TOPOLOGY DESIGN OF PLATES CONSIDERING DIFFERENT VOLUME
CONTROL METHODS

DIEGO E. CAMPEAO, SEBASTIAN M. GIUSTI, AND ANTONIO A. NOVOTNY

ABSTRACT.

Purpose. Comparison between two methods of volume control in the context of topological
derivative-based structural optimization of Kirchhoff plates.

Methodology. The compliance topology optimization of Kirchhoff plates subjected to volume
constraint is considered. In order to impose the volume constraint, two method are presented.
The first one is done by means of a linear penalization method. In this case, the penalty
parameter is the coefficient of a linear term used to control the amount of material to be removed.
The second approach is based on the Augmented Lagrangian method which has both, linear and
quadratic terms. The coefficient of the quadratic part controls the Lagrange multiplier update
of the linear part. The associated topological sensitivity is used to devise a structural design
algorithm based on the topological derivative and a level-set domain representation method.
Finally, some numerical experiments are presented allowing for a comparative analysis between
the two methods of volume control from a qualitative point of view.

Findings. The linear penalization method does not provide direct control over the required
volume fraction. In contrast, through the Augmented Lagrangian method it is possible to specify
the final amount of material in the optimized structure.

Originality. A strictly simple topology design algorithm is devised and used in the context of
compliance structural optimization of Kirchhoff plates under volume constraint. The proposed
computational framework is quite general and can be applied in different engineering problems.
Keywords. Topological derivative, Level-set domain representation, Topology optimization,
Kirchhoff plates.

Article type. Research paper.

1. INTRODUCTION

The technological progress in the last decades has enabled the design and construction of struc-
tural plate elements by using materials with different mechanical properties. In this context,
the optimal distribution of these materials in a particular structural element is of paramount
importance in many areas such as civil, mechanical, aerospace, biomedical and nuclear engineer-
ing. A quite general approach to deal with this kind of problem is based on the relatively new
mathematical notion of topological derivative (Sokotowski and Zochowski (1999)). See also the
book by Novotny and Sokolowski (2013).

In order to introduce this concept, let us consider a bounded domain ©Q C R?, which is
subjected to a non-smooth perturbation confined in a small region w.(Z) = ¥ + ew of size ¢, as
shown in fig. 1. Here, Z is an arbitrary point of 2 and w is a fixed domain of R?. We introduce a
characteristic function associated to the unperturbed domain, namely x = 1. Then, we define
a characteristic function associated to the topologically perturbed domain of the form y.. In the
present case, the perturbed domain is obtained when a circular hole w.(Z) = B(Z) is introduced
inside the domain €2, where B (%) is used to denote a ball of radius ¢ and center at € Q. Next,
this region is filled by an inclusion with different material property. To describe this feature, we
introduce a piecewise constant function 7. of the form

B [ 1 ifzeQ\B:
78_/76(13) _{ ~y ifa:EBE ’ (1)

where v € R™ is the contrast in the material property. Therefore the characteristic function
Xe takes the form x.(z) = 1 — (1 — 7)]137@). Then, we assume that a given shape functional
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¥(xe(T)), associated to the topologically perturbed domain, admits the following topological
asymptotic expansion

Y(xe(@)) = v (x) + f(e)Ta@) + o(f(e)) , (2)
where 1 (x) is the shape functional associated to the original (unperturbed) domain, f(e) is
a positive function such that f(¢) — 0, when ¢ — 0. The function Z +— Tq(Z) is called the
topological derivative of ¢ at . Therefore, this derivative can be seen as a first order correction
of ¥(x) to approximate ¥ (x:(Z)). In fact, the topological derivative measures the sensitivity of
a given shape functional with respect to an infinitesimal singular domain perturbation, such as
the insertion of holes, inclusions, source-terms or even cracks. This concept has proved to be
extremely useful in the treatment of a wide range of problems, namely, topology optimization
(Allaire et al. (2005); Amstutz and Andréd (2006); Amstutz and Novotny (2010); Giusti et al.
(2010); Amstutz et al. (2012)), inverse analysis (Hintermiiller and Laurain (2008); Amstutz
et al. (2005); Hintermiiller et al. (2012)), image processing (Hintermiiller and Laurain (2009);
Larrabide et al. (2008)), multi-scale constitutive modeling (Giusti et al. (2009); Amstutz et al.
(2010)), fracture mechanics sensitivity analysis (Van Goethem and Novotny (2010)) and damage
evolution modeling (Allaire et al. (2011)).

