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Abstract. We propose a new iterative method for the topology design of the inductors in
electromagnetic casting. The method is based on a level-set representation of the solution
together with first and second order topological derivatives. The optimal design is found by
minimizing a Kohn-Vogelius functional for the problem. The complete topological expansion
of the objective functional, which is herein given, is used to define the iterative step. Results
for several numerical examples show that the technique proposed can be efficiently used in the
design of suitable inductors.

1. Introduction

The design problem in electromagnetic casting is the determination of the electrical currents
that shape certain mass of liquid metal into a predefined geometry, the target shape. In previous
papers we studied this problem considering inductors made of single small solid-core wires [1],
and large inductors made of bundled insulated strands [2]. In both cases the number of inductors
was fixed in advance. In a recent paper we overcome this constraint, and looked for configurations
of inductors considering different topologies with the purpose of obtaining inductors with more
realistic geometric configurations [3].

In the present paper we formulate the design problem as an optimization problem by means of
a shape functional based on the Kohn–Vogelius criterion [4, 5, 6, 7, 8]. The main achievements
of the present paper are the following: First, we give the analytical expression of the complete
topological asymptotic expansion of the Kohn–Vogelius shape functional, generalizing the results
of [3] and proving that the expansion has actually a finite number of terms. Second, we use this
topological asymptotic expansion to devise an efficient topology optimization algorithm based
on the level-set technique proposed by Amstutz & Andrä [9]. The novelty of this paper is that
we propose a topology optimization algorithm using non-standard level set method together
with first and second order topological derivatives.

The contents of this paper are organized as following. Section 2 describes the direct free-
surface problem concerning the electromagnetic casting and formulates the problem of designing
suitable inductors as a problem of minimization of a Kohn–Vogelius-type objective functional.
Section 3 introduces the topological derivative concept and states the asymptotic expansion of
the Kohn–Vogelius functional. The numerical method is presented in Section 4. Some examples
are presented in Section 5, to show that the method proposed can efficiently find suitable designs.
The conclusions of this paper are presented in Section 6.

2. The electromagnetic casting problem

The electromagnetic casting is an industrial technique used in the preparation of very pure
samples, preparation of aluminum ingots using soft-contact confinement of the liquid metal,
shaping of components of aeronautical engines made of superalloy materials (Ni, Ti, . . . ), etc.
[10, 11].

In this paper we study a vertical column of liquid metal falling down into an electromagnetic
field created by vertical inductors. We assume that a stationary horizontal section is reached, so
that the two-dimensional model is valid, and that the frequency of the imposed current is very
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high, so that the magnetic field does not penetrate into the metal (skin effect); see [12, 13, 14,
15, 16, 17, 18, 19].

The exterior boundary value problem regarding the magnetic field in terms of the flux function
ϕ : Ω → R is:





−∆ϕ = µ0j0 in Ω ,
ϕ = 0 on Γ ,

ϕ(x) = c+ o(1) as ‖x‖ → ∞ ,
(2.1)

where Ω ⊂ R
2 is the exterior of the compact, simply connected and with a non-void interior,

domain ω occupied by the cross-section of the metal column. In (2.1) Γ is the boundary of Ω,
that we assume is at least of class C2. By ‖·‖ we denote the Euclidean norm, the little-o notation
means lim‖x‖→∞ o(f(x))/f(x) = 0, c ∈ R is the value at infinity of the solution ϕ, which is also
an unknown of (2.1) [1, 2, 3], µ0 is the vacuum permeability, and j0 is the vertical component
of the electric current density vector, which is assumed compactly supported in Ω and such that
the total current is zero:

∫

Ω
j0 dx = 0 , (2.2)

Problem (2.1) has unique solutions ϕ ∈ W 1
0 (Ω) and c ∈ R [20, 21], where W 1

0 (Ω) is defined
as:

W 1
0 (Ω) = {u : ρ u ∈ L2(Ω) and ∇u ∈ L2(Ω)} , (2.3)

with ρ(x) = [
√

1 + ‖x‖2 log(2+‖x‖2)]−1. The equilibrium of the liquid metal boundary is given
by [18, 22, 23, 24, 25]:

1

2µ0

∣∣∣∣
∂ϕ

∂n

∣∣∣∣
2

+ σC = p0 on Γ , (2.4)

where n is the outward-pointing unit normal vector of Γ, C is the curvature of Γ seen from the
metal, σ is the surface tension of the liquid and the constant p0 is an unknown of the problem.
Physically, p0 represents the difference between the internal and external pressures.

In the free-surface problem of electromagnetic casting the electric current density j0 is given,
and one needs to find the shape ω, having a given area S0 =

∫
ω
dx, such that the flux ϕ, solution

to (2.1), also satisfies the equilibrium (2.4) for some real constant p0.

