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Abstract. In this paper a new mathematically-founded method for the optimal partitioning of
domains, with applications to the classification of greyscale and color images, is proposed. Since
optimal partition problems are in general ill-posed, some regularization strategy is required. Here
we regularize by a non-standard approximation of the total interface length, which does not involve
the gradient of approximate characteristic functions, in contrast to the classical Modica-Mortola
approximation. Instead, it involves a system of uncoupled linear partial differential equations and
nevertheless shows Γ-convergence properties in appropriate function spaces. This approach leads
to an alternating algorithm that ensures a decrease of the objective function at each iteration, and

which always provides a partition, even during the iterations. The efficiency of this algorithm is
illustrated by various numerical examples. Among them we consider binary and multilabel minimal
partition problems including supervised or automatic image classification, inpainting, texture pattern
identification and deblurring.

1. Introduction

Image processing is a huge field of research ranging from code-based algorithms to advanced mathe-
matical tools, and where mainly two classes of problems are addressed. The first one is image restora-
tion whose aim is to remove all effects responsible for an image degradation: noise, blur, missing parts,
etc. Another family of problems can be referred to as image segmentation, where the constituents of a
given image (damaged or not) are identified: it can be different colors, intensities or texture regions.
Image classification is a particular form of image segmentation, where it is emphasized that the image
characteristics are sought within a prescribed number of components or phases, identified by labels.

The standard greyscale image processing problem can be stated as restore and/or segment f =
Aū + ν where f : Ω 7→ [0, 1] is the observed image, ū its idealized version (the undamaged image), A
is a known or unknown mask operator (blur kernel or a projection operator away from the missing
parts of ū), and ν is the noise. According to the application, one wishes to find a u which is either a
continuous restoration of ū or a segmented version of ū.

Image restoration and image segmentation are hard problems per se, mainly due to the fact that
the minimization problem minu∈H(Ω) J(u) := ‖Au − f‖H(Ω) is in general ill-posed (w.r.t. f if A is
known and also w.r.t. A if the mask is unknown) in the sense that small perturbations in the data
may produce unbounded variations in the solution, but also because it is not necessarily a convex
problem, especially when the set H(Ω) contains discrete levels. Of course, simultaneous segmentation
and restoration of a blurred and noisy image is even a harder task, in particular in the case of blind
deconvolution. Let us emphasize that an objective assessment of segmentation algorithms is hardly
found, essentially because there is no unique ground-truth classification of an image against which the
output of an algorithm may be compared.

Several mathematical models coexist in the literature to provide as output a restoration and/or a
segmentation of a given image. Let us just mention the Mumford-Shah [4, 32] and the TV-L2 (the
so-called Rudin-Osher-Fatemi model) and TV-L1 functionals [16, 35]. It is today widely recognized
[14, 15, 38] that in order to obtain a solution which is smooth enough while preserving the edges,
one should consider the problem minu∈H(Ω) J(u) + α|Du|(Ω) where |Du|(Ω) is the total variation of
u in Ω, with Du, its distributional derivative, i.e., a measure with a diffuse part identified with ∇u
outside the edges and a concentrated part on the edges, and with α a weight on the total variation
of the image. For specific purposes, some authors have proposed to replace the total variation by
anisotropic variants [22, 23, 25]. Segmentation problems, mainly in the bi-label case, can also be
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Figure 1. Color image classification, from left to right. First: original image (611×
471 pixels). Second: supervised solution for α = 5.10−4

√
n (n is the number of

pixels). Third and fourth: unsupervised solution for α = 5.10−4
√
n and α = 10−2

√
n,

respectively. TV-model with H = L1, A = I and 5 labels.

Figure 2. Greylevel image classification, from left to right. First: original picture
(390 × 390 pixels). Second: damaged image with salt and pepper noise. Third:
unsupervised solution for α = 4.10−4

√
n. TV-model with H = L1, A = I and 4 levels

of grey.

addressed by methods of moving interfaces, like level-sets [19, 26, 33] or snakes [3]. A totally different
(purely discrete) approach consists in viewing the image as a graph and segmentation as a minimal
cut problem [20, 36, 39].

In this paper we propose a novel mathematically-founded method for image classification purposes.
More precisely, our method assigns to each pixel of a given image a label, with a prescribed upper
bound on the number of labels. Typically, each label corresponds to a grey or color level. The
classification can be supervised, i.e., the intensity of grey or the color for each label is fixed, or
unsupervised, meaning that these values are automatically chosen by the algorithm (as done, e.g.,
in [17, 26]). In Fig. 1 the resulting classification of a color image is shown with and without level
updates, and where the effect of the parameter α is shown: a smaller value will provide a solution
with a greater perimeter, that is with more details. Let us emphasize that the value of α should be
specifically adapted for each kind of image to reconstruct. In particular a “large enough“ value of α
should be used for noisy images, in order to remove the spurious perimeter created by the noise. As
an example, an unsupervised greylevel simultaneous classification and denoising of a picture with our
method (and the TV-L1 model) is shown in Fig. 2. Later, we will also show examples of black and
white image deblurring with an assumed known blur kernel (as is the case in many applications, the
blur being due to diffraction, motion, zoom, of a measure apparatus etc.). We will also apply our
method to perform combined deblurring and denoising and to classify an image in terms of prescribed
textures.

Our method consists in a multiphase (piecewise constant) joint classification and restoration of an
image, as based on

• a gradient-free approximation of the total variation in the functional setting,
• an optimal partitioning algorithm.
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Here, we mean by functional setting the fact that we approximate the continuous total variation,
instead of its discretized counterpart on a chosen mesh. It is also meant that the approximating func-
tionals converge, as a small parameter ε tends to zero, in some variational sense (the Γ-convergence)
to the total variation. By gradient-free we mean that, as opposed to Modica-Mortola/Ambrosio-
Tortorelli-type regularizations [5, 28, 29, 30, 31, 34], the gradient of the image does not appear in the
approximating functionals. Hence, from a numerical point of view, our approach is better suited to
the reconstruction of discontinuous images. It has the other feature to force discrete prescribed values.
This is of course a major advantage as to the applications to optimal partition problems (see [9, 17]),
which are in some sense primary to classification problems and whose basic concepts are recalled
hereafter. Consider a bounded domain Ω of R2, a number N ∈ N, functions g1, ..., gN ∈ L1(Ω), and a
parameter α > 0. A prototype problem of minimal partition reads:

min
Ω1,...,ΩN

N
∑

i=1

[∫

Ωi

gi(x)dx +
α

2
Per(Ωi)

]

, (1.1)

where the minimum is searched among all partitions (Ω1, ...,ΩN) of Ω by subsets of finite perimeter.
Here, Per(Ωi) is the relative perimeter of Ωi in Ω, i.e., under regularity conditions, Per(Ωi) = |∂Ωi∩Ω|.
Hence we have

α

2

N
∑

i=1

Per(Ωi) = α
∑

i<j

|∂Ωi ∩ ∂Ωj |.

