the thermal expansion coefficient. In terms
of the Young’s modulus E and Poisson’s ratio ν the above constitutive response can be written
as:

C =
E

1 − ν2
[(1 − ν)II + ν(I ⊗ I)] and CB =

αE

1 − ν
I . (2.8)

Finally, the temperature field θ in (2.2) is solution to the following variational problem

θ ∈ H1
0 (Ω) :

∫

Ω
q(θ) · ∇η =

∫

Ω
bη ∀η ∈ H1

0 (Ω), (2.9)

where b is a prescribed distributed heat source in Ω. The heat flux operator q(θ) is defined as

q(θ) = −K∇θ, (2.10)
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Figure 1. Thermo-mechanical semi-coupled problem.

where K is a second order tensor representing the thermal conductivity of the medium. In the
isotropic case, tensor K can be written as

K = kI , (2.11)

being k the thermal conductivity coefficient. See details of the coupled system in Fig. 1.
Therefore, our optimization problem can be written as:

Minimize G(u) , subject to (2.2) . (2.12)

3. Topological asymptotic analysis

The topological derivative with respect to the nucleation of a small circular inclusion with
different thermal expansion coefficient is now derived. This derivative represents the first order
term of the topological asymptotic expansion of a shape functional with respect to an infinites-
imal singular domain perturbation. See, for instance, [9].

In order to introduce these ideas, we consider that the domain Ω is submitted to a non-
smooth perturbation confined in a small region Bε(x̂) of size ε with center at an arbitrary point
x̂ ∈ Ω. Thus, let us introduce a characteristic function χ = 1Ω associated to the unperturbed
domain, so that it is possible to define a characteristic function associated to the topological
perturbed domain in the form χε(x̂) = 1Ω − (1 − γ)1Bε(x̂)

, where γ ∈ R
+ is the contrast

parameter in the material property of the medium, see Fig. 2. Then we assume that a given
shape functional ψ(χε(x̂)), associated to the topological perturbed domain, admits the following
topological asymptotic expansion

ψ(χε(x̂)) = ψ(χ) + f(ε)DTψ(x̂) + o(f(ε)) , (3.1)

where ψ(χ) is the shape functional associated to the unperturbed domain, f(ε) is a function
such that f(ε) → 0+, with ε → 0. Function x̂ 7→ DTψ(x̂) is the so-called topological derivative
of ψ at the point x̂. Thus, the topological derivative can be seen as a first order correction factor
over ψ(χ) to approximate ψ(χε(x̂)).

Several methods were proposed to calculate the topological derivative. In this paper, we
apply the so-called topological-shape sensitivity method developed in [8], which is based on the
following result (see also [9]):

DTψ(x̂) = lim
ε→0

1

f ′(ε)

d

dε
ψ(χε(x̂)) . (3.2)

The derivative of ψ(χε(x̂)) with respect to ε can be seen as the sensitivity of ψ(χε(x̂)), in the
classical sense [11], to the domain variation produced by a uniform expansion of the perturbation
Bε. In fact, we have

d

dε
ψ(χε(x̂)) = lim

t→0

ψ(χε+t(x̂)) − ψ(χε(x̂))

t
, (3.3)
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Figure 2. Topological derivative concept.

where ψ(χε+t(x̂)) is the shape functional associated to the perturbed domain, whose pertur-
bation is given by Bε+t. Therefore, we can use the concept of shape sensitivity analysis as an
intermediate step in the topological derivative calculation.

In particular, we consider a contrast only in the thermal expansion coefficient, which drasti-
cally simplifies the analysis [5]. Then, the constitutive properties C and K remains fixed, while
the perturbed thermal expansion coefficient is given by:

γεB :=

{
B in Ω \ Bε

γB in Bε
. (3.4)

Then, by considering (3.4), the topologically perturbed problem reads

uε ∈ UM :

∫

Ω
σ(uε) · ∇η

s =

∫

Ω
Qε(θ) · ∇η

s ∀η ∈ VM , (3.5)

where the perturbed tensor Qε(θ) takes the form

Qε(θ) := γεCBθ = γεQ(θ) . (3.6)

Therefore, the shape functional G, defined by (2.1), associated now with the above perturbed
problem reads

G(uε) := −

∫

Γ⋆

e · uε . (3.7)

Before proceed with the analysis, let us state the following important result:

Lemma 1. Let u and uε be solutions to the original and perturbed problems respectively given

by (2.2) and (3.5). Then, the following estimate holds true

‖uε − u‖H1(Ω;R2) ≤ Cε , (3.8)

where C is a constant independent of the control parameter ε.