L n

F1GURE 1. The topological derivative concept.

In Novotny et al. (2005) the topological derivative was obtained, through the approach de-
veloped in Novotny et al. (2003), for the total potential energy associated to the Kirchhoff plate
bending problem, considering as singular perturbation the nucleation of a circular hole. This
result was used to devise a hard-kill like topology algorithm and some numerical experiments
were presented. More recently, a numerical method to compute the first-order variation of some
quantity of interest when an arbitrary-shaped feature is introduced in the plate domain has been
proposed in Turevsky et al. (2009). Also, in Bojczuk and Mréz (2009) the topological derivative
with respect to the introduction of reinforcements in a plate was presented and discussed in de-
tails. In Amstutz (2010) the closed formulas associated to a large class of shape functionals were
derived using the approach proposed in Amstutz (2006) and a full mathematical justification for
the formula obtained in Novotny et al. (2005) was provided. In addition, the result derived in
Novotny et al. (2005) was extended by considering as topological perturbation the nucleation of
an infinitesimal circular inclusion instead of a hole. This last result allows to devise a topology
design algorithm as proposed in Amstutz and Andra (2006).

Therefore, as a natural sequence of this research, in this work we propose an optimization
algorithm based on the topological derivative and a level-set domain representation for the com-
pliance topology design of Kirchhoff plates, with volume constraint. In particular, we compare
two methods of volume control in the context of topological derivative-based structural opti-
mization. The first one is done by means of linear penalization and does not provide direct
control over the required volume fraction. In this case, the penalty parameter is the coefficient
of a linear term used to control the amount of material to be removed. The second approach
is based on the Augmented Lagrangian method which has both, linear and quadratic terms.
The coefficient of the quadratic part controls the Lagrange multiplier update of the linear part.
Through this last method it is possible to specify the final amount of material in the optimized
structure. In order to present the behavior of both approaches, we consider the compliance
topology optimization of Kirchhoff plates subjected to volume constraint.
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This paper is organized as follows. Section 2 describes the compliance topology optimization
problem of Kirchhoff plates subjected to volume constraint. The two methods used to impose
the volume constraint are presented in Section 3. The structural design algorithm based on the
topological derivative and a level-set domain representation method are outlined in Section 4.
A set of numerical experiments is presented in Section 5, allowing for a comparative analysis
between the two implemented methods of volume control from a qualitative point of view. The
paper ends in Section 6 with some concluding remarks.

2. PROBLEM FORMULATION

The most popular topology optimization problem consists in minimizing the structural com-
pliance for a given amount of material. It can be written as

Minimize vix) = —JIx(u), (3)
Subjected to Q] < V

where |2] denotes the volume of the domain 2, V' is the required volume at the end of the
optimization process and () is the energy functional associated to the Kirchhoff plate bending
problem, which is given by

T(u) = —% /Q M) - VVu — /F T /F mt ;@iu(xi) , (4)

where 0,(+) is used to denote the normal derivative of (-) and u is the deflection function, the
solution to the variational problem:

Findu € U, such that
_ _ — 5
—/M(U)'anz/ qn—/ Mo, — Y Qm(xi) VneV. (5)
Q I'ng TN i=1

In the above equations, M (u) is the generalized stress tensor that represents the bending mo-
ments in the middle plane of the plate, given by

h3
M(u) = —E(CVVu , (6)

being C the fourth-order elastic constitutive tensor. For an isotropic and homogeneous material,
this tensor can be written as

K

C=—"_
1—12

(1=vi4+vie]l), (7)
where I and I are the second and fourth order identity tensors, respectively, E is the Young
modulus and v the Poisson ratio. The set I/ and the space V are respectively defined as

U = {peH Q) :¢lrp, =1, dglr,, =7}, (8)
V = {peHQ):¢lr,, =0, duplr, =0}. (9)

In addition, h is the plate thickness assumed to be constant everywhere, q is a shear load dis-
tributed on the boundary I'y,, m is a moment distributed on the boundary I'y,, and Q, is a
concentrated shear load supported at the points z; where there are some geometrical singular-
ities, with ¢ = 1,...,ns, and ns the number of such singularities. The deflection field u has to
satisfy u|r,, = u and O,ulr b, = P where u and p are a deflection and a rotation respectively

prescribed on the boundaries I'p, and I'p,. Furthermore, I'p = T'p, UF—DP and 'y = I‘—NqU I'n,,
are such that I'p, NT'y, = @ and I'p, NT'y,, = F. See the details in fig. 2.
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F1GURE 2. The Kirchhoff problem defined in the unperturbed domain.

