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Abstract. The inverse potential problem consists in reconstructing an unknown measure with
support in a geometrical domain from a single boundary measurement. In order to deal with
this severely ill-posed inverse problem, we rewrite it as an optimization problem where a Kohn-
Vogelius-type functional measuring the misfit between the solutions of two auxiliary problems
is minimized. One auxiliary problem contains information on the boundary measurement while
the other one corresponds to the boundary excitation. The solutions of the auxiliary problems
coincide once the inverse problem is solved. In order to minimize the Kohn-Vogelius criterion,
its total variation with respect to a set of ball-shaped perturbations on the measure is explicitly
evaluated. Then, a new method for solving the inverse potential problem based on the expres-
sion obtained is devised. Finally, some numerical results are presented in order to show the
effectiveness of the devised reconstruction algorithm.

1. Introduction

The inverse potential problem consists in reconstructing an unknown measure with support
in a domain Ω from a single measurement of its potential on the boundary ∂Ω. This problem
has important applications such as gravimetry, where the goal is to determine Earth’s density
distribution from the measurement of the gravity and its derivatives on the surface of the Earth.

The inverse potential problem is notoriously ill-posed. The notion of well-posedness due to
Hadamard requires the existence and uniqueness of a solution and the continuity of the inverse
mapping. In the inverse potential problem, uniqueness and continuity of the inverse mapping
are not at hand, the latter being responsible for the instability of the reconstruction process.
Additional practical issues such as partial measurement render the inverse problem even more
difficult.

To deal with the problem of uniqueness, a priori assumptions on the class of measures to be
reconstructed can be made. This question has been thoroughly studied from a theoretical point
of view by Isakov [15]. He exhibits several classes of densities such that the reconstruction process
admits a unique solution. For instance, one can show the uniqueness of the reconstruction when
the intensity is fixed and the support of the density is star-shaped with respect to its barycenter.

Even with such assumptions the stability of the reconstruction is an issue, in particular in the
presence of noise which is commonplace in practice. A standard approach to deal with inverse
problems consists in introducing a regularization of the inverse operator. Many choices for the
regularization are available which may dramatically affect the reconstruction. A typical example
is the Tikhonov regularization based on the L2-norm of the unknown, which has a strong smooth-
ing effect. These methods are easy to handle but tend to provide a smooth solution, which is not
suited to reconstruct piecewise smooth structures. However, such piecewise smooth structures
are very often encountered in practice as in geology and imaging for instance, and a different
approach is then necessary. A possible approach is to use a total variation (TV) regularization,
which corresponds to the L1-norm of the gradient for continuously differentiable functions. This
approach has been successfully employed for many inverse problems to reconstruct piecewise
smooth structures, including the problem of gravimetry [7].

A more direct approach consists in looking for the geometry of the support of the density,
assuming the intensity is known, which is a reasonable assumption for many applications. This
yields a shape/topology optimization problem in the sense that we are looking for an unknown
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set/interface/topology inside Ω: the support of the density. This approach has been successfully
used for inverse problems; see [1, 4, 8, 9, 11, 2, 10, 12, 13, 14, 19]. In the context of gravimetry,
this approach has been employed using a level-set method to represent the domains [17, 21].
The successful application of the so-called topological derivative [20] for solving a class of inverse
problems should also be noted. The topological derivative can be used either as a standalone
tool to accurately and quickly detect a density with a small support, even with several connected
components, or as an initialization for a level-set method such as in [17, 21].

In our paper the inverse problem is reformulated as an optimization problem, where the sup-
port of the measure is the unknown variable. The topology optimization problem consists in
minimizing the so-called Kohn-Vogelius functional [18], which measures the misfit between the
solutions of two auxiliary problems. One auxiliary problem contains information on the bound-
ary measurement while the other one corresponds to the boundary excitation. The solutions of
the auxiliary problems coincide once the inverse problem is solved. The total variation of the
Kohn-Vogelius criterion, with respect to a set of ball-shaped perturbations on the measure, is
then explicitly evaluated. From the expansion obtained, a new method for solving the inverse
potential problem is proposed. We note that in the present topology optimization approach
there is no regularization term in the functional to be minimized. Regularization instead comes
from the class of trial functions used for the minimization process.