Optimal partition problems in imaging are known to be challenging. Other methods as found in
the literature are based on convexification, whose major difficulty is to construct an auxiliary cost
function which does not to depart too much from the convex envelope of the original one. In particular
these methods solve the optimal partition problem exactly only for two levels (see [17, 40]). Other
mathematical tools, such as topological asymptotic analysis [11], can be applied to address image
classification.

In essence, our method is not designed for the restoration of continuous images, but it applies
whenever a segmented restoration is sought, two examples of which are shown in Figs. 1 and 2. It is
a priori also not well-suited to process images with texture parts that must be finely identified, since
the optimal partitioning will rather identify homogeneous regions. Nevertheless it can be observed
that the segmented image of Fig. 2 features some fine characteristics, as e.g., the shade on Lena’s
hat and some residual texture on its feather tuft. We are aware that more efficient methods exist to
address these restoration problems, in particular if the image to restore shows sharp edges of connected
subregions [10, 12, 18].

Nonetheless, our method is adequate for all problems whose underlying mathematical structure is
related to optimal partition. In particular it is adapted to classify an image without sharp edges (a
pioneering reference on this subject is [19]), a simple example of which is shown in Fig. 10(b). Let us
remark that addressing denoising for this kind of images is in general cumbersome, since meaningful
portions of the image are completely disconnected without being considered as noise. Our method
shows particular good behavior in this case. Another example where our method is well suited is
the following. Assume that a detail of an image is occluded, i.e., is missing for some reason, and
that this detail shows a structure which cannot be recovered by, e.g., harmonic expansion [12]. Then,
an optimal partition formulation of the problem allows us to reconstruct the missing information, as
shown in Fig. 5 for the triple and quadruple-point examples.

The paper is organized as follows. The leading ideas are introduced in Section 2 in the context
of binary minimal partition. The method is then extended to the multilabel partitioning problem
in Section 3. The image classification problem is addressed in Sections 4 and 5 for greyscale and
color images, respectively. Section 6 deals with the classification of images based on the analysis of
anisotropic textures. The deblurring problem is discussed in Section 7.

2. Binary minimal partition

2.1. Motivation: binary image classification. We shall introduce our method on a simple ex-
ample of image processing which consists of binary image classification. Let us begin with some
definitions and notation. Let Ω be an open rectangle of R2. We define the set

E = L∞(Ω, {0, 1})
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of characteristic functions in Ω and the functional F : E → R ∪ {+∞} such that

F (u) =

{

1

2
|Du|(Ω) if u ∈ BV (Ω, {0, 1}),

+∞ otherwise.
(2.1)

We recall that the total variation of u ∈ L1(Ω) is defined as

|Du|(Ω) = sup{〈u, div ξ〉 : ξ ∈ C1
c (Ω), |ξ(x)| ≤ 1 ∀x ∈ Ω}, (2.2)

and u is said of bounded variation, denoted u ∈ BV (Ω), when |Du|(Ω) < ∞. Throughout we use the
notation

〈u, v〉 :=
∫

Ω

u v dx

for every pair of functions u, v having suitable regularity. If u is the characteristic function of E ⊂ Ω,
|Du|(Ω) is called the relative perimeter of E in Ω, and E is said of finite perimeter when u ∈ BV (Ω).
In this case it is shown that |Du|(Ω) = H1(∂ME ∩ Ω), where ∂ME is the measure theoretical (or
essential) boundary of E and H1 is the one-dimensional Hausdorff measure on R

2. We recall (see,
e.g., [4, 8]) that ∂ME is a subset of the topological boundary ∂E of E, defined by

∂ME =

{

x ∈ R
2 : lim sup

ρ→0

L2(B(x, ρ) ∩ E)

L2(B(x, ρ))
> 0 and lim sup

ρ→0

L2(B(x, ρ) \ E)

L2(B(x, ρ))
> 0

}

,

with L2 the Lebesgue measure on R
2. Moreover, E admits a generalized unit inner normal nE at

H1-almost every point x ∈ ∂ME, see again [4, 8].
The following calculus illustrates our method on a simple case. Let f ∈ L∞(Ω, [0, 1]) be a given

image and c1, c2 ∈ [0, 1] be two classes representing different intensities of grey. We want to approxi-
mate f by the piecewise constant image u c1 + (1− u) c2, with u ∈ E . Given p ∈ [1,+∞[, the binary
image classification problem is formulated as: find a minimizer for

I := min
u∈E

{

‖uc1 + (1− u)c2 − f‖pLp(Ω) + αF (u)
}

. (2.3)

Since u is a characteristic function, we have
∫

Ω

|uc1 + (1 − u)c2 − f |pdx =

∫

Ω

|u(c1 − f) + (1− u)(c2 − f)|pdx

=

∫

Ω

u|c1 − f |pdx+

∫

Ω

(1− u)|c2 − f |pdx.

We can then redefine I, up to an additive constant, as

I = min
u∈E

{I(u) := 〈u, g〉+ αF (u)} , (2.4)

with

g = |c1 − f |p − |c2 − f |p. (2.5)

More generally, we shall address the numerical solution of (2.4) for an arbitrary function g ∈ L1(Ω).
We refer to this problem as a binary minimal partition problem.

As already said, a number of specific methods provide satisfactory solutions to this problem, or
some of its variants. We have quoted level-sets [19, 26, 33], snakes [3] and graph cutting [20, 36, 39],
and we must also mention the convex reformulation of (2.4) given in Prop. 2.6 of [16], which can be
solved for instance by Chambolle’s algorithm [14]. The main advantage of our approach, as we will
see later, is its straightforward generalization to the multiphase case as well as to the presence of a
mask operator.

2.2. Approximation of the perimeter term. Let us define

Ẽ = L∞(Ω, [0, 1]),

the convex hull of E , and the function F̃ : Ẽ → R ∪ {+∞} such that

F̃ (u) =

{

F (u) if u ∈ E ,
+∞ otherwise.
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It is shown in [7] that a suitable approximation of F̃ is provided by the functional F̃ε defined as

F̃ε(u) = inf
v∈H1(Ω)

{

ε‖∇v‖2L2(Ω) +
1

ε

(

‖v‖2L2(Ω) + 〈u, 1− 2v〉
)

}

. (2.6)

The above minimization problem is easily solved, and we have the alternative expression

F̃ε(u) =
1

ε
〈1− Lεu, u〉, (2.7)

where Lεu is the (weak) solution of the boundary value problem with unknown v ∈ H1(Ω):
{

−ε2∆v + v = u in Ω,
∂nv = 0 on ∂Ω.

(2.8)

Note that, on choosing classically min(0, v) as test function in the variational formulation of (2.8),

then considering the function 1 − v as unknown, we obtain that Lεu ∈ Ẽ for all u ∈ Ẽ . Substituting
F̃ε for F̃ leads to the approximate minimization problem:

Iε = min
u∈Ẽ

{

Iε(u) := 〈u, g〉+ αF̃ε(u)
}

. (2.9)

2.3. Mathematical properties. We first recall some key properties of the functional F̃ε (Proposition
2.1 and Theorems 2.3, 2.4 and 2.5) proved in [7]. Nevertheless, the proof of Theorem 2.3 given in [7]
relies on a result from [37], and does not lend itself to the generalization we will need later. Therefore
we provide an original and well-adapted proof of Theorem 2.3. However, we point out that this proof
is valid only in dimension 2 for a rectangular domain Ω.