The strong formulation associated to the variational problem (5) reads:

Find u, such that
div(divM(u)) = 0 in  Q,
M(u) = —?—;(CVVu
o o= u on I'p,
Ou = P on I'p,, (10)

M™w) = m on I'n, .,

O-M™(u) +divM(u) -n = @ on Iy,
M ()] = Q on @i €Ty,

where [(+)] denotes the jump of () at the point z;; and M™ and M™ are the components of
the stress tensor M in the curvilinear coordinates system defined by the normal and tangential
vectors (n,7) to the boundary 9.

For an explicit and analytical formula for the topological derivative Tq(Z) of the functional
(4) associated to the problem (5), when a circular inclusion with constitutive properties vC is
inserted at an arbitrary point Z, we introduce the following result:

Theorem 2.1. The topological derivative of the energy shape functional associated to the elastic
Kirchhoff plate problem is given by:

Ta(Z) = Py M(u(Z)) - VVu(Z) (11)

where u(Z) is the solution of the problem (5) evaluated at T and the polarization tensor P, is
given by the following fourth order isotropic tensor

11—y 45
T2l 448 \1—v
where the parameter v denotes the contrast in the constitutive properties of the elastic medium,

I and 1 are the identity tensors of second- and fourth-order, respectively, and the parameters a
and B depend exclusively on the Poison’s ratio of the plate, given by

1+3v 1—7v
I — I®I 12
rast e ret) (12

1+v 3—v
= = . 1
a=— and [ T (13)
Proof. The reader interested in the proof of this result may refer to Amstutz (2010); Novotny
et al. (2005). O

Remark 2.2. Formally, we can take the limit cases v — 0 and v — co. Fory — 0, the inclusion
leads to a void and the transmission condition on the boundary of the inclusion degenerates to
homogeneous Neumann boundary condition. In fact, in this case the polarization tensor is given
by

2 14 3v
3+ v * 20 —-v)(3+v)

Py I®I. (14)
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In addition, for v — oo, the elastic inclusion leads to a rigid one and the polarization tensor is
given by
2 n 14 3v
1—v  2(1—1v?2)

Py = I®I. (15)

Note that, expression (11) represents the sensitivity of the energy shape functional, associated
to the problem (5), to the insertion at an arbitrary point Z of a circular disk whose constitu-
tive property is characterized by the contrast parameter . The limit cases of this parameter,
presented in the above remark, will be used to devise a topological structural optimization al-
gorithm. In order to solve the optimization problem (3), in the next section we present two
methods to impose the constraint in the final volume of the domain, by using the previously
introduced topological derivative formula.

3. VOLUME CONTROL METHODS

In this section we propose two methods of volume control, in the context of topological
derivative-based structural optimization, to solve the problem stated in (3). The first one is
done by means of linear penalization and does not provide direct control over the required
volume fraction. In this case, the penalty parameter is the coefficient of a linear term used to
control the amount of material to be removed. The second approach is based on the Augmented
Lagrangian method which has both, linear and quadratic terms. The coefficient of the quadratic
part controls the Lagrange multiplier update of the linear part. Through this last method it is
possible to specify the final amount of material in the optimized structure.

For computational purposes, we consider strong and weak materials representing the elastic
part and the voids, respectively. We decompose the domain {2 into two disjoint parts €2° and
QY. representing the strong and weak materials domains, respectively.