The paper is organized as follows. In Section 2 we formulate the inverse source problem.
In Section 3 the total variation of the Kohn-Vogelius criterion is explicitly derived. Finally, in
Section 4 we devise a reconstruction algorithm and present several numerical examples.

2. Problem formulation

Let Ω ⊂ R
2 be an open and bounded domain, with Lipschitz boundary ∂Ω. Consider the

following over-determined boundary value problem:



−∆u = b∗ in Ω ,
u

−∂nu
=
=

u∗

q∗

}
on ∂Ω .

(2.1)

The inverse potential problem reads: given q∗ ∈ H−1/2(∂Ω) and u∗ ∈ H1/2(∂Ω), find the
unknown source b∗ ∈ PCγ(Ω) such that there exists u ∈ H1(Ω) satisfying (2.1), with

PCγ(Ω) := {b ∈ L∞(Ω), b = γ0χΩ\ω + γ1χω | ω ⊂ Ω is measurable} . (2.2)

In (2.2) χω denotes the indicator function of the set ω and γ = (γ0, γ1) ∈ R
2 is given.

It is known that this inverse source problem is severely ill-posed and additional boundary
measurements (of higher-order derivatives of the potential) do not provide further information
for the reconstruction; see [16]. The ill-posedness is due, on one hand, to the lack of uniqueness
of the solution and on the other hand to the lack of stability of the reconstruction. The lack of
uniqueness for this problem is severe, and one needs to choose a small set of admissible functions
to restore it. These questions were studied thoroughly in [15], where several classes of functions
are shown to provide uniqueness. For instance, it is not possible to determine both the support
ω∗ and the intensities γ = (γ0, γ1) of the source b∗. Therefore, we assume that the intensities
(γ0, γ1) are given and attempt to reconstruct the support ω∗ from the boundary measurement.
Even with known intensities γ, there is non-uniqueness of the solution ω∗, i.e. different supports
ω∗ may produce the same boundary data (u∗, q∗). Examples of this nature are easy to provide,
for instance a ring ω∗ produces the same boundary data as a disk with identical barycenter and
area. Therefore, additional geometrical constraints are necessary to obtain uniqueness. A useful
example of such a class is given in [15, 17]:

Theorem 1. Assume bi = γ0χΩ\ωi
+ γ1χωi

∈ PCγ(Ω), i = 1, 2 where γ = (γ0, γ1) is given,
and ω1, ω2 are two star-shaped domains with respect to their barycenters. If the corresponding
boundary data in (2.1) are equal, then ω1 = ω2.

The condition of star-shapedness in Theorem 1 is rather restrictive, in particular since it
requires the set ω to be connected. It is actually only a sufficient condition, since uniqueness
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could be achieved for a broader class of sets. It is however difficult to describe the maximal class
of domains for which uniqueness holds. Therefore, in this paper we consider a broader class of
admissible sets for which we usually obtain excellent numerical reconstructions: let m > 0 be a
given integer, and I = {1, ..,m}. We assume that the sets ω in PCγ(Ω) are of the form:

ω =
⋃

i∈I

ωi with ωi ∩ ωj = ∅ for i 6= j . (2.3)

where each ωi is measurable and simply connected; see Figure 1.
The other issue of the inverse source problem is stability. As explained in the introduction,

this issue requires regularization of the inverse operator. In an optimization approach, this can
be achieved by adding a regularizing term to the objective function, such as in the Tikhonov or
the TV approaches. In our approach, the regularization is obtained by restricting the class of
admissible sets ω to a finite set of balls with varying sizes; see Section 4.

To address the inverse problem (2.1), we reformulate it as an optimization problem. This is
done by minimizing the misfit between the solutions of the Dirichlet and the Neumann problems,
i.e. we minimize the so-called Kohn-Vogelius functional [18]:

min
b∈PCγ(Ω)

J(b) :=
1

2

∫

Ω

(
uD[b]− uN [b]

)2
, (2.4)

where uD[b] and uN [b] are solutions to the following auxiliary problems:
{

−∆uD[b] = b in Ω ,
uD[b] = u∗ on ∂Ω ,

and (2.5)