Proof. Let us subtract (2.2) from (3.5). After taking into account the definition of the contrast
γε in eq. (3.4), we obtain

∫

Ω
σ(uε − u) · ∇ηs = (γ − 1)

∫

Bε

Q(θ) · ∇ηs . (3.9)

By taking η = uε − u as test function in the above equation, we get
∫

Ω
σ(uε − u) · ∇(uε − u)s = (γ − 1)

∫

Bε

Q(θ) · ∇(uε − u)s . (3.10)

From the Cauchy-Schwarz inequality there is
∫

Ω
σ(uε − u) · ∇(uε − u)s ≤ C1‖Q(θ)‖L2(Bε;R2)‖∇(uε − u)s‖L2(Bε;R2)

≤ C2ε‖uε − u‖H1(Ω;R2) , (3.11)

where we have used the interior elliptic regularity of function θ. Finally, from the coercivity of
the bilinear form on the left hand side of the above inequality, namely,

c‖uε − u‖2H1(Ω;R2) ≤

∫

Ω
σ(uε − u) · ∇(uε − u)s , (3.12)
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we obtain

‖uε − u‖2H1(Ω;R2) ≤ Cε‖uε − u‖H1(Ω;R2) , (3.13)

which leads to the result with C = C2/c. �

By taking into account the above result and (3.2), we can state the following theorem:

Theorem 2. The topological derivative of the shape functional (2.1) is given by

DTψ(x̂) = (1 − γ)Bθ(x̂) · σ(v)(x̂) , (3.14)

where the function v is the solution of the following variational problem

v ∈ VM :

∫

Ω
σ(v) · ∇ηs =

∫

Γ⋆

e · η ∀η ∈ VM . (3.15)

Proof. By considering the nucleation of an inclusion Bε in the domain Ω at point x̂, the state
equation (2.2) can be written as

uε ∈ UM :

∫

Ω
σ(uε) · ∇η

s =

∫

Ω
Q(θ) · ∇ηs + (γ − 1)

∫

Bε

Q(θ) · ∇ηs ∀η ∈ VM . (3.16)

The shape derivative of the cost functional defined by (3.7) can be written as:

Ġ(uε) = −

∫

Γ⋆

e · u̇ε , (3.17)

where the superimposed dot denotes the (total) material derivative with respect to ε. On the
other hand, the derivative of the state equation (3.16) with respect to the parameter ε is given
by

u̇ε ∈ VM :

∫

Ω
σ(u̇ε) · ∇η

s = (γ − 1)

∫

∂Bε

Q(θ) · ∇ηs ∀η ∈ VM . (3.18)

By choosing η = v as test function in (3.18) we have the equality
∫

Ω
σ(u̇ε) · ∇v

s = (γ − 1)

∫

∂Bε

Q(θ) · ∇vs , (3.19)

where v is solution to the auxiliary problem (3.15). On the other hand, by taking η = u̇ε in
(3.15), we obtain the following equality

∫

Ω
σ(v) · ∇u̇sε =

∫

Γ⋆

e · u̇ε. (3.20)

Then, by comparing the last two results we get the following identity
∫

Γ⋆

e · u̇ε = (γ − 1)

∫

∂Bε

Q(θ) · ∇vs , (3.21)

where we have considered the symmetry of the bilinear forms. Finally, by introducing the above
expression in (3.17) and using the interior elliptic regularity of functions θ and v, we can write

Ġ(uε) = (1 − γ)

∫

∂Bε

Q(θ) · ∇vs = 2πε(1 − γ)Q(θ)(x̂) · ∇vs(x̂) + o(ε2) , (3.22)

which leads to the result by setting f(ε) = πε2 in (3.2). �

4. Numerical results

The obtained result (3.14) can be combined with a level-set domain representation method for
solving the topology optimization problem we are dealing with. The resulting algorithm is now
explained in details for the reader convenience. It has been proposed in [2] and consists basically
in looking for a local optimality condition for the minimization problem (2.12) written in terms
of the topological derivative and a level-set function. Therefore, the domain Ω is divided into
two subdomains Ω1 and Ω2, representing the thermo-elastic parts with higher and lower thermal
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expansion coefficients, respectively. Let us then introduce a level-set function Ψ ∈ L2(Ω) of the
form:

Ω1 = {Ψ(x) < 0 a.e. in Ω} and Ω2 = {Ψ(x) > 0 a.e. in Ω} , (4.1)

where Ψ vanishes on the interface between both subdomains. A local sufficient optimality
condition for Problem (2.12), under the considered class of domain perturbation given by circular
inclusions, can be stated as

DTψ(x) > 0 ∀x ∈ Ω . (4.2)

Therefore, let us define the quantity

g(x) :=

{
−DTψ(x), if Ψ(x) < 0,
DTψ(x), if Ψ(x) > 0,

(4.3)

allowing for rewrite the condition (4.2) in the following equivalent form
{
g(x) < 0, if Ψ(x) < 0,
g(x) > 0, if Ψ(x) > 0.