Let us start by defining the functional

Fε(u) = inf
v∈H1(Ω)

{

ε‖∇v‖2L2(Ω) +
1

ε
‖v − u‖2L2(Ω)

}

. (2.10)

It is straightforward to check that, for every u ∈ L2(Ω),

F̃ε(u) = Fε(u) +
1

ε
〈u, 1− u〉 . (2.11)

Proposition 2.1. The function F̃ε : Ẽ → R is continuous on Ẽ for the weak-∗ topology of L∞(Ω),
and it is the relaxation (i.e. the lower semi-continuous envelope) of the function

u ∈ Ẽ 7→
{

Fε(u) if u ∈ E ,
+∞ if u /∈ E . (2.12)

The notion of Γ-convergence (see, e.g., [8, 13, 21]) is a powerful tool of calculus of variations in

function spaces. Given a metrizable space (X, d) (in our case X = Ẽ endowed with the distance
induced by the L1 norm) one would like the maps

f 7→ inf
X
f and f 7→ argmin

X
f

to be sequentially continuous on the space of extended real-valued functions f : X → R ∪ {+∞}.
Throughout we will simply index sequences by ε, to actually represent any positive sequence of indices
(εk) such that limk→+∞ εk = 0.

Definition 2.2 (Γ-convergence). Let (fε) be a sequence of functions fε : X → R ∪ {+∞} and
f : X → R ∪ {+∞}. We say that fε Γ-converges to f if and only if, for all u ∈ X , the following two
conditions hold:

(1) for all sequences (uε) ∈ X such that d(uε, u) → 0 it holds f(u) ≤ lim inf
ε→0

fε(u
ε),

(2) there exists a sequence (ūε) ∈ X such that d(ūε, u) → 0 and f(u) ≥ lim sup
ε→0

fε(ū
ε).

Theorem 2.3 (Γ-convergence of the approximating functionals). As ε → 0, the functionals F̃ε

Γ−converge to F̃ in Ẽ, strongly in L1(Ω).

Theorem 2.4 (Equicoercivity). Let (uε) be a sequence of functions of Ẽ such that supε F̃ε(u
ε) < +∞.

There exists u ∈ E such that uε → u strongly in L1(Ω) for a subsequence.
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Theorem 2.5. Let uε be an approximate minimizer of (2.9), i.e.

Iε(uε) = 〈uε, g〉+ αF̃ε(u
ε) ≤ Iε + λε,

with uε ∈ Ẽ and lim
ε→0

λε = 0. Then we have

Iε(uε) → I.

Moreover, the sequence (uε) admits cluster points, and each of these cluster points is a minimizer of
(2.4).

For multilabel problems, we will need special recovery sequences in the lim sup inequality of the
Γ-convergence, which can be put together in order to form a partition of Ω. In fact, we will show a
pointwise convergence result (Theorem 2.8). To do so, we will establish two preliminary results. The
first one provides the Γ− lim inf inequality of the Γ-convergence, and has already been proved in [7]
using [37]. For completeness we propose here a new, self-contained, and much shorter proof.

Proposition 2.6. Let u ∈ Ẽ and (uε) be a sequence of Ẽ such that uε → u strongly in L1(Ω). Then
we have

lim inf
ε→0

F̃ε(u
ε) ≥ F̃ (u).

Proof. First, from (2.11), we have that

F̃ε(u
ε) ≥ 1

ε
〈uε, 1− uε〉.

Since 0 ≤ uε ≤ 1, we also have uε → u in L2(Ω), whereby lim infε→0 F̃ε(u
ε) = +∞ whenever u /∈ E .

We now assume that u ∈ E and that lim infε→0 F̃ε(u
ε) = ℓ < +∞. Up to extracting a (non-relabeled)

subsequence, we further assume that ℓ = limε→0 F̃ε(u
ε). Like in [7] we introduce the potentials

W (s, t) = t2 + s(1− 2t), W(t) = t2 +min(0, 1− 2t),

which clearly satisfy W (s, t) ≥ W(t) for all (s, t) ∈ [0, 1]× [0, 1] and W(1/2 − τ) = W(1/2 + τ) ≥ 0
for all τ ∈ R. Set vε = Lεu

ε. Then we have

F̃ε(u
ε) =

∫

Ω

[

ε|∇vε|2 + 1

ε
W (uε, vε)

]

dx ≥
∫

Ω

[

ε|∇vε|2 + 1

ε
W(vε)

]

dx.

The elementary Young inequality entails

F̃ε(u
ε) ≥ 2

∫

Ω

|∇vε|
√

W(vε)dx.

Let ψ : R → R be a function such that ψ′(t) =
√

W(t) for all t ∈ R, and set wε = ψ ◦ vε. We obtain
by the chain rule

F̃ε(u
ε) ≥ 2

∫

Ω

|∇wε|dx. (2.13)

Next, from

F̃ε(u
ε) ≥ Fε(u

ε) ≥ 1

ε
‖uε − vε‖2L2(Ω),

we infer that limε→0 ‖uε − vε‖L2(Ω) = 0. Obviously, the same limit holds for the L1 norm. It follows
that

‖vε − u‖L1(Ω) ≤ ‖vε − uε‖L1(Ω) + ‖uε − u‖L1(Ω) → 0.

Using that 0 ≤ W(t) ≤ 1/4 for all t ∈ [0, 1] we obtain that ψ is 1/2-Lipschitz on [0, 1], which implies
that wε → w := ψ ◦ u in L1(Ω). In view of (2.13), the lower semicontinuity of the total variation
yields that w ∈ BV (Ω) with

lim inf
ε→0

F̃ε(u
ε) ≥ 2|Dw|(Ω).

Yet, u ∈ E and w = ψ ◦ u entail w ∈ BV (Ω, {α, β}) with α = ψ(0) and β = ψ(1). In addition, as u
takes only 0− 1 values a.e. in Ω, we can write w = α+ (β − α)u and u = (w − α)/(β − α), whereby
u ∈ BV (Ω, {0, 1}). It also follows that Dw = (β−α)Du, hence |Dw|(Ω) = (β−α)|Du|(Ω). We finally
compute

β − α =

∫ 1

0

ψ′(t)dt =

∫ 1

0

√

W(t)dt = 2

∫ 1/2

0

tdt =
1

4
,
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which leads to

lim inf
ε→0

F̃ε(u
ε) ≥ 1

2
|Du|(Ω) = F̃ (u).

The proof is thus achieved. �

The following proposition gives a uniform upper bound for the functionals Fε.

Proposition 2.7. For all u ∈ BV (Ω, [0, 1]) and all ε > 0 we have

Fε(u) ≤
1

2
|Du|(Ω).