2.1. The design problem. In the design problem we have to determine the current density
j0 satisfying (2.2) such that the solution ϕ of (2.1) also satisfies the equilibrium (2.4). It is
known that at the equilibrium p0 = maxΓ σC [15, 26, 3]. Therefore, for a given target shape

with bounded curvature, p0 can be calculated. Defining p̄ =
√

2µ0(p0 − σC), the equilibrium
equation in terms of the flux function reads

∂ϕ

∂n
= κ p̄ on Γ , (2.5)

where κ = ±1, has the changes of sign located at points where the curvature of Γ is a global
maximum. The two possible ways of defining κ lead to the same solution j0 but with the
opposite sign [3]. From (2.5) we have that a necessary condition for the existence of a solution
is the following [3]:

∫

Γ
κ p̄ ds = 0 . (2.6)

It is known that the design problem is inherently ill posed: small variation of the liquid
boundary may cause dramatic variations in the solution j0 [15, 26]. In addition, the uniqueness
of the solution in terms of j0 cannot be ensured [15, 3]. Therefore, we formulate the design



3

problem as an optimization problem, looking for a solution (maybe just an approximate solution)
that minimizes the following shape functional based on the Kohn–Vogelius criterion:

ψ(0) = J(φ) =
1

2
‖φ‖2L2(Γ) =

1

2

∫

Γ
φ2 ds , (2.7)

where the auxiliary function φ ∈W 1
0 (Ω) depends implicitly on j0 and c by solving the following

boundary-value problem




−∆φ = µ0j0 in Ω ,
∂φ

∂n
= κ p̄− d(j0) on Γ ,

φ(x) = c+ o(1) as ‖x‖ → ∞ ,

(2.8)

where, denoting |Γ| =
∫
Γ ds, d(j0) is defined as

d(j0) = |Γ|−1

∫

Ω
µ0j0 dx . (2.9)

The term d(j0) is introduced in (2.8) to correctly define φ for j0 not necessarily satisfying con-
dition (2.2). In fact, given some fixed value c, and assuming that (2.6) is satisfied, problem (2.8)
has a unique solution in W 1

0 (Ω), see [21, 27].
In this paper we assume that condition (2.6) is satisfied, and look for j0 satisfying (2.2) and

a constant c such that the solution φ to (2.8) minimizes the shape functional (2.7). Note that
the minimum is attained if φ ≡ 0 on Γ. In this case, from the well-posedness of problems (2.1)
and (2.8), we have φ ≡ ϕ in Ω. We can easily eliminate the variable c of the optimization
problem by defining it as the global minimum c∗(j0) of (2.7) for each fixed j0, i.e., we take
c = c∗(j0) = argminc J(φ(j0, c)) [3]. Hence we can formulate an equivalent optimization problem
as follows: minimize the shape functional (2.7), where φ ∈W 1

0 (Ω) depends implicitly on j0 only,
by solving the following problem:





−∆φ = µ0j0 in Ω ,
∂φ

∂n
= κ p̄− d(j0) on Γ ,∫

Γ
φds = 0 .

(2.10)

Problem (2.10) is well-posed, as rigorously stated in the following lemma.

Lemma 1. Given b ∈ L2(Ω), q ∈ L2(Γ) and c ∈ R, satisfying the compatibility condition∫
Ω b dx+

∫
Γ q ds = 0, there is a unique solution φ ∈W 1

0 (Ω) to the problem




−∆φ = b in Ω ,
∂φ

∂n
= q on Γ ,∫

Γ
φds = c ,

(2.11)

which depends continuously on the problem data, i.e., there is C ∈ R such that ‖φ‖W 1
0
(Ω) ≤

C(‖b‖L2(Ω) + ‖q‖L2(Γ) + |c|).

Proof. Let ξ be the solution in W 1
0 (Ω) of:




−∆ξ = b in Ω ,
∂ξ

∂n
= q on Γ ,

ξ(x) = o(1) as ‖x‖ → ∞ .

(2.12)

In the space {u ∈W 1
0 (Ω) : u = o(1) as ‖x‖ → ∞}, the map u 7→ ‖∇u‖L2(Ω) is a norm equivalent

to ‖·‖W 1
0
(Ω) [20, 28]. Therefore, the standard analysis of the variational formulation of problem

(2.12) shows that there is a unique solution ξ satisfying ‖ξ‖W 1
0
(Ω) ≤ C1(‖b‖L2(Ω) + ‖q‖L2(Γ)) for

some real C1, see [27, 21, 20, 28]. The proof of the lemma is promptly obtained using this result,
considering that φ = ξ + |Γ|−1(c−

∫
Γ ξ ds). �
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3. Topological derivative concept

The topological derivative measures the sensitivity of a given shape functional with respect to
an infinitesimal singular domain perturbation, such as the insertion of holes, inclusions, source-
terms or even cracks [29, 30, 31]. It has proved extremely useful in the treatment of a wide
range of problems, see [9, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42]. Concerning the theoretical
development of the topological asymptotic analysis, see the book by Novotny & Sokolowski [43]
and the papers [44, 45, 46, 47, 48]. See also the books by Ammari and Kang [49, 50] regarding
the asymptotic analysis of PDE solutions and their applications to inverse problems.

Consider that a domain Ω is subject to a non-smooth perturbation confined in a small ball
Bε(x̂) of radius ε and center x̂ ∈ Ω. Then, if a given shape functional ψ(ε), associated to the
topologically perturbed domain, admits the expansion [30]

ψ(ε) = ψ(0) + f1(ε)D
1
Tψ + f2(ε)D

2
Tψ + o(f2(ε)) , (3.1)

where ψ(0) is the shape functional value for the unperturbed domain and fi(ε), 1 ≤ i ≤ 2,
are positive functions such that fi(ε) → 0, and f2(ε)/f1(ε) → 0, when ε → 0, we say that
the functions x̂ 7→ Di

Tψ(x̂), 1 ≤ i ≤ 2, are the topological derivatives of ψ at x̂. The term
f1(ε)D

1
Tψ + f2(ε)D

2
Tψ can be seen as a second order correction of ψ(0) to approximate ψ(ε).

3.1. The topological derivatives calculation. Associated to the solution φ of (2.10), we
define the function φε ∈W 1

0 (Ω) solution to the following problem:




−∆φε = µ0jε in Ω ,
∂φε
∂n

= κ p̄− d(jε) on Γ ,∫

Γ
φε ds = 0 .