3.1. Linear penalization. In this method we re-write the problem (3) as follows

Mbnslcmﬂme Fa(u) = =Ty (u) + A[Q°] , (16)

where |Q°] is the Lebesgue measure of 2° representing the volume of the elastic part and A > 0
is a fixed multiplier which imposes a constraint on the volume of elastic material. It means
that the shape functional to be minimized is the strain energy stored in the structure with
a volume constraint. It should be stressed that the design variable in problem (16) is the
topology of the domain Q°. Hence, the use of the exact topological sensitivity information
provided by the topological derivative (11) emerges as a natural alternative in the development
of a numerical optimization algorithm to tackle the problem. The topological derivative of the
volume constraint in (16) is trivial. Thus, according to (11) and Remark 2.2, the topological
derivatives of Fq(u) are given by:

e For the strong material domain €2°:

TS =PoM(u) - VVu— X . (17)
e For the weak material domain Q%:
Ty =PocM(u) - VVU+ A (18)

3.2. Augmented lagrangian. The Augmented Lagrangian consists in re-writing the optimiza-
tion problem (3), by introducing a linear term and a quadratic term in order to incorporate the
volume constraint. The coefficient of the quadratic part controls the linear part coefficient
update in order to reach the desired volume and satisfy the optimality conditions. Using the
same idea that we have used in the previous method we state the optimization problem in an
equivalent form given by:

L A2
Mbnslglglze Faou) = =Ty (u) + \ipt + ?(er)z ) (19)
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where A1 and )y are positive parameters and the function p* is defined as

A
pT = max{p, —)\—1} , (20)
2
with function p given by
|€2°]
= —1. 21
pi=" (21)

The topological derivatives of the linear and quadratic terms in (19) are trivial. Considering
again the domain decomposition of 2 in 2% and Q%, and making use of the Remark 2.2, the
topological derivatives of (19) are:

e For the strong material domain Q°:

TS =PoM(u) - VVu — max(0, A1 + Aop) . (22)
e For the weak material domain Q%:
Ty = Poo M (u) - VVu + max(0, \; + A2p) . (23)

4. TOPOLOGICAL DERIVATIVE BASED OPTIMIZATION ALGORITHM

The topological derivative-based optimization algorithm devised in Amstutz and Andra (2006)
stands out as a particularly well-suited choice to solve problem (16). The procedure relies on a
level-set domain representation Osher and Sethian (1988) and the approximation of the topo-
logical optimality conditions by a fixed point iteration. In particular, the algorithm displays a
marked ability to produce general topological domain changes uncommon to other methodolo-
gies based on a level-set representation and has been successfully applied in Amstutz and Andra
(2006) to topology optimization in the context of two-dimensional elasticity and flow through
porous media. For completeness, the algorithm is outlined in the following. For further details
we refer to Amstutz and Andra (2006).

By considering the level-set domain representation, the strong material is characterized by a
function ¥ € L?(Q) such that

QP ={reV(x) <0}, (24)
whereas the weak material domain is defined by
QY ={reQ,¥(x)>0}. (25)

Now, let us consider the topological derivative of the shape functional Fq(u). According to
Amstutz and Andra (2006), an obvious sufficient condition of local optimality of problem (16)
for the class of perturbations consisting of circular inclusions is

Ta(z) >0 Ve Q. (26)

To devise a level-set-based algorithm whose aim is to produce a topology that satisfies (26)

it is convenient to define the function
 =TS(@) if e QF
9() = { To(z) it zeQv

With the above definition and (24,25) it can be easily established that the sufficient condition
(26) is satisfied if the following equivalence relation between g and the level-set function ¥ holds

(27)

d7r>0 st g=71Y, (28)
or, equivalently,
W
0 := arccos (9. ¥)12() =0, (29)
9l 22 @) 19| 20

where 6 is the angle between the vectors g and ¥ in L%(Q).
Starting from a given level-set function Wy € L?(2) which defines the chosen initial guess
for the optimum topology, the algorithm proposed in Amstutz and Andrd (2006) produces a
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sequence (U;);en of level-set functions that provides successive approximations to the sufficient
condition for optimality (28). The sequence satisfies
Uy € L2(Q),

\I’i—l—l S CO(\I’i,gi) Vie N R (30)

where co(¥;, g;) is the convex hull of {¥;, ¢g;}. In the current algorithm the initial guess ¥y is

normalized. With S denoting the unit sphere in L?(£), the algorithm is explicitly given by
Yyes,

9i (31)

||giHL2(Q)