Proof. We proceed in two steps.
Step 1. Let us first assume that u ∈ Ẽ ∩H1(Ω). From (2.7) and (2.11) we obtain that

Fε(u) =
1

ε
〈u − vε, u〉, (2.14)

with vε = Lεu. The weak formulation of (2.8) gives the alternative expression

Fε(u) = ε

∫

Ω

∇vε.∇udx. (2.15)

Let ũ be the extension of u to the whole R2 obtained by performing successive reflections with respect
to the main axes. By uniqueness we have vε = Φε ∗ ũ, where Φε is the fundamental solution of the
operator −ε2∆+ I, i.e., the solution in the sense of distributions of

−ε2∆Φε +Φε = δ. (2.16)

A change of variable in (2.16) indicates that Φε(x) = ε−2Φ1(ε
−1x), whereby

∇vε(x) = (∇Φε ∗ ũ)(x) =
1

ε3

∫

R2

∇Φ1(
y

ε
)ũ(x− y)dy.

Then a change of variable in the above integral entails

ε∇vε(x) =
∫

R2

∇Φ1(z)ũ(x− εz)dz.

Let ν be an arbitrary unit vector of R2. Using that 0 ≤ ũ ≤ 1 we derive that

ε∇vε(x).ν =

∫

R2

(∇Φ1(z).ν) ũ(x− εz)dz ≤
∫

R2

max(0,∇Φ1(z).ν)dz =:Mν . (2.17)

We shall now compute this latter bound. The fundamental solution of the normalized screened Poisson
equation is known to be given by

Φ1(z) =
1

2π
K0(|z|),

where K0 is the modified Bessel function (see [1]) defined by

K0(r) =

∫ +∞

0

exp(−r cosh t)dt.

Using polar coordinates with ν as first basis vector, we arrive at

Mν =
1

2π

∫ +∞

0

[
∫ 2π

0

max(0,K ′
0(r) cos θ)rdθ

]

dr.

Yet, we have

K ′
0(r) = −

∫ +∞

0

exp(−r cosh t) cosh t dt ≤ 0,

hence

Mν =
1

2π

∫ +∞

0

[

∫ 3π
2

π
2

cos θdθ

]

K ′
0(r)rdr = − 1

π

∫ +∞

0

K ′
0(r)rdr.

Using that K0 has an exponential decay at +∞ and a logarithmic growth at 0, an integration by parts
yields

Mν =
1

π

∫ +∞

0

K0(r)dr =
1

π

∫ +∞

0

[∫ +∞

0

exp(−r cosh t)dt
]

dr.
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By Fubini’s theorem, the order of integration can be changed, which leads to

Mν =
1

π

∫ +∞

0

1

cosh t
dt =

1

2
,

this latter integral being easily computed by the change of variable s = et. Coming back to (2.17),
which holds true for any unit vector ν and a.e. x ∈ Ω, we infer

‖ε∇vε‖L∞(Ω) ≤
1

2
.

Finally, (2.15) yields

Fε(u) ≤
1

2
‖∇u‖L1(Ω) =

1

2
|Du|(Ω).

Step 2. We now consider an arbitrary function u ∈ BV (Ω, [0, 1]). By density of C∞(Ω) in BV (Ω)
for the intermediate convergence (see, e.g., [8] Theorem 10.1.2), there exists a sequence of functions
uk ∈ C∞(Ω) such that uk → u in L1(Ω) and |Duk|(Ω) → |Du|(Ω). Set ūk = P[0,1](uk), with
P[0,1](t) = max(0,min(1, t)) the projection onto [0, 1]. As P[0,1] is 1-Lipschitz we have ‖ūk−u‖L1(Ω) =

‖P[0,1](uk)− P[0,1](u)‖L1(Ω) ≤ ‖uk − u‖L1(Ω), and since uk ∈ H1(Ω) we also have

|Dūk|(Ω) =
∫

Ω

|∇ūk|dx =

∫

Ω

|∇uk|χ{0≤uk≤1}dx ≤
∫

Ω

|∇uk|dx = |Duk|(Ω).

As ūk ∈ Ẽ ∩H1(Ω), we get from step 1

Fε(ūk) ≤
1

2
|Dūk|(Ω) ≤

1

2
|Duk|(Ω). (2.18)

From the expression (2.14) and the continuity of Lε : L
2(Ω) → L2(Ω), it stems that Fε is continuous

in L2(Ω), thus also in L1(Ω, [0, 1]). Passing to the limit in (2.18) entails

Fε(u) ≤
1

2
|Du|(Ω),

and the proof is complete. �

We now arrive at the desired pointwise convergence result.

Theorem 2.8. For all u ∈ Ẽ it holds

lim
ε→0

F̃ε(u) = F̃ (u).

Proof. In view of Proposition 2.6 applied to the constant sequence uε = u, it suffices to prove that

lim sup
ε→0

F̃ε(u) ≤ F̃ (u). (2.19)

If u /∈ BV (Ω, {0, 1}), then (2.19) is obviously satisfied since F̃ (u) = +∞. If now u ∈ BV (Ω, {0, 1}),
then F̃ε(u) = Fε(u) for each ε > 0, thus (2.19) is a direct consequence of Proposition 2.7. �

Note that, as announced in the beginning of this section, Theorem 2.3 is immediately retrieved by
combining Proposition 2.6 and Theorem 2.8.

Finally, by the direct method of the calculus of variations, we straightforwardly prove the following
existence result (see [7] for details).

Proposition 2.9. The infima of I and Iε in (2.4) and (2.9) are finite and attained in BV (Ω, {0, 1})
and Ẽ, respectively.

2.4. Algorithm. Our algorithm is based on a continuation method, namely we construct a decreasing
sequence (εm) of positive numbers tending to zero, and, for each ε = εm, we find an approximate
minimizer of (2.9) using as initialization the solution obtained at iteration m− 1. In the sequel, the
subscript m will be dropped for simplicity.
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2.4.1. Description of the algorithm in the function space setting. Plugging (2.6) into (2.9), we obtain
that the subproblem at ε fixed consists is solving the following two-level minimization problem

Iε = min
u∈Ẽ

inf
v∈H1(Ω)

{

〈u, g〉+ α

[

ε‖∇v‖2L2(Ω) +
1

ε

(

‖v‖2L2(Ω) + 〈u, 1− 2v〉
)

]}

. (2.20)

The simple structure of this problem with respect to each variable u and v leads us to use an
alternating minimization algorithm. We refer to [2, 7] for efficient applications of such algorithms to
problems of similar form in topology optimization. The superscript k is used to designate variables
computed at iteration k. The iteration k, k ≥ 1, consists in the two steps described below.

(1) The minimization with respect to v is straightforward. It consists in solving the boundary
value problem

{

−ε2∆vk + vk = uk−1 in Ω,
∂nv

k = 0 on ∂Ω.
(2.21)

(2) The minimization with respect to u is a linear programming problem in a convex set. Therefore

a minimizer can always be found among the extreme points of Ẽ . More precisely here, we
have to minimize at each point x ∈ Ω the linear function

φ(s) = s g(x) +
α

ε
s(1− 2vk(x))

over s ∈ [0, 1]. Setting

ζk(x) = g(x) +
α

ε
(1− 2vk(x)) ,

a solution is immediately found as

uk(x) =

{

0 if ζk(x) ≥ 0,
1 otherwise.