(3.2)

where the perturbed electric current density jε is identical to j0 everywhere in Ω except in
Bε(x̂) ⊂ Ω, a small ball of radius ε and center x̂. More precisely, jε = j0 + αIχBε(x̂), where I is
a given current density value and α = ±1 is the sign of the current density in Bε(x̂).

The shape functional associated to the perturbed problem reads:

ψ(ε) = J(φε) =
1

2

∫

Γ
φ2ε ds . (3.3)

Let u∗ be the fundamental solution of the Laplace operator:

u∗(y, x) = −
1

2π
ln‖y − x‖ . (3.4)

Theorem 2. For x̂ ∈ Ω, there exist ε0 such that for all ε < ε0 the following equality holds

ψ(ε) = ψ(0) + f1(ε)D
1
Tψ + f2(ε)D

2
Tψ , (3.5)

with the functions f1(ε) = πε2, f2(ε) = π2ε4 and the topological derivatives

D1
Tψ(x̂) = αµ0I

∫

Γ
φf̄x̂ ds , (3.6)

D2
Tψ(x̂) =

1

2
µ20I

2

∫

Γ
f̄2x̂ ds . (3.7)

In (3.6)-(3.7), f̄x̂ is a continuous function on Γ, given by

f̄x̂(x) = u∗(x̂, x)− u∗(x̄, x) + gx̂(x) ∀x ∈ Γ , (3.8)

where x̄ is a fixed interior point of ω and gx̂ ∈W 1
0 (Ω) is solution to:





−∆gx̂ = 0 in Ω ,
∂gx̂
∂n

= −|Γ|−1 +
∂u∗(x̄, ·)

∂n
−
∂u∗(x̂, ·)

∂n
on Γ ,∫

Γ
gx̂ ds =

∫

Γ
u∗(x̄, ·)− u∗(x̂, ·) ds .

(3.9)
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Moreover, the topological derivatives D1
Tψ and D2

Tψ are Lipschitz continuous functions with

respect to their argument x̂ in any compact D ⊂ Ω.

Proof. Lets take ε0 small enough such that every point x ∈ Γ is outside the ball Bε0(x̂). For
some ε < ε0, set fx̂ = (αµ0Iπε

2)−1(φε − φ) ∈ W 1
0 (Ω). Taking into account (2.10), (3.2), (3.10)

and the fact that d(jε) = d(j0) + |Γ|−1αµ0Iπε
2, we have that fx̂ solves:





−∆fx̂ = (πε2)−1χBε(x̂) in Ω ,
∂fx̂
∂n

= −|Γ|−1 on Γ ,∫

Γ
fx̂ ds = 0 .

(3.10)

A particular solution to (3.10) is fp
x̂
given by

fp
x̂
(x) = (πε2)−1

∫

Bε(x̂)
u∗(y, x) dy − u∗(x̄, x) . (3.11)

This last expression can be integrated exactly for each point x outside the ball Bε(x̂). In
particular, for each x ∈ Γ we have fp

x̂
(x) = u∗(x̂, x) − u∗(x̄, x). Then, the solution of (3.10) is

fx̂ = fp
x̂
+ gx̂ where gx̂ is the solution to (3.9). We now take f̄x̂ = fx̂|Γ and (3.8) holds. Since

gx̂ does not depend on ε, (3.8) shows that f̄x̂ does not depend on ε too. Since Γ is of class C2,
and the boundary data in (3.9) is continuous, gx̂ ∈ C1(Ω) [21]. Hence, gx̂|Γ and then f̄x̂ are
continuous. The complete topological asymptotic expansion of the shape functional becomes

ψ(ε) = J(φε) =
1

2

∫

Γ
(φ+ αµ0Iπε

2fx̂)
2 ds

= ψ(0) + πε2
(
αµ0I

∫

Γ
φf̄x̂ ds

)
+ π2ε4

(
1

2
µ20I

2

∫

Γ
f̄2x̂ ds

)
, (3.12)

where the expressions inside the parentheses depend on x̂ but do not depend on ε, hence being
the first and second order topological derivatives of ψ. To show that these derivatives are
Lipschitz in D, the Cauchy–Schwartz inequality applied to (3.6)-(3.7) gives

|D1
Tψ(x̂)−D1

Tψ(ŷ)| ≤ µ0I‖φ‖L2(Γ)‖fx̂ − fŷ‖L2(Γ) , (3.13)

|D2
Tψ(x̂)−D2

Tψ(ŷ)| ≤
1

2
µ20I

2‖fx̂ + fŷ‖L2(Γ)‖fx̂ − fŷ‖L2(Γ) . (3.14)

Note that the existence of the norms in (3.13)–(3.14) is ensured by the trace theorem applied
to the functions φ, fx̂ and fŷ of W 1

0 (Ω). Then, since ‖fx̂ + fŷ‖L2(Γ) ≤ ‖fx̂‖L2(Γ) + ‖fŷ‖L2(Γ), the
continuity property follows from

(i) ‖fx̂‖L2(Γ) is bounded in D ,

(ii) ‖fx̂ − fŷ‖L2(Γ) ≤ C‖x̂− ŷ‖ for some C ∈ R, with x̂, ŷ ∈ D .