(4.4)

We observe that (4.4) is satisfied wether the quantity g coincides with the level-set function Ψ
up to a strictly positive number, namely ∃ τ > 0 : g = τΨ, or equivalently

φ := arccos

[
〈g,Ψ〉L2(Ω)

‖g‖L2(Ω)‖Ψ‖L2(Ω)

]
= 0 , (4.5)

which shall be used as optimality condition in the topology design algorithm, where φ is the
angle between the functions g and Ψ in L2(Ω). Let us now explain the algorithm. We start by
choosing an initial level-set function Ψ0 ∈ L2(Ω). In a generic iteration n, we compute function
gn associated with the level-set function Ψn ∈ L2(Ω). Thus, the new level-set function Ψn+1 is
updated according to the following linear combination between the functions gn and Ψn

Ψ0 ∈ L
2(Ω),

Ψn+1 =
1

sinφn

[
sin((1 − κ)φn)Ψn + sin(κφn)

gn
‖gn‖L2(Ω)

]
∀n ∈ N ,

(4.6)

where φn is the angle between gn and Ψn, and κ is a step size determined by a linear-search
performed in order to decrease the value of the objective function G(un), with un used to denote
the solution associated to the n-th iteration. The process ends when the condition φn ≤ ǫ is
satisfied in some iteration, where ǫ is a given small numerical tolerance. In particular, we can
choose

Ψ0 ∈ S = {x ∈ L2(Ω); ‖x‖L2(Ω) = 1} , (4.7)

and by construction Ψn+1 ∈ S, ∀n ∈ N. If at some iteration n the linear-search step size κ is
found to be smaller then a given numerical tolerance ǫ > 0 and the optimality condition is not
satisfied, namely φn > ǫ, then a uniform mesh refinement of the hold all domain Ω is carried
out and the iterative process is continued.

In this section three numerical examples of conceptual topology design of thermo-mechanical
devices are presented. We assume that these devices are made of two metallic materials with
similar mechanical constitutive properties and different thermal expansion coefficients. In all
examples we consider the following constitutive properties: E = 210 × 103, ν = 0.3, α =
1.08 × 10−5 and k = 80.0. The contrast parameter is given by γ = 4.63 × 10−1. Furthermore,
the thick lines in the figures are used to denote clamped boundary conditions. In the remainder
part of the boundary, where noting is specified, we consider homogeneous Neumann boundary
condition. The direction e is given by a unitary vector on Γ⋆. In addition, we consider a
uniform heat source given by b = 1. The thermo-mechanical problem (2.2), the steady-state
heat conduction problem (2.9) and the adjoint equation (3.15) are solved using the standard
finite element method, where uniform meshes of linear triangles are used. For the initial guess
we always consider a single material with higher thermal expansion coefficient. Finally, the
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black/white colors represent the materials with higher/lower thermal expansion coefficients,
respectively.

4.1. Example 1. In this example the domain Ω is characterized by a rectangle of 2.0 × 1.0
of width and height, respectively, clamped on the thick line. The displacement on the middle
point of the right side is to be maximized in the direction e, as shown in Fig. 3(a). The optimal
distribution of materials is presented in Fig. 3(b). This result was obtained using a mesh with
12.800 elements.

(a) (b)

Figure 3. Example 1: domain and boundary condition (a) and optimal material
distribution (b).

In Fig. 4 is presented the evolution of the shape function G(u) throughout the optimization
process, normalize by the Euclidian norm of the displacement of the initial guess ‖u0‖ evaluated
on Γ⋆. Also, some intermediate topologies are shown.

Figure 4. Example 1: normalized shape function vs. iterations.

The previous results indicate that the optimal material distribution is close to 50% of each
one of them. Finally, the amplified deformed configurations before and after the optimization
process are sketched in the Figs. 5(a) and 5(b), respectively.