In other terms, uk is the characteristic function of the level-set {ζk < 0}, denoted by

uk = χ{ζk<0}.

This algorithm ensures a decrease of the objective function at each iteration. Moreover, each cluster
point (in the weak-∗ topology for u and the H1 norm topology for v) is a stationary point. Of course,
as the coupled problem in (u, v) is not convex, local minimizers are theoretically not excluded. An
outstanding feature of this algorithm is that uk is always a characteristic function during the iterations.

2.4.2. Discrete version. For solving the boundary value problem (2.8) we use finite elements on a
Cartesian mesh with Q1 shape functions. The mesh nodes coincide with the image pixels, and without
any loss of generality, the mesh size is fixed to 1. The discrete counterparts of the variables u and v
are therefore vectors of Rn where n is the number of pixels. Denoting by K and M the stiffness and
mass matrices for the (negative) Laplacian, the discrete problem reads

I = min
u∈Rn

min
v∈Rn

{

Mu · g + α

[

εKv · v + 1

ε
(Mv · v +Mu · (1− 2v))

]}

.

In the above expression, the dot stands for the standard dot product of Rn, and 1 = (1, ..., 1)T .
In this framework the two steps of the algorithm consist of solving the linear system

(ε2K +M)vk = uk−1, (2.22)

and setting

ζk =M
(

g +
α

ε
(1− 2vk)

)

, (2.23)

uk = χ{ζk<0}. (2.24)

This algorithm enjoys the same monotonicity and convergence properties as its infinite-dimensional
counterpart. The stopping criterion we choose corresponds to a relative variation of the vector u (in
squared ℓ2 norm) between two successive iterations smaller than some threshold, fixed to 10−5.

The linear system (2.22) is solved in an efficient way with the help of the fast Fourier transform
(FFT), according to the following procedure. First, symmetries of the image u are performed in both

axial directions, in such a way that we consider a domain Ω̂ with double width and height. Then
periodicity conditions are assumed on the boundary of Ω̂, which is a convenient way of implement-
ing Neumann boundary conditions. In this framework, the matrix products Kv and Mv represent
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Figure 3. Left: original black and white noisy image (320 × 320 pixels). From left
to right: obtained solutions for α = 2.10−4

√
n (incomplete denoising), α = 2.10−3

√
n

(optimal perimeter weight), α = 9.10−3
√
n (excessive perimeter weight), respectively.

Figure 4. From left to right: original image (320×480 pixels), initialization (ε = ∞),
and obtained solutions for ε = εmax/16 and ε = εmin, respectively (with α =
9.10−3

√
n).

bidimensional discrete convolutions, which are easily transferred to the Fourier domain. The Fourier
transform of v is thus obtained, and v itself is retrieved by inverse FFT.

2.4.3. Update of ε. The parameter ε has the dimension of a length. In fact, in view of (2.21), it is a
characteristic width of the diffuse interface represented by the slow variable v. Thus we start with a
characteristic size of Ω, namely ε0 = εmax =

√
n. Then we divide ε by two at each iteration of an

outer loop, that is, we choose εm = εmax/2
m. In order to approximate (2.21) properly, ε must not be

taken significantly smaller than the grid size. Thus we stop the algorithm as soon as εm ≤ εmin = 0.1.
In fact, numerical tests show that almost no more evolution occurs when ε goes below this value.

2.4.4. Initialization. The initialization of u is performed by the expressions (2.23)-(2.24) with ε →
+∞, that is, we set

ζ0 =Mg, u0 = χ{ζ0<0}.

2.5. Numerical examples. In Figure 3, we present an example of binary image classification using
the above procedure. The function g is defined by (2.5) with the two levels c1 and c2 corresponding
to black and white. Since this particular example aims at denoising, p = 1 is chosen in (2.3)-(2.5).

In Figure 4, we present another example, also with black and white levels and L1 norm. Intermediate
iterations are displayed.

3. Multilabel minimal partition

In this section we extend the previous approach to the multilabel problem. We define the set

EN =

{

(u1, ..., uN) ∈ EN ,

N
∑

i=1

ui = 1

}

.

This is the set of N -tuples of characteristic functions (u1, ..., uN) = (χΩ1
, ..., χΩN

), where (Ω1, ...,ΩN )
form a partition of Ω. Given functions g1, ..., gN ∈ L1(Ω), the minimal partition problem (1.1) reads

I := min
(u1,...,uN)∈EN

{

I(u) :=
N
∑

i=1

〈ui, gi〉+ αF (ui)

}

. (3.1)
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In the same way as in Section 2, this problem is approximated by

Iε := min
(u1,...,uN)∈ẼN

{

Iε(u) :=
N
∑

i=1

〈ui, gi〉+ αF̃ε(ui)

}

(3.2)

with

ẼN =

{

(u1, ..., uN) ∈ ẼN ,

N
∑

i=1

ui = 1

}

.

The following result is an extension of its binary counterpart presented in Section 2, namely Theorem
2.5.

Theorem 3.1. Let uε = (uεi )1≤i≤N be an approximate minimizer of (3.2), i.e.,

Iε(uε) =
N
∑

i=1

〈uεi , gi〉+ αF̃ε(u
ε
i ) ≤ Iε + λε,

with uεi ∈ ẼN and limε→0 λε = 0. Then we have

Iε(uε) → I.

Moreover, the sequence (uε) admits cluster points, and each of these cluster points is a minimizer of
(3.1).

Proof. As usual for this kind of results, the proof relies on the Γ-convergence of the functionals

u ∈ ẼN 7→ ∑N
i=1 F̃ε(ui) along with the compactness of the sequences of approximate minimizers (see,

e.g., Theorem 12.1.1 of [8]). The lim inf inequality of the Γ-convergence immediately passes to the

sum. As to the lim sup inequality, one has to construct a recovery sequence which belongs to ẼN ,
which is not automatically achieved by gathering independent recovery sequences for each variable
ui. However, the pointwise convergence result of Theorem 2.8 shows that the constant sequence is a
trivial recovery sequence.

From this latter property, there exists ūε ∈ ẼN such that ūε → (0, ..., 0, 1) in L1(Ω)N and
∑N

i=1 F̃ε(ū
ε
i ) → 0. Let (uε) be a sequence of approximate minimizers of (3.2). Using

N
∑

i=1

[

〈uεi , gi〉+ αF̃ε(u
ε
i )
]

≤
N
∑

i=1

[

〈ūεi , gi〉+ αF̃ε(ū
ε
i )
]

+ λε

we derive that F̃ε(u
ε
i ) is uniformly bounded for every i. The equicoercivity property of Theorem

2.4 implies that, for a subsequence, uεi → ui ∈ E in L1(Ω) for each i. As uε ∈ ẼN we infer that
u = (u1, ..., uN ) ∈ EN . �

3.1. Algorithm. For ε fixed we have to solve the approximate problem

Iε = min
(u1,...,uN)∈ẼN

inf
(v1,...,vN)∈H1(Ω)N

N
∑

i=1

{

〈ui, gi〉+ α

[

ε‖∇vi‖2L2(Ω) +
1

ε

(

‖vi‖2L2(Ω) + 〈ui, 1− 2vi〉
)

]}

.