Note that (ii) implies the continuity of the map x̂ 7→ fx̂|Γ, for the norm ‖·‖L2(Γ), so that (ii)
implies (i). To prove (ii) we use (3.8) to obtain

‖f̄x̂ − f̄ŷ‖L2(Γ) ≤ ‖u(x̂, ·) − u(ŷ, ·)‖L2(Γ) + ‖gx̂ − gŷ‖L2(Γ) , (3.15)

where gx̂ − gŷ ∈W 1
0 (Ω) is solution to




−∆(gx̂ − gŷ) = 0 , in Ω ,
∂(gx̂ − gŷ)

∂n
= −

(
∂u∗(x̂, ·)

∂n
−
∂u∗(ŷ, ·)

∂n

)
on Γ ,

∫

Γ
(gx̂ − gŷ) ds = −

∫

Γ
u∗(x̂, ·)− u∗(ŷ, ·) ds .

(3.16)
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By the trace theorem we have ‖gx̂−gŷ‖L2(Γ) ≤ C1‖gx̂−gŷ‖W 1
0
(Ω) for some C1 ∈ R. Hence (3.15)

and Lemma 1 applied to (3.16) give

‖f̄x̂ − f̄ŷ‖L2(Γ) ≤ C2‖u(x̂, ·)− u(ŷ, ·)‖L2(Γ) + C3

∥∥∥∥
∂u∗(x̂, .)

∂n
−
∂u∗(ŷ, .)

∂n

∥∥∥∥
L2(Γ)

, (3.17)

for some C2, C3 ∈ R. Result (ii) is obtained from the previous inequality and the fact that
Γ ∈ C2, so that u∗ and ∂u∗/∂n are continuous and differentiable with respect to both variables
in the compact D × Γ, hence they are Lipschitz in D × Γ. �

Instead of using (3.6), the first order topological derivative can be computed efficiently by
using the adjoint state v, see [3],

D1
Tψ(x̂) = −αµ0Iv(x̂) , (3.18)

where v is the unique solution in W 1
0 (Ω) to the following problem:





−∆v = 0 ,
∂v

∂n
= −φ on Γ ,∫

Γ
v ds = 0 .

(3.19)

Remark 3. Note that (3.18) allows us to compute the first order topological derivative at several

points by solving once the boundary value problem (3.19). For the second order derivatives, the

boundary value problem (3.9) must be solved once for each point x̂. However, note that unlike

the solution to (3.19), the solution to (3.9) does not depend on φ, and then it does not depend on

the actual current density distribution j0. Therefore, second order derivatives can be computed

once before starting the optimization process. In addition, the point x̂ only affects the right hand

side of the linear systems of the numerical approach, thus evaluation of second order derivatives

requires of only one factorization. Hence, the computational cost of evaluation of second order

derivatives is much lower than the usual case where they must be computed at each iteration,

requiring the factorization of different coefficient matrices.

We end this section with the following result:

Theorem 4. Given a centrally symmetric domain ω, i.e. simmetric with respect to the center

x̄ interior to ω, then the topological derivative D2
Tψ(x) > 0 for all x ∈ Ω.

Proof. According to (3.7), D2
Tψ(x) ≥ 0, for all x ∈ Ω and hence we just have to prove that there

is no point x̂ such that D2
Tψ(x̂) = 0. Let us assume that a point x̂ ∈ Ω satisfying D2

Tψ(x̂) = 0
exists. Hence, according to (3.7), the solution f of (3.10) satisfies f(x) = 0 for all x ∈ Γ.
We know that there exists a constant c such that the solution gx̂ to (3.9) satisfies the growth
condition gx̂(x) = c+o(1) [21]. Therefore, since outsideBε(x̂) we have f0(x) = u∗(x̂, x)−u∗(x̄, x),
f satisfies the same growth condition for the same c. Therefore, f should be a solution inW 1

0 (Ω)
to the following problem:





−∆f = (πε2)−1χBε(x̂) in Ω ,
f = 0 on Γ ,

∂f

∂n
= −|Γ|−1 on Γ ,

f(x) = c+ o(1) as ‖x‖ → ∞ .