−∆uN [b] = b+ c[b] in Ω ,
−∂nu

N [b] = q∗ on ∂Ω ,∫

Ω
uN [b] =

∫

Ω
uD[b] ,

(2.6)

where the constant c[b] is introduced in order to satisfy the compatibility condition of the
Neumann problem:

c[b] =
1

|Ω|

(∫

∂Ω
q∗ −

∫

Ω
b

)
. (2.7)

On one hand, if b = b∗ then we obviously have J(b) = 0. On the other hand if b ∈ PCγ(Ω)

satisfies J(b) = 0, then uD[b] = uN [b], which implies c[b] = 0 and then uD[b] = uN [b] solves
the over-determined problem (2.1). However this does not imply b = b∗ due to the lack of
uniqueness of the inverse source problem discussed above. At least one can show that ω in
b = γ0χΩ\ω+γ1χω has the same moments as the target domain ω∗, in particular it has the same
barycenter x = x∗ and volume |ω| = |ω∗|, where

|ω∗| :=
1

γ1 − γ0

[∫

∂Ω
q∗ − γ0|Ω|

]
, (2.8)

x∗ :=
1

(γ1 − γ0)|ω∗|

[∫

∂Ω
(q∗x+ u∗n)− γ0

∫

Ω
x

]
. (2.9)

Nevertheless, in practice we are usually able to reconstruct the true measure even if it has several
connected components, which seems to indicate that uniqueness of the reconstruction could be
obtained for a broader class of measures than the star-shaped domains of Theorem 1.

3. Reconstruction method

To devise an effective reconstruction method, we first evaluate explicitly the total variation of
the Kohn-Vogelius criterion with respect to a set of ball-shaped perturbations on the measure.
In order to introduce these ideas, let us consider a non-smooth perturbation of J (Ω) confined
in a small set ̟ε,x̂ = x̂+ ε̟ of size ε > 0, or the union ̟

e,x̂ := ∪i∈I̟εi,x̂i
of such sets, where
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Figure 1. The inverse potential problem.

e := {εi}i∈I , x̂ := {x̂i}i∈I . Here, x̂i ∈ Ω and ̟ ⊂ R
2, with 0 ∈ ̟, is fixed. We introduce an

expansion of the Kohn-Vogelius shape functional J (Ω \̟
e,x̂) of the form

J (Ω \̟
e,x̂) = J (Ω) +

∑

i∈I

f1(εi)D
1J (x̂i) +

∑

i,j∈I

f2(εi, εj)D
2J (x̂i, x̂j) +R(e, x̂) , (3.1)

where f1(εi) and f2(εi, εj) are positive functions such that

lim
εi→0

f1(εi) = 0 , lim
εi,εj→0

f2(εi, εj)

f1(εi)
= 0 and lim

e→0

R(e, x̂)

f2(εi, εj)
= 0 ∀i, j ∈ I. (3.2)

We call first and second order derivatives of J to the functions D1J and D2J , respectively, of
the expansion (3.1).

3.1. Perturbed problems. For our purposes, let us consider the particular case ̟
e,x̂ =

∪i∈IB(εi, x̂i), where B(εi, x̂i) is a disk of radius εi and center x̂i ∈ Ω. We consider a source
term of the form

b
e,x̂ = γ0χΩ\̟

e,x̂
+ γ1

∑

i∈I

χB(εi,x̂i) . (3.3)

Figure 2. Ball-shaped perturbations.

The perturbed shape functional is written as

J (Ω \̟
e,x̂) := J(b

e,x̂) =
1

2

∫

Ω
(uD[b

e,x̂]− uN [b
e,x̂])

2 , (3.4)

where uD[b
e,x̂] and uN [b

e,x̂] are solutions of
{

−∆uD[b
e,x̂] = b

e,x̂ in Ω ,
uD[b

e,x̂] = u∗ on ∂Ω ,
(3.5)





−∆uN [b
e,x̂] = b

e,x̂ + c[b
e,x̂] in Ω ,

−∂nu
N [b

e,x̂] = q∗ on ∂Ω ,∫

Ω
uN [b

e,x̂] =

∫

Ω
uD[b

e,x̂] ,
(3.6)
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with the constant c[b
e,x̂] obtained from the compatibility condition:

c[b
e,x̂] =

1

|Ω|

(∫

∂Ω
q∗ −

∫

Ω
b
e,x̂

)
= c[γ0]−

γ1 − γ0
|Ω|

∑

i∈I

πε2i , (3.7)

where c[γ0] is also computed using (2.7) with b = γ0.