We use again an alternating minimization algorithm with respect to the two N -tuples of variables
(u1, ..., uN ) and (v1, ..., vN ). The superscript k is again used to designate these vectors at iteration k.

(1) The minimization with respect to (v1, ..., vN ) consists in solving the N boundary value prob-
lems

{

−ε2∆vki + vki = uk−1
i in Ω,

∂nv
k
i = 0 on ∂Ω.

(3.3)

(2) The minimization with respect to (u1, ..., uN) is a linear programming problem. Minimizers

can be found by exploring the vertices of the polyhedron ẼN , that is, EN . The practical
procedure is the following. Set

ζki = gi +
α

ε
(1− 2vki ).

At each point x ∈ Ω we find an index i(x) such that

ζki(x)(x) = min{ζk1 (x), ..., ζkN (x)}. (3.4)
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We then set

uki (x) =

{

1 if i = i(x)
0 otherwise.

The discrete counterpart is easily obtained in the same fashion as in the binary case. Again, an
outstanding feature of this algorithm is that the functions uk1 , ..., u

k
N are always characteristic functions

of a partition of Ω.

3.2. Numerical validation. The three examples of Fig. 5 are taken from and compared to [17]. Let
E0, E1, ..., EN be a given partition of Ω. We define gi, i = 1, ..., N , by

gi =
∑

0≤j≤N
j 6=i

χEj
= 1− χEi

.

This means that, in the set Ei, i ≥ 1, the label i is favored, whereas in the set E0 there is no preference,
or, said otherwise, no information on which label to choose. From this point of view the problem is
related to the wide field of image inpainting, see e.g. [22] and the references therein. In the subsequent
examples the domain Ω is the unit square with a 400× 400 discretization and we choose α = 0.1

√
n.

3.2.1. Example with 3 labels. The partition is as shown in Fig. 5(a) (left). The set E0 is the black
disc, while each Ei, i = 1, 2, 3, is assigned to a specific color, namely red, green and blue, respectively.
We retrieve the triple junction, which is known to be the theoretical solution [17].

3.2.2. Examples with 4 labels. We consider now the partitions of Fig. 5(b) and 5(c), with E0 the
black disc and 4 other subsets. In these cases, the solution is not unique, and the algorithm chooses
a particular one. This choice stems from the selection of a particular minimizer in (3.4). This is in
contrast with the results obtained in [17] which, due to the convexification method employed, are
mixtures of minimizers.

4. Multilabel image classification

4.1. Formulation as a minimal partition problem. We come back to the classification problem
presented in Section 2.1, but this time with N grey levels c1, ..., cN ∈ [0, 1]. We are given an image
f ∈ L∞(Ω, [0, 1]), and consider the piecewise constant image

w =

N
∑

i=1

uici,

where each ui is the characteristic function of a subset Ωi of Ω such that (Ω1, ...,ΩN ) forms a partition
of Ω. We have for any Lp norm on Ω:

‖w − f‖pLp(Ω) =

∥

∥

∥

∥

∥

N
∑

i=1

uici − f

∥

∥

∥

∥

∥

p

Lp(Ω)

=

∥

∥

∥

∥

∥

N
∑

i=1

ui(ci − f)

∥

∥

∥

∥

∥

p

Lp(Ω)

=
N
∑

i=1

∫

Ω

ui|ci − f |pdx.

The difference between the piecewise constant and original images is measured by:

‖w − f‖pLp(Ω) =

N
∑

i=1

〈ui, gi〉, gi = |ci − f |p.

When the levels ci are fixed, we can directly apply the algorithm of Section 3.1.

4.2. Update of levels. However, it is often desirable to determine the grey levels within the classes
automatically. Thus, we include a third step in the alternating minimization algorithm, consisting of
solving

min
(c1,...,cN)∈[0,1]N

N
∑

i=1

〈ui, gi〉 =
N
∑

i=1

∫

Ω

ui|ci − f |pdx.

This problem is separable in its variables c1, ..., cN , and each ci must satisfy

ci ∈ argmin
c∈[0,1]

∫

Ω

ui|c− f |pdx.

Note that, since 0 ≤ f ≤ 1, the constraint 0 ≤ c ≤ 1 can be removed. We distinguish between the two
cases of practical interest, namely p = 2 and p = 1.
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(a)

(b)

(c)

Figure 5. 5(a) Triple point: given partition (left), obtained solution with our algo-
rithm (middle), and solution from [17] (right); 5(b) and 5(c) Two quadruple points:
given partition (left), obtained solution with our algorithm (middle), and solution
from [17] (right).

• p = 2. This is a standard problem which results in computing the arithmetic mean

ci =

∫

Ω uifdx
∫

Ω
uidx

.

• p = 1. Minimizing a sum of L1 distances classically amounts to computing a median, but here,
due to the weights ui this is a little more involved. Details of the procedure in the discrete
setting are given in Appendix A. Note that there may be several solutions. In this case we
take the half-sum of the extreme points of the minimizing set.

For the initialization, the levels are equidistributed in [0, 1], i.e., we choose

c0i =
i− 1

N − 1
.

4.3. Examples. We begin with two synthetic examples taken from [28], for comparison. In [28]
the authors consider a multiphase ”sine-sinc“ extension of the classical Modica-Mortola perimeter
approximation applied to the same TV − L2 model as ours. Therefore we choose p = 2. The
example depicted in Fig. 6 is a 3 label classification of a noisy image, and Fig. 7 shows a 5 label

classification. In each case we have represented the ”reconstructed“ image
∑N

i=1 uici but, of course,
our algorithm provides the N characteristic functions u1, ..., uN . However the fact that the u′is are
indeed characteristic functions is clearly visible in the images, in contrast to [28].

Examples with the L1 norm are shown in Figs. 8-10. In Fig. 8, an example of denoising with 3
labels is shown. In Fig. 9, the classification of the swan picture is shown with 2 and 3 labels. This
result is to be compared with Fig. 4. We have chosen a smaller value of α to take into account the
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Figure 6. Greylevel image denoising with L2 norm: original image (left, 100× 100
pixels), solution with 3 labels and α = 10−3√n (middle), solution taken from [28]
(right).

Figure 7. Greylevel image denoising with L2 norm: original image (left, 240× 240
pixels), solution with 5 labels and α = 10−3√n (middle), solution taken from [28]
(right).

Figure 8. Greylevel image denoising with L1 norm: original image (left), noisy
image (middle), obtained solution with 3 labels and α = 5.10−3

√
n (right).

Figure 9. From left to right: original image (320×480 pixels) and obtained solutions
with 2 and 3 labels, respectively (L1 norm, α = 5.10−3

√
n).

decrease of the fidelity term due to the update of levels. In Fig. 10 two examples with disconnected
geometric elements are featured.
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(a)

(b)

Figure 10. 10(a) Image classification with 2 labels and L1 norm: original image (left,
512 × 512 pixels), obtained images for α = 2.10−3√n (middle) and α = 5.10−3√n
(right); 10(b) Image classification with L1 norm, α = 5.10−3

√
n: original image (left,

600× 600 pixels), obtained images with 2 labels (middle) and with 3 labels (right).