(3.20)

On the other hand, due to the growth condition satisfied by f , the following boundary integral
equation holds for each function q : Ω → R satisfying ∆q(x) = 0 in Ω and q(x) = o(1) as
‖x‖ → ∞:

∫

Bε(x̂)
(πε2)−1q(x) dx =

∫

Γ
f
∂q

∂n
ds−

∫

Γ

∂f

∂n
q ds . (3.21)
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By using the mean value property of harmonic functions, and by replacing the boundary values
of f into (3.21) we have

q(x̂) = |Γ|−1

∫

Γ
q ds . (3.22)

Consider a Cartesian coordinate system with x̄ as its origin. Let (x1, x2) be the coordinates of
x ∈ Ω and let the functions q1 and q2 be defined as

q1(x) =
x1
r2
, q2(x) =

x2
r2
, (3.23)

with r2 = x21 + x22. Since q1 and q2 satisfy the hypothesis required for q, (44) gives for these
functions

x̂1
r̂2

= |Γ|−1

∫

Γ

x1
r2
ds ,

x̂2
r̂2

= |Γ|−1

∫

Γ

x1
r2
ds , (3.24)

where (x̂1, x̂2) are the coordinates of x̂ and r̂2 = x̂21+ x̂
2
2. By hypothesis x̂ ∈ Ω, hence r̂2 > 0 and

at least one of q1(x̂) and q2(x̂) is non-zero. However, both integral expressions of (3.24) vanish
because of the central symmetry of Γ. Since there is a contradiction, a point x̂ ∈ Ω satisfying
D2

Tψ(x̂) = 0 does not exist. �

4. A topological derivative-based level-set algorithm

In this section we state a level-set topology design algorithm based on the topological deriva-
tives obtained in the previous section. First we consider domains Ω which possess central
symmetry. In this case we can devise a level set algorithm to generate a sequence of current
density functions j0 satisfying (2.2) at each iteration. In the general case, condition (2.2) can
not be ensured automatically, and a penalty function strategy to enforce the satisfaction of this
constraint will be followed.

4.1. The symmetric case. In this case the current density j0 is sought as the solution of the
general optimization problem stated as

Minimize
j0∈O∫

Ω
j0 dx=0

J(φ) , (4.1)

where O is the set of functions j0 = I(χΘ+ − χΘ−) with χΘ+ and χΘ− being the characteristic
functions of the sets Θ+ and Θ−, which are the open and disjoints parts of Ω representing the
regions where the current density j0 is, respectively, positive or negative. We assume that Θ+

and Θ− are in a compact Θ ⊂ Ω. The function φ is the solution of (2.8) in W 1
0 (Ω). Therefore,

the design variables of problem (4.1) are the shape and topology of Θ+ and Θ−.
According to the topological expansion (3.12), the introduction of a circular region of current

density αI, α ∈ {+1,−1}, and center x̂ ∈ Ω changes the value of the objective function of
problem (4.1). If we consider an optimal configuration of inductors with respect to the class of
perturbations we are analyzing, the introduction of that small circular region at x̂ ∈ Ω0 = Ω \

(Θ+∪Θ−) should not increase the objective function. Hence, according to the expression (3.18)
of the first order topological derivative, the optimal configuration should satisfy the following
necessary condition:

−αµ0Iv(x̂) ≥ 0 ∀x̂ ∈ Ω0 . (4.2)

Since α could be positive or negative, for the optimal configuration we have

v(x̂) = 0 ∀x̂ ∈ Ω0 . (4.3)

However, since v is harmonic, by the identity theorem of harmonic functions [51], v vanishes
on the entire domain Ω, and by (3.18) we have, for the optimal configuration:

D1
Tψ = 0 in Ω . (4.4)

Now we are ready to devise e topological derivative-based optimization algorithm to solve
problem (4.1) based on the ideas in [9], that have been successfully applied to several problems.
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The procedure relies on a level-set domain representation of Θ+ and Θ− [52], and the approxima-
tion of the topological optimality conditions through a fixed point iteration. The main difficulty
of applying the ideas in [9] to the present case is that the first order topological derivative van-
ishes at the solution according to (4.4). The novelty of our algorithm is that it considers the
expected variation of the objective functional given by the topological expansion (3.12) instead
of the first order topological derivative to define the level sets.

With the adoption of a level-set domain representation, the region Θ+ is characterized by a
function ψ+ ∈ L2(Θ) such that

Θ+ = {x ∈ Θ, ψ+(x) < 0} , (4.5)

whereas the region Θ− is characterized by a function ψ− ∈ L2(Θ):

Θ− = {x ∈ Θ, ψ−(x) < 0} . (4.6)

Let EV (x̂, ε, α) be the expected variation of the objective function of problem (4.1) for a
perturbation of j0 consisting in a circular region of current density αI of radius ε and center x̂,
namely,

EV (x̂, ε, α) = f1(ε)D
1
Tψ(x̂) + f2(ε)D

2
Tψ(x̂) . (4.7)

Take Θ0 = Θ\(Θ+
⋃

Θ−). A sufficient condition of local optimality for the class of perturba-
tions considered is that the expected variation of the objective function be positive, i.e.,

EV (x̂, ε, α) > 0 , ∀x̂ ∈ Θ+ , and α = −1 , (4.8)

EV (x̂, ε, α) > 0 , ∀x̂ ∈ Θ− , and α = +1 , (4.9)

EV (x̂, ε, α) > 0 , ∀x̂ ∈ Θ0 , and α = ±1 . (4.10)

Following [9], to devise a level-set-based algorithm whose aim is to produce a topology that
satisfies (4.8)–(4.10), we choose a value for ε (in the numerical approach we define a mesh of
cells in the domain Θ and take a value ε related to the size of the cells) and define the functions

g+(x) =

{
−EV (x̂, ε,−1) if x̂ ∈ Θ+ ,
EV (x̂, ε,+1) if x̂ ∈ Θ0 ∪Θ− ,

(4.11)

g−(x) =

{
−EV (x̂, ε,+1) if x̂ ∈ Θ− ,
EV (x̂, ε,−1) if x̂ ∈ Θ0 ∪Θ+ .