3.2. Explicit expansion of the Kohn-Vogelius criterion. In this section we present the
derivation of the expansions for the functions uD[b

e,x̂] and uN [b
e,x̂]. First, note that uD[b

e,x̂]
can be expressed as

uD[b
e,x̂](x) = uD[γ0](x) +

∑

i∈I

πε2i vεi(x) , (3.8)

where each function vεi is solution to





−∆vεi =
γ1 − γ0
πε2i

χB(εi,x̂i) in Ω ,

vεi = 0 on ∂Ω .
(3.9)

One may express vεi as a sum of the form vεi = vpεi + vqεi , where vpεi is a particular solution
obtained by using the fundamental solution of the Laplacian, namely:

vpεi(x) =

∫

B(εi,x̂i)
−
γ1 − γ0
πε2i

1

2π
log ‖y − x‖dy , (3.10)

so that the remainder vqεi := vεi − vpεi is harmonic and compensates the discrepancy left by vpεi
on ∂Ω, i.e. it solves the homogeneous boundary value problem:

{
−∆vqεi = 0 in Ω ,

vqεi = −vpεi on ∂Ω .
(3.11)

For x ∈ Ω \B(εi, x̂i) we can integrate (3.10) analytically to obtain

vpεi(x) = −
γ1 − γ0

2π
log ‖x̂i − x‖ ∀x ∈ Ω \B(εi, x̂i) , (3.12)

hence vpεi(x) does not depend on εi for x ∈ Ω \B(εi, x̂i). Then, from (3.11) we observe that vqεi
does not depend on εi and since vεi = vpεi + vqεi we have that vεi(x) is also independent of εi for

x ∈ Ω \B(εi, x̂i). For the Neumann problem we use the expansion:

uN [b
e,x̂](x) = uN [γ0](x) +

∑

i∈I

πε2i [vεi(x) + hi(x)] , (3.13)

where the function hi is solution to





−∆hi = −
γ1 − γ0
|Ω|

in Ω ,

−∂nhi = gi on ∂Ω ,∫

Ω
hi = 0 ,

(3.14)

where gi = ∂nvεi on ∂Ω is actually independent of εi according to the previous comments, with
vεi solution to (3.9).
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Therefore, the expansion of the Kohn-Vogelius shape functional reads

J(b
e,x̂) =

1

2

∫

Ω

(
uD[b

e,x̂]− uN [b
e,x̂]
)2

=
1

2

∫

Ω

[
uD[γ0] +

∑

i∈I

πε2i vεi −

(
uN [γ0] +

∑

i∈I

πε2i (vεi + hi)

)]2

=
1

2

∫

Ω

[
(uD[γ0]− uN [γ0])−

∑

i∈I

πε2i hi

]2

=
1

2

∫

Ω

(
uD[γ0]− uN [γ0]

)2

−

∫

Ω
(uD[γ0]− uN [γ0])

∑

i∈I

πε2i hi +
1

2

∫

Ω

(
∑

i∈I

πε2i hi

)2

. (3.15)

Proposition 2. The expansion of the Kohn-Vogelius shape functional has the form

J (Ω \̟
e,x̂) = J (Ω)−

∫

Ω
(uD[γ0]− uN [γ0])

∑

i∈I

πε2i hi +
1

2

∫

Ω

(
∑

i∈I

πε2i hi

)2

, (3.16)

i.e., the following terms of the general form (3.1) are promptly identified:

f1(εi) = πε2i , f2(εi, εj) =
1

2
π2ε2i ε

2
j , R(e, x̂) ≡ 0 , (3.17)

and

D1J (x̂i) = −

∫

Ω
(uD[γ0]− uN [γ0])hi , D2J (x̂i, x̂j) =

∫

Ω
hihj . (3.18)

Remark 3. Note that hi depends on x̂i through the boundary data gi in problem (3.14), since
it also depends on x̂i through the source term in (3.9). Consequently (3.9) and (3.14) must be
solved for each x̂i in order to evaluate the derivatives at x̂i.