U, = S, Sin((l — I{Z)Ql)\lfl + sin(mﬂi) Vie N,
1
where k; € [0, 1] is a step size determined by a line-search in order to decrease the value of the cost
functional Fq(u) and, by construction of (31)y, we have that ¥, € S Vi € IN. The iterative
process is stopped when for some iteration the obtained decrease in Fq(u) is smaller than a
given numerical tolerance. If, at this stage, the optimality condition (28,29) is not satisfied to
the desired degree of accuracy, i.e. if ;11 > €y, where ¢y is a pre-specified convergence tolerance,
then a uniform mesh refinement of the structure is carried out and the procedure is continued.
The previously outlined algorithm is complemented by the two volume constraint methods
presented in Section 3. In the case of the linear penalization (16), the multiplier A is kept
constant during the whole optimization procedure. Then, no further information is needed for
the optimization algorithm. For the Augmented lagrangian formulation (19), the parameter Ao
in the quadratic term is constant throughout the optimization procedure, and is used to update

the parameter \; associated to the linear term. The update rule is:
AP = max[0, X! + M\ophy] Vie N, (32)

where )\Zi and pfl are the values of the parameter A\; and the function p, evaluated at the iteration
i.

5. NUMERICAL EXAMPLES

In order to illustrate the difference between the two methods devised to impose the volume
constraint, in this section we propose some numerical examples. The Discrete Kirchhoff Triangle
three node finite element (DKT-9), which is fully detailed in Batoz (1982), is adopted for the
discretization of the variational problem (5). The topology is identified by the strong material
distribution and the inclusions of weak material are used to mimic the holes. In all examples
we consider as initial guess a unit square plate, with Poisson’s ratio v = 0.3 and the product
hE = 1. The contrast parameter is given by v = 1073. Furthermore, the thick lines that
appear on the figures are used to denote clamped (v = du/0n = 0) boundary conditions. In the
remainder part of the boundary, where noting is specified, we consider homogeneous Neumann
boundary condition. The results are presented in the following order: For each example we have
performed the topology optimization for the linear penalization with a suitable A which gives us
a topology with a 50% of strong material. Then we used different parameters for the augmented
lagrangian method Ay = {10, 20,30} always starting with A; = 0. We start with a uniform mesh
containing 3200 elements and 1681 nodes. Then we perform 3 steps of uniform mesh refinement
for each set of parameters. The final uniform mesh contains 204800 finite elements and 103041
nodes. For each example, the black part of the domain represent the strong material and the
white part the weak material.

5.1. Example 1. In this first example we present a plate subjected to a pair of uniform bending
moments, . = 1 and m = —1 applied on a region of length 0.5 of the middle of the opposite
sides, as shown in fig. 3. We set A = 3.80, corresponding to a volume constraint of 50% of hard
material. The final topology for each case is presented in fig. 4. The comparison between the
volume histories is shown in fig. 5.



FiGure 3. Example 1: initial guess.

(a) A=3.80 (b) A2 =10

(c) A2 =20 (d) X2 =30

FIGURE 4. Example 1: obtained topologies for the linear penalization (a) and
augmented Lagrangian (b)-(d).
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FIGURE 5. Example 1: volume fraction history.

The final topologies shown in Fig. 4 for different choice of parameter Ay are qualitatively very
close to the one obtained with linear penalization method for A = 3.80. The final topology is
characterized by a plate connecting the two opposite sides where the uniform bending moments
m are applied. Therefore, the proposed algorithm seems to be able in finding a possible global
minimum for this simple example.

5.2. Example 2. In this example we present a plate subjected to three uniform bending mo-
ments, m = 1 applied on a region of length 0.5 (middle) of the right edge and @ = —1 acting on
two regions of length 0.25 (top and bottom) of the left edge, as shown in fig. 6. We set A = 3.88,
corresponding to a volume constraint of 50% of hard material. The final topology for each case
is presented in fig. 7. The comparison between the volume histories is shown in fig. 8.

i

FIGURE 6. Example 2, initial guess.
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(d) A2 =30

FIGURE 7. Example 2: obtained topologies for the linear penalization (a) and
augmented Lagrangian (b)-(d).
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Ficure 8. Example 2: volume fraction history.

Once again, the final topologies for all parameters A9 are qualitatively similar to the result
obtained with the linear penalization method for A = 3.88, as can be seen in Fig. 7. Here, the
optimal topology is characterized by two plates connecting the parts of the boundary where the
uniform bending moments 7 are applied. The influence of the parameter Ao in the Augmented
Lagrangian method is manifested in the shape of the plates. Note that when the parameter Ao
increases, the plates have a more evident curved shape.