(4.12)

With the above definitions and (4.5)–(4.6), it can be easily established that the sufficient
conditions (4.8)–(4.10) are satisfied if the following equivalence relations between the functions
g+ and g− and the level-set functions ψ+ and ψ− hold

∃ τ+ > 0 s.t. h(g+) = τ+ ψ+ , (4.13)

∃ τ− > 0 s.t. h(g−) = τ− ψ− , (4.14)

where h : R → R must be an odd and strictly increasing function, e.g.,

h(x) = sign(x)|x|β with β > 0 . (4.15)

In fact, if x̂ ∈ Θ+, then ψ+(x̂) < 0. By (4.13) and since h preserves the sign we have g+(x̂) < 0,
and by (4.11) we have EV (x̂, ε,−1) > 0, proving (4.8). The proofs of (4.9) and (4.10) are
analogous considering x̂ respectively in Θ− and Θ0.

Conditions (4.13)–(4.14) can be expressed equivalently as

θ+ := arccos

[
〈h(g+), ψ+〉L2(Θ)

‖h(g+)‖L2(Θ) ‖ψ
+‖L2(Θ)

]
= 0 , (4.16)

θ− := arccos

[
〈h(g−), ψ−〉L2(Θ)

‖h(g−)‖L2(Θ) ‖ψ
−‖L2(Θ)

]
= 0 , (4.17)

where θ+ is the angle between the vectors h(g+) and ψ+ in L2(Θ) and θ− is the counterpart
between h(g−) and ψ−.
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To find the optimal Θ+ (the case of Θ− is completely analogous), we start from an initial
level-set function ψ+

0 ∈ L2(Θ) which defines the initial guess. Then, the algorithm produces a
sequence (ψ+

i )i∈N of level-set functions that provides successive approximations to the sufficient
conditions of optimality. The sequence satisfies

ψ+
0 ∈ L2(Θ) ,
ψ+
n+1 ∈ co(ψ+

n , h(g
+
n )) ∀n ∈ N ,

(4.18)

where co(ψ+
n , h(g

+
n )) is the convex hull of {ψ+

n , h(g
+
n )}. In the actual algorithm the initial guess

ψ+
0 and subsequent iteration points can be normalized, see [9] for further details. The non-

normalized sequences for both Θ+ and Θ− are

ψ+
n+1 = (1− tn)ψ

+
n + tnh(g

+
n )

ψ−
n+1 = (1− tn)ψ

−
n + tnh(g

−
n )

}
∀n ∈ N , (4.19)

where tn ∈ [0, 1] is a step size determined by a line-search in order to decrease the value of the
cost functional J(φ). The iterative process is stopped when certain criterion is satisfied, see
Section 5. The angles θ+ and θ− can be use as indicators of the accuracy of (4.13) and (4.14)
at the final iteration and can be used to determine the necessity of a mesh refinement [9].

The next theorem shows that the algorithm given by the update rule (4.19) is well defined,
i.e., for every tn ∈ [0, 1] the functions ψ+

n+1 and ψ−
n+1 generate disjoint sets Θ+ and Θ−. We

prove by induction that ψ+
n + ψ−

n ≥ 0 ∀n ∈ N. This latter inequality is sufficient to show that
Θ+ and Θ− are disjoint, since a point x in both sets would satisfy ψ+

n (x) < 0 and ψ−
n (x) < 0

and then would satisfy ψ+
n (x) + ψ−

n (x) < 0.

Theorem 5. Assume that ψ+
0 + ψ−

0 ≥ 0. Then ψ+
n + ψ−

n ≥ 0 ∀n ∈ N.

Proof. According to (4.11)–(4.12) and taking into account that h is odd we have

h(g+n (x)) + h(g−n (x)) = 0 ∀x ∈ Θ+ ∪Θ− . (4.20)

In addition, for a point x ∈ Θ0 we have

g+n (x) + g−n (x) = EV (x, ε,+1) + EV (x, ε,−1) , (4.21)

and, according to (4.7) and (3.18),

g+n (x) + g−n (x) = 2f2(ε)D
2
Tψ(x) ≥ 0 , (4.22)

hence g+n (x) ≥ −g−n (x) and, since h is strictly increasing,

h(g+n (x)) ≥ h(−g−n (x)) ∀x ∈ Θ0 . (4.23)

Since h is odd, the last inequality proves the desired result in Θ0 and thanks to (4.20) also in
the whole domain Θ:

h(g+n (x)) + h(g−n (x)) ≥ 0 ∀x ∈ Θ . (4.24)

The induction hypothesis is ψ+
n + ψ−

n ≥ 0, and by (4.19) we have

ψ+
n+1 + ψ−

n+1 = (1− tn)[ψ
+
n + ψ−

n ] + tn[h(g
+
n ) + h(g−n )] . (4.25)

Using the induction hypothesis and (4.24) we obtain ψ+
n+1 + ψ−

n+1 ≥ 0 for every tn ∈ [0, 1]. �

Remark 6. If there is no previous information about the optimum, a suitable initial guess that

satisfies the inequality ψ+
0 + ψ−

0 ≥ 0 is ψ+
0 = ψ−

0 = 1, which corresponds to zero positive and

negative currents.
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4.2. The asymmetric case. In the asymmetric case the satisfaction of condition (2.2) cannot
be ensured automatically by the algorithm described in the previous section. In fact, in Section 5
we present an example where the algorithm fails to find a solution satisfying (2.2).