Let us introduce the adjoint states pD and pN solutions of
{

−∆pD = −(uD[γ0]− uN [γ0]) in Ω ,
pD = 0 on ∂Ω ,

(3.19)

and 



−∆pN = uD[γ0]− uN [γ0] in Ω ,
−∂np

N = 0 on ∂Ω ,∫

Ω
pN = 0 ,

(3.20)

(note that compatibility holds in (3.20) in view of (3.6)). From Green’s formula, the first order
derivative can be rewritten in its standard pointwise form, namely

D1J (x̂i) = −(γ1 − γ0)
(
pD(x̂i) + pN (x̂i)

)
. (3.21)

3.3. Solution algorithm. When using perturbations of the type ̟
e,x̂ = ∪i∈IB(εi, x̂i), the

shape optimization problem (2.4) is reduced to the minimization of J(b
e,x̂) with respect to e

and x̂. We can introduce the change of variables ai := πε2i , i ∈ I, and for a fixed point x̂ find
the best areas minimizing J

x̂
(a) := J(b

e,x̂). The following proposition shows the convenience of
this approach:

Proposition 4. The function J
x̂
(a) is a convex quadratic function of the variable a. In addition,

if the functions {hi}i∈I , solutions to (3.14) for the points {x̂i}i∈I are linearly independent, then
J
x̂
(a) is a strictly convex quadratic function.
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Proof. This results follow from Proposition 2 and Theorems 3.3.7 and 3.3.8 in [6]. In effect, we
have

J
x̂
(a) = J

x̂
(0) +

∑

i∈I

aiD
1J (x̂i) +

∑

i,j∈I

1

2
aiajD

2J (x̂i, x̂j) , (3.22)

then, the Hessian matrix of J
x̂
(a) has components D2J (x̂i, x̂j). This matrix is positive semi-

definite since, from (3.18)

∑

i,j∈I

D2J (x̂i, x̂j)aiaj =

∫

Ω

(
∑

i∈I

aihi

)2

≥ 0 , (3.23)

and is positive definite if the functions {hi}i∈I are linearly independent, since in this case the
sum is zero only if a = 0. �

To find the optimal a we differentiate (3.22) to obtain the first order optimality conditions:
∑

j∈I

D2J (x̂i, x̂j)aj = −D1J (x̂i) for i ∈ I , (3.24)

where D1J (x̂i) is given by (3.21), and D2J (x̂i, x̂j) by (3.18). Note that from Proposition 4,
the matrix of the linear system (3.24) is always positive semidefinite, and is positive definite if
the functions {hi}i∈I are linearly independent. In this last case, the solution to (3.24) always
exists, and is the unique global minimum of J

x̂
(a).

We say that the point x̂ = {x̂i}i∈I is feasible if (3.24) has a meaningful solution in the sense
that ai > 0, i ∈ I. The numerical practice shows us that it is not necessary to consider additional
constraints to avoid the overlapping between different balls or to have ̟

e,x̂ ⊂ Ω. Meaningful
solutions are found by imposing the positivity requirement only.

At a feasible point we define e(x̂) := {
√

ai/π}i∈I with {ai}i∈I solution to (3.24). The
proposed approach is to optimize J(b

e(x̂),x̂) with respect to x̂ in a certain set of feasible points.

3.4. Example with a closed-form solution. Let us consider the disk Ω = {x ∈ R2 | ‖x‖ <
R}. We introduce the usual polar coordinate system that assigns the pair (r, θ) to the point
x = (x1, x2), so that x1 = r cos(θ), x2 = r sin(θ). Consider a generic point x̂i of polar coordinates

(r̂i, θ̂i) with 0 < r̂i < R and let x̃i be the point of polar coordinates (r̃i, θ̃i) with r̃i = R2/r̂i and

θ̃i = θ̂i. We define the functions ŝi(x) = ‖x − x̂i‖, and s̃i(x) = ‖x − x̃i‖. Then, for a circular
perturbation of radius εi and center x̂i, the solution to (3.9) is

vεi =





(γ1 − γ0)

2π

[
log

(
s̃ir̂i
εiR

)
+

ε2i − ŝ2i
2ε2i