5. Multilabel classification of color images

The original image f is represented by the three channels (f1, f2, f3) ∈ L∞(Ω, [0, 1])3 representing
the intensity of red, green and blue, respectively. Each phase Ωi is associated to a color (ci1, ci2, ci3) ∈
[0, 1]3 in the same RGB system. The reconstructed image w = (w1, w2, w3) is given by

wj =

N
∑

i=1

uicij ,

where ui is the characteristic function of Ωi. We have for each channel

‖wj − fj‖pLp =

∥

∥

∥

∥

∥

N
∑

i=1

uicij − fj

∥

∥

∥

∥

∥

p

Lp

=

∥

∥

∥

∥

∥

N
∑

i=1

ui(cij − fj)

∥

∥

∥

∥

∥

p

Lp

=
N
∑

i=1

∫

Ω

ui|cij − fj|p.

The difference between the segmented and original images is measured by

3
∑

j=1

‖wj − fj‖pLp =
N
∑

i=1

〈ui, gi〉, gi =
3

∑

j=1

|cij − fj |p.

We then apply the same algorithm as in Section 4. Note that the geometrical variable u = (u1, ..., uN)
as well as the auxiliary variable v = (v1, ..., vN ) remain N -dimensional vectors, and the update of
levels is separable in the channels.

The first example (see Figure 11) is a two-label problem, initialized with a pure black phase and a
pure white phase.

In the second example (see Figure 12), we first choose 2 labels, then 5 labels. In this latter case,
the phases are initialized by the pure colors black, red, green, blue and white. We observe that only
4 labels remain at convergence, which is an effect of the perimeter penalization.

In the third example (see Figure 13), we choose again 5 labels. Results obtained with different
values of α are depicted.

6. Anisotropy-based image classification

We come back to a greyscale image f ∈ L∞(Ω, [0, 1]). We are given N vectors ξ1, ..., ξN ∈ S2,
where S2 is the unit sphere of R2. In order to detect fluctuations oriented along the direction ξi, we
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Figure 11. Unsupervised color image classification with 2 labels and L1 norm, α =
5.10−3

√
n: original image (left, 327× 500 pixels), obtained image (right).

Figure 12. Unsupervised color image classification with L1 norm, α = 5.10−3
√
n:

original image (left, 231×221 pixels), obtained image with 2 labels (middle), obtained
image with 5 labels (right).

Figure 13. Unsupervised color image classification with L1 norm and 5 labels, from
left to right: original image (320×584 pixels) and obtained images for α = 5.10−3

√
n,

α = 10−2√n, α = 2.10−2√n.

first regularize f by solving
{

−∆φ+ φ = f in Ω,
∂nφ = 0 on ∂Ω,

(6.1)

then we set

gi = −(∇φ.ξi)2. (6.2)

In practice, (6.1) is solved by finite elements, in the same way as described in Section 2.4.2. Then
(6.2) is computed at each node using a discrete gradient based on finite differences. We point out that
the function gi can be interpreted as the topological sensitivity of the energy functional

1

2
‖∇φ‖2L2(Ω) +

1

2
‖φ− f‖2L2(Ω)

with respect to the creation of an insulating crack normal to ξi, see [6] and [12] for various applications
of this concept in image processing.

We then apply the multilabel minimal partition algorithm of Section 3 with the obtained functions
(g1, ..., gN ).

In Figure 14(a) we show an example with 2 labels. We want to detect vertical and horizontal
fluctuations, therefore we choose the vectors (ξ1, ξ2) as

ξ1 = (1, 0)T , ξ2 = (0, 1)T .

In Figure 14(b) we show an example with 4 labels, where the vectors ξi are given by

ξ1 = (1, 0)T , ξ2 =

√
2

2
(1, 1)T , ξ3 = (0, 1)T , ξ4 =

√
2

2
(−1, 1)T .
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(a) (b)

Figure 14. (a) Anisotropy-based image classification with 2 labels: original image
(left, 951× 1000 pixels), obtained partition for α = 10−5

√
n (right); (b) Anisotropy-

based image classification with 4 labels: original image (left, 512 × 512 pixels), ob-
tained partition for α = 10−6√n (right).

7. Image deblurring

In this section we apply a variant of our minimal partition model for binary image deconvolution.
The blurring kernel is represented by a linear and continuous operator A : L2(Ω) → L2(Ω) such that
A1 = 1. The given blurred (greyscale) image is f ∈ L∞(Ω, [0, 1]), and the reconstructed image is
w = c1u+ c2(1− u), with u ∈ E and 0 ≤ c1 < c2 ≤ 1. We have

Aw = c1Au+ c2A(1− u) = (c1 − c2)Au + c2,

and the deblurring problem reads

I := min
u∈E

{I(u) = Φ(u) + αF (u)} (7.1)

with Φ : L2(Ω) → L2(Ω) defined by

Φ(u) = ‖(c1 − c2)Au + c2 − f‖2L2(Ω).

In our model the blurring kernelA is assumed to be known, which occurs in some practical applications,
like when the blur is generated by an optical device. Algorithms for blind deconvolution can be found
in [22, 24], using the Modica-Mortola functional or wavelet-based extensions.

In our case we approximate (7.1) by

Iε = min
u∈Ẽ

{

Iε(u) = Φ(u) + αF̃ε(u)
}

, (7.2)

and use the same continuation procedure with respect to ε as before. Using that the function Φ
is at the same time continuous on Ẽ endowed with the L1 norm topology and, by convexity, lower
semi-continuous on Ẽ endowed with the weak-∗ topology of L∞(Ω), analogues to Theorem 2.5 and
Proposition 2.9 can be straightforwardly derived, see [7] for full justifications. If A is compact, which
happens whenever A is the convolution by a smoothing kernel, then the extension of the function
Φ : E → R to Ẽ can be argued by the following Proposition.

Proposition 7.1. If A : L2(Ω) → L2(Ω) is compact, then Φ is continuous on Ẽ endowed with the
weak-∗ topology of L∞(Ω), and it is the relaxation of the function

u ∈ Ẽ 7→
{

Φ(u) if u ∈ E ,
+∞ if u /∈ E .

Proof. The weak continuity is a direct consequence of the compactness of A. To obtain the relaxation
result, it suffices (see e.g. Proposition 11.11 of [8]) to prove that for any u ∈ Ẽ there exists a
sequence (un) ∈ E such that un ⇀ u and Φ(u) ≥ lim supn→+∞ Φ(un). The existence of a sequence of
characteristic functions such that un ⇀ u is obtained by a standard construction, see e.g. Proposition
7.2.14 of [27], while the second assertion stems from the weak continuity of Φ. �

For solving (7.2) at ε fixed, applying directly an alternating algorithm based on the formulation
(2.6) would not be well-suited since the minimization with respect to u would be in itself a difficult
problem. We could use instead a projected gradient algorithm, however, this would require a line
search at every iteration. In fact, an efficient alternating algorithm can still be used thanks to the
following lemma.
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Lemma 7.2. Let X be a Hilbert space and Φ : X → R be a differentiable function such that ∇Φ is
λ-Lipschitz. We have for all u ∈ X:

Φ(u) = inf
û∈X

Φ(û) + 〈∇Φ(û), u− û〉+ λ

2
‖u− û‖2.