In the asymmetric case we propose to relax this constraint and minimize the following penalty
function:

P (0) = J(φ) +
1

2
ρ d(j0)

2 , (4.26)

where ρ > 0 is a penalty parameter. Hence, in the penalty approach the current density j0 is
sought as the solution of the following optimization problem:

Minimize
j0∈O

J(φ) +
1

2
ρd(j0)

2 . (4.27)

In this case, since d(jε) = d(j0) + |Γ|−1αµ0Iπε
2, it is not difficult to see that P admits the

topological expansion (3.1), with the same functions f1 and f2 as ψ, and with the following
topological derivatives:

D1
TP (x̂) = D1

Tψ(x̂) + ραµ0I|Γ|
−1d(j0) , (4.28)

D2
TP (x̂) = D2

Tψ(x̂) +
1

2
ρµ20I

2|Γ|−2 . (4.29)

Note that, as well as the symmetric case, the second order topological derivative D2
TP (x̂) is

strictly positive thanks to the strictly positive penalty term.
The topology optimization procedure proposed to solve asymmetric problems is the same as

in the previous section, using the penalty function (4.26) as objective and the expected variation
EV (x, ε, α) computed according to the topological derivatives (4.28)–(4.29).

5. Numerical examples

Four examples are presented. The first two have known solutions, since the target shapes
considered are equilibrium shapes for given current density distributions. The second example
considers an asymmetric target shape, so that it serves to evaluate the effect of the penalty term
proposed in Section 4.2. The last two examples consist of more realistic design problems. The
boundary element method used in [3] was applied here to solve the boundary value problems
and to compute approximately the first and second order topological derivatives. For all the
examples we consider σ = 1.0×10−4 and µ0 = 1.0. Two meshes are considered; the case (a) has
cells of size 0.02 and the case (b) has cells of size 0.02, see Table 1. The optimization procedure
stops when in subsequent iterations we have the same configuration of inductors, i.e., the level
sets contains the same cells.

Table 1. Examples

Example NE NC SC I

Ex1a 120 4724 0.05 0.4
Ex1b 120 29520 0.02 0.4
Ex2a 169 4715 0.05 0.4
Ex2b 169 29463 0.02 0.4
Ex3a 152 10228 0.05 0.2
Ex3b 152 64120 0.02 0.2
Ex4a 172 11708 0.05 0.15
Ex4b 172 73420 0.02 0.15

NE: number of boundary elements,
NC: number of domain cells, SC:
size of the cells.
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The target shape of the first example is the solution of a direct free-surface problem for a
liquid metal column of cross-section area S0 = π, considering six distributed currents of density
I = 0.4 as shown in Fig. 1, see Fig. 1. The result obtained for finer mesh is shown in Fig. 2.
The evolution of the objective function along the iterative process is shown in Fig. 3.

(a) (b)

Figure 1. Example 1. (a) Initial configuration of the direct free-surface problem.
(b) Target shape and exact solution. Black area: positive inductors, gray area:
negative inductors, dashed line: target shape, thin solid line: boundary of the
mesh of cells.

Figure 2. Example 1. Solution for a mesh of cells of size 0.02 with β = 3.
Black area: positive inductors, gray area: negative inductors, dashed line: target
shape, thin solid line: equilibrium shape.
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Figure 3. Example 1. Evolution of the objective function for β = 3.

In the second example we move the inductors to generate an asymmetric objective shape as
shown in Fig. 4. The result obtained for the finer mesh is shown in Fig. 5. The evolution of the
objective function along the iterative process is shown in Fig. 6 and the evolution of the total
current considering three different values of the penalty parameter ρ is shown in Fig. 7. Note
that from the eighth iteration the effect of the penalty term is noticeable. For ρ = 0 the total
current never stop increasing, and for ρ = 1.0× 10−11 the total current converges to zero. The
value ρ = 1.0× 10−12 is not large enough to produce a significant reduction of the total current.

(a) (b)

Figure 4. Example 2. (a) Initial configuration of the direct free-surface problem.
(b) Target shape and exact solution. Black area: positive inductors, gray area:
negative inductors, dashed line: target shape, thin solid line: boundary of the
mesh of cells.
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Figure 5. Example 2. Solution for a mesh of cells of size 0.02 with β = 3 and
ρ = 1.0 × 10−11. Black area: positive inductors, gray area: negative inductors,
dashed line: target shape, thin solid line: equilibrium shape.
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Figure 6. Example 2. Evolution of the objective function for β = 3 and ρ = 1× 10−11.
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Figure 7. Example 2. Evolution of the total current considering different values
of ρ.

The third example is depicted in Fig. 8. The result obtained for the finer mesh is shown in
Fig. 9. The evolution of the objective function along the iterative process is shown in Fig. 10.
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(a) (b)

Figure 8. Example 3. (a) Description of the problem geometry. (b) Target
shape. Dashed line: target shape, thin solid line: boundary of the mesh of cells.

Figure 9. Example 3. Solution for a mesh of cells of size 0.02 and β = 3. Black
area: positive inductors, gray area: negative inductors, dashed line: target shape,
thin solid line: equilibrium shape.
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Figure 10. Example 3. Evolution of the objective function for β = 3.