(a) (b)

Figure 5. Example 1: initial displacement (a) and final displacement (b).
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4.2. Example 2. In this example we perform the optimization of a L-shaped beam, with 1.50
of height, 1.50 of length and 0.50 of width, clamped on the thick line. The direction e is defined
at the corner of the L-shaped beam, as shown in Fig. 6. In this case, the angle ρ is taken
between 0◦ and 360◦. The problem is discretized into 184.320 finite elements.

Figure 6. Example 2: domain and boundary condition.

In Fig. 7 are presented the following obtained results in terms of the angle ρ: the horizontal
displacement uoptx (Fig. 7(a)), the vertical displacement uopty (Fig. 7(b)), the Euclidian norm
of the displacement ‖uopt‖ (Fig. 7(c)) and, finally, the volume fraction of material with higher
thermal expansion material (Fig. 7(d)). Notice that in Figures 7(a) to 7(c), the results are
normalized by the Euclidian norm of the displacement of the initial guess ‖u0‖ and all quantities
are evaluated on Γ⋆. The optimal material distributions (topologies) for eight selected angles ρ
are presented in Fig. 8. Finally, as an example of the deformation of the device before and after
optimization, in Fig. 9 is sketched the amplified deformed configurations for ρ = 90◦.

(a) (b)

(c) (d)

Figure 7. Example 2: horizontal displacement (a), vertical displacement (b),
norm of the displacement (c) and final volume (d).



9

(a) 90◦ (b) 180◦ (c) 20◦ (d) 160◦

(e) 270◦ (f) 0◦ (g) 200◦ (h) 340◦

Figure 8. Example 2: obtained topologies for different angles ρ.

(a) (b)

Figure 9. Example 2: initial displacement (a) and final displacement for ρ = 90◦ (b).

4.3. Example 3. In this last example we perform the optimization of a U-shaped beam, with
1.5 of height, 2.0 of length and 0.5 of width, which is simply supported in order to eliminate
the rigid body motions. The displacement is to be maximized in the directions e defined at the
opposite corners of the domain, as shown in Fig. 10(a). The optimal distribution of materials
is presented in Fig. 10(b), where the problem has been discretized with 294.912 finite elements.

(a) (b)

Figure 10. Example 3: domain and boundary condition (a) and optimal mate-
rial distribution (b).

In order to evaluate the influence of the finite element mesh in the optimization procedure, in
Fig. 11 we present the obtained topologies for three different meshes. As can be seen through
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an inspection of the figures, the meshes do not have too much influence on the results, at least
from a qualitative point of view.

(a) 1.152 elements (b) 9.216 elements (c) 73.728 elements

Figure 11. Example 3: obtained topologies for different number of finite elements.

The amplified displacement of the device before and after the optimization process is sketched
in the Figs. 12(a) and 12(b), respectively.

(a) (b)

Figure 12. Example 3: initial displacement (a) and final displacement (b).

Observe that the obtained results can be used in the conceptual design of actuators or in-
verters. In fact, initially the deformed configuration of the U-shaped beam is given by a simple
uniform expansion. Then, after the optimization process, the new distribution of material pro-
duces a deformation similar to a grip mechanism (inverting the direction of the displacement in
the top part of the beam).

5. Concluding remarks

In this work the conceptual topology design of thermo-mechanical devices has been addressed.
The idea was to maximize the displacement in a given direction defined on the boundary of
the thermo-elastic body with respect to a bi-metallic material distribution by introducing a
set of small inclusions with different thermal expansion coefficients only. In order to avoid
complicated theoretical derivations such as the ones developed in [5], the elastic properties have
been fixed. By introducing a contrast only on the thermal expansion coefficients, the derivations
become much simpler, allowing us to focus on the main contribution of the paper, namely, the
conceptual design of bi-metallic devices using the topological derivative concept. In addition,
such an incomplete sensitivity has been able to properly minimize the shape function, leading
to satisfactory solutions. In other words, for the approach presented in this work, a closed form
for the topological derivative associated with the nucleation of a small circular inclusion with
different thermal expansion coefficient has been derived. The obtained result has been used
as a steepest descent direction in an optimal design algorithm. Several numerical experiments
associated with conceptual topology design of bi-metallic devices have been presented. Notice
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that the proposed methodology is very simply (easy and fast numerical implementation) and
does not require any additional constraint in the formulation of the optimization problem. In
particular there exists an optimal distribution of the two metallic materials in the design domain
without impose a constraint in the final volume fraction of any of the two phases.
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