Proof. On choosing û = u, we immediately get that

inf
û∈X

Φ(û) + 〈∇Φ(û), u− û〉+ λ

2
‖u− û‖2 ≤ Φ(u).

The reverse inequality stems from

Φ(u)− Φ(û) =

∫ 1

0

〈∇Φ(û+ t(u − û)), u − û〉dt

= 〈∇Φ(û), u− û〉+
∫ 1

0

〈∇Φ(û + t(u− û))−∇Φ(û), u− û〉dt

≤ 〈∇Φ(û), u− û〉+ λ

2
‖u− û‖2,

and the proof is complete. �

From Lemma 7.2 and (2.6), (7.2) becomes:

Iε = min
u∈Ẽ

inf
û∈L2(Ω)

inf
v∈H1(Ω)

Φ(û) + 〈∇Φ(û), u− û〉+ λ

2
‖u− û‖2L2(Ω)

+ α

{

ε‖∇v‖2L2(Ω) +
1

ε

(

‖v‖2L2(Ω) + 〈u, 1− 2v〉
)

}

. (7.3)

We use an alternating minimization algorithm with respect to the three variables u, û, v. The mini-
mization with respect to v amounts to solving (2.21). The minimization with respect to û is simply
achieved by setting ûk = uk−1. The minimization with respect to u is spatially uncoupled. A short
calculation gives

uk(x) = P[0,1]

(

ûk(x)− 1

λ

(

∇Φ(ûk)(x) +
α

ε
(1− 2vk)

)

)

,

with

P[0,1](ϕ) = max(0,min(1, ϕ)).

Here we have

∇Φ(u) = 2(c1 − c2)A
∗[(c1 − c2)Au + c2 − f ],

with A∗ the adjoint operator of A, hence we can choose any λ ≥ 2(c1 − c2)
2‖A∗A‖.

In our experiments we take the operator A = Aq
0, where A0 is the discrete convolution operator by

the kernel

κ =





0 a 0
a 1− 4a a
0 a 0



 , a = 0.15.

We recall that the unknown u is symmetrized and periodized, hence the convolution is performed
without boundary effect. In addition, the computation of the product Au = Aq

0u is efficiently per-
formed through the FFT, without actually computing and storing the matrix of the operator A. We
have that ‖A‖ = 1, therefore we choose λ = 2(c1 − c2)

2. Assuming that c1 ≤ f ≤ c2, the initialization
is done by u = (f − c1)/(c2 − c1). The stopping criterion for the minimization of (7.3) is a threshold
on the squared relative variation of u fixed to 10−6.

In Figure 15, f is of the form P[0,1] (A(u
∗c1 + (1 − u∗)c2 + ν)), with u∗ a characteristic function

and ν a random noise. The grey levels are black and white.
The example featured in Fig. 16 also shows that though the underlying minimal partition algorithm

is intended for the classification of plane regions, the proposed method also permits to restore a blurred
and noisy text. In order to retrieve the fine details of the text, it is necessary to choose the penalization
coefficient α quite small, hence it is difficult to accommodate with a high level of noise. In Fig. 16(b),
a better result is obtained when the decrease of ε is stopped before reaching the value εmin, although
for this value the obtained image is not binary.
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Figure 15. Deblurring and denoising: original image (left, 257× 257 pixels), dam-
aged image with blur and noise effects (middle), reconstructed image for α =
2.10−4

√
n (right).

(a)

(b)

Figure 16. Deblurring of the text ”w ∈ Ξ”. 16(a) Original image (left, 245 × 600
pixels), blurred image (middle), reconstructed image for α = 2.10−5

√
n (right). 16(b)

blurred image with noise (left), its restoration with α = 2.10−5
√
n for ε = 1.99

(middle) and for ε = εmin (right).

8. Concluding remarks

Whereas the computer vision community is very active in developing powerful algorithms, few of
these approaches are theoretically justified. In this paper we propose a mathematically sound method
to perform optimal partitions and apply it to image restoration and classification of greyscale and
color images. Let us emphasize that the proposed continuation approach approximates the continuous
total variation and not its discretized version. This is achieved through the solving of linear partial
differential equations with constant coefficients, which is performed by finite elements and fast Fourier
transforms. This task is from far the dominant part of the computational effort of our algorithms. Its
implementation could certainly be further improved, but code optimization was not the aim of this
work.

We consider the present paper as a first step of an ongoing work where an image partition algorithm
and a gradient-free approximation of the perimeter is proposed to address piecewise constant image
restoration and/or classification. In particular, we have applied our algorithm to denoising, deblurring
and supervised texture identification problems, as well as for inpainting. Future extensions of the
method could be multilabel deblurring and unsupervised texture identification.

Appendix A. Weighted median

Let (x1, ..., xn) ∈ R
n, (α1, ..., αn) ∈ R

n be given. We assume that the xi’s are numbered in
increasing order. We want to minimize

V (x) =

n
∑

i=1

αi|x− xi|.
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This function is clearly convex and affine on each interval [xi, xi+1]. Therefore, the minimizing set is
an interval of the form [xl, xr], 1 ≤ l ≤ r ≤ n. The subdifferential of V at the point xj is

∂V (xj) =
∑

i<j

αi −
∑

i>j

αi + αj [−1, 1].

Then xj is a minimizer of V if and only if 0 ∈ ∂V (xj), i.e.

−αj ≤
∑

i<j

αi −
∑

i>j

αi ≤ αj . (A.1)

We obtain xl and xr by checking for each xj if it satisfies (A.1).
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[Mathematics & Applications].
[28] Y. M. Jung, S. H. Kang, and J. Shen. Multiphase image segmentation via Modica-Mortola phase transition. SIAM

J. Appl. Math., 67(5):1213–1232, 2007.
[29] R. V. Kohn and P. Sternberg. Local minimisers and singular perturbations. Proc. Roy. Soc. Edinburgh Sect. A,

111(1-2):69–84, 1989.
[30] L. Modica. The gradient theory of phase transitions and the minimal interface criterion. Arch. Rational Mech.

Anal., 98(2):123–142, 1987.
[31] L. Modica and S. Mortola. Un esempio di Γ−-convergenza. Boll. Un. Mat. Ital. B (5), 14(1):285–299, 1977.
[32] D. Mumford and J. Shah. Optimal approximations by piecewise smooth functions and associated variational prob-

lems. Commun. Pure Appl. Math., 42(5):577–685, 1989.
[33] S. Osher and J. A. Sethian. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-

Jacobi formulations. J. Comput. Phys., 79(1):12–49, 1988.
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(A. A. Novotny) Laboratório Nacional de Computação Cient́ıfica LNCC/MCT, Coordenação de Matemática
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