In the last example we consider the asymmetric target shape of Fig. 11. For this example,
the compatibility equation (2.6) is satisfied if the sign of κ does not change at the two vertices
indicated in Fig. 11. The result obtained for the finer mesh is shown in Fig. 12. The evolution
of the objective function along the iterative process is shown in Fig. 13 and the evolution of the
total current considering three different values of the penalty parameter ρ is shown in Figs 14.
Note that the total current of the solution depends on ρ as in Example 2. Solutions with almost
zero total current are found for ρ = 1.0× 10−11.

(a) (b)

Figure 11. Example 4. (a) Description of the problem geometry. (b) Target
shape. Dashed line: target shape, thin solid line: boundary of the mesh of cells,
white squares: points where the sign remains unchanged.
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Figure 12. Example 4. Solution for a mesh of cells of size 0.02 and β = 3.
Black area: positive inductors, gray area: negative inductors, dashed line: target
shape, thin solid line: equilibrium shape.
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Figure 13. Example 4. Evolution of the objective function for β = 3.
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Figure 14. Example 4. Evolution of the total current considering different
values of ρ.

5.1. Results summary. Table 2 resumes the information about the examples considered. For
each example the number of iterations performed by the optimization algorithm proposed in [3]
is indicated, as well as those performed by the present algorithm for the values β = 1 and β = 3
in (4.15). In the case of the asymmetric examples, the results obtained for ρ = 1.0 × 10−11 are
given. Table 2 shows that, for these examples, the present optimization algorithm with β = 3
was generally the most efficient. Note that the solutions of Examples 2 and 4 required a relatively
large number of iterations when compared to the similar symmetric Examples 1 and 3. However,
for both asymmetric examples the penalty approach was effective to find suitable solutions.

Table 2. Results summary

Example IterP Iter1 Iter3 IOF FOF3

Ex1a 24 4 6 2.747e-04 6.088e-07
Ex1b 47 4 3 2.747e-04 4.009e-07
Ex2a 21 17 19 5.187e-04 7.698e-06
Ex2b 63 61 45 5.187e-04 6.977e-07
Ex3a 29 18 18 1.066e-02 2.936e-05
Ex3b 108 134 67 1.066e-02 2.219e-06
Ex4a 53 56 52 2.976e-02 4.248e-05
Ex4b 145 190 184 2.976e-02 2.257e-06

IterP: number of iterations performed by the algorithm pro-
posed in [3], Iter1: number of iterations performed by the
level set algorithm for β = 1, Iter3: number of iterations
performed by the level set algorithm for β = 3, IOF: initial
value of the objective function, FOF3: final value of the
objective function for β = 3.

6. Conclusions

We have proposed a new method for the topology design of inductors in electromagnetic
casting. The method is based on a topology optimization formulation and uses level-sets together
with first and second order topological derivatives to design suitable inductors.

The complete asymptotic expansion of the objective functional regarding the introduction of
a small inductor was derived in this paper, generalizing the results of [3]. We have shown that
the first order topological derivative vanishes at the solution, precluding the direct application
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of the topology optimization algorithm proposed by Amstutz & Andrä [9] to the studied opti-
mization problem. However, we have shown how to circumvent this difficulty using second order
topological derivatives.

In the case of centrally symmetric geometries, the method proposed generates a sequence of
solutions satisfying all the equality constraints. A penalty-based approach was proposed for
problems with asymmetric geometries.

The set of examples considered show that the method proposed is effective and efficient, and
therefore can be successfully used in the design of inductors in electromagnetic casting.
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[20] J.-C. Nédélec, Acoustic and Electromagnetic Equations. Integral Representations for Harmonic Problems,
Vol. 144 of Applied Mathematical Sciences, Springer-Verlag, New York, 2001.



19

[21] K. E. Atkinson, The numerical solution of integral equations of the second kind, Vol. 4 of Cambridge
Monographs on Applied and Computational Mathematics, Cambridge University Press, Cambridge, 1997.
doi:10.1017/CBO9780511626340.

[22] M. Pierre, J. R. Roche, Numerical simulation of tridimensional electromagnetic shaping of liquid metals,
Numerische Mathematik 65 (1) (1993) 203–217. doi:10.1007/BF01385748.

[23] J. R. Roche, Gradient of the discretized energy method and discretized continuous gradient in electromagnetic
shaping simulation, Applied Mathematics and Computer Science 7 (3) (1997) 545–565.

[24] J. R. Roche, Adaptive Newton-like method for shape optimization, Control and Cybernetics 34 (1) (2005)
363–377.

[25] A. Novruzi, J. R. Roche, Newton’s method in shape optimisation: A three-dimensional case, BIT. Numerical
Mathematics 40 (1) (2000) 102–120. doi:10.1023/A:1022370419231.

[26] T. P. Felici, J.-P. Brancher, The inverse shaping problem, European Journal of Mechanics. B Fluids 10 (5)
(1991) 501–512.

[27] G. Hsiao, W. L. Wendland, Boundary Integral Equations, Vol. 164 of Applied Mathematical Sciences,
Springer-Verlag, Berlin, 2008.
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República, J. Herrera y Reissig 565, CP 11300, Montevideo, Uruguay

E-mail address: acanelas@fing.edu.uy
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