5.3. Example 3. In this next example we present a plate subjected to two pairs of uniform
bending moments m = 1 and @ = —1, as shown in fig. 9. The first pair is applied on two regions
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of length 0.20 of the top and bottom edges. The second pair is acting on two regions of length
0.20 of the left and right edges. We set A = 4.40, corresponding to a volume constraint of 50%
of hard material. The final topology for each case is presented in fig. 10(a). The comparison
between the volume histories is shown in fig. 11.

!

FiGURE 9. Example 3: initial guess.

m
—

(c) A2 =20 (d) X2 =30

FIGURE 10. Example 3: obtained topologies for the linear penalization (a) and
augmented Lagrangian (b)-(d).
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Ficure 11. Example 3: volume fraction history.

In this example, the optimal topologies change a little bit for all parameter Ao, if compared
with the resulting topology from the linear penalization method for A = 4.40, as shown in Fig.
10. However, the topologies obtained with the Augmented Lagrangian method are qualitatively
equivalent. We can note a small difference on the size and shape of the holes.

5.4. Example 4. In this last example the plate is clamped in two adjacent sides and a con-
centrated load @; = 1 is applied at the free corner, as illustrated in fig. 12. We set A = 2.00,
corresponding to a volume constraint of 50% of hard material. The obtained topologies are
presented in fig. 13(a). The comparison between the volume histories is shown in fig. 14.

Qi

@
FIGURE 12. Example 4: initial guess
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(a) A = 2.00

(c) A2 =20 (d) X2 =30

FIGURE 13. Example 4: obtained topologies for the linear penalization (a) and
augmented Lagrangian (b)-(d).
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FiGURE 14. Example 4: volume fraction history.

_ The optimal results are characterized by a L-shaped plate connecting the concentrated load
@, with the clamped boundary. Again, from a qualitative point of view, the final topologies are
very close to each other in all cases. Only small differences in the shape can be observed.

6. CONCLUSIONS

The topological derivative of the total potential energy associated to the Kirchhoff plate
bending problem, considering as singular perturbation the insertion of a small circular inclusion,
has been presented. We have formally performed the limit passages when the contrast v — 0 and
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v — 0. For v — 0, the inclusion leads to a void and the transmission condition on the boundary
of the inclusion degenerates to homogeneous Neumann boundary condition. In addition, for
v — o0, the elastic inclusion leads to a rigid one. The closed forms of the polarization tensors
are identified for both cases. Then, we have compared two methods of volume control in the
context of topological derivative-based structural optimization. The first one is done by means
of linear penalization. The second approach is based on the Augmented Lagrangian method. In
order to present the behavior of both approaches, we have considered the compliance topology
optimization of Kirchhoff plates subjected to volume constraint. The associated topological
sensitivity has been used in a structural design algorithm based on the topological derivative
and a level-set domain representation method. Some numerical experiments have been presented
allowing for a comparative analysis between the above two methods of volume control from a
qualitative point of view.

In all cases we have observed that the obtained optimal topologies are qualitatively similar.
It means that the results obtained with the Augmented Lagrangian method are not strongly
affected by the choice of the parameter Ao, if compared with the topologies obtained with the
linear penalization method for a specific choice of the parameter A. In fact, only small differences
in the shape were observed, which probably come out from a lack of sufficient optimality condi-
tions for the compliance topology optimization problem with volume constraint. Related to the
computational cost of the optimization procedure, in general the linear penalization method re-
quires less iterations than the Augmented Lagrangian method. However, the linear penalization
method does not provide direct control over the required volume fraction. In particular, to ac-
quire a desired volume fraction, the penalty parameter should be determined by hand after some
trials (increasing the global cost of the optimization procedure). In contrast, the Augmented
Lagrangian method allows to specify the final amount of material in the optimized structure
a priori. Therefore, this method seems to be more appropriated than the linear penalization
method for volume control in topology optimization design.

Finally, we remark that the low computational cost (small number of iterations needed) of the
optimization procedure is nothing but a natural consequence of the use of the topological deriv-
ative in defining a feasible descent direction for the cost functional, which is based on the exact
sensitivity with respect to a singular domain perturbation. In addition, the relative simplicity
of the proposed topology optimization algorithm should also be noted. It does not feature post-
processing procedures (such as filtering or relaxation) of any kind and only a minimal number
of user-defined algorithmic parameters are needed. This is in contrast with existing SIMP-based
structural optimization strategies and follows, again, as a natural consequence of the use of the
concept of topological derivative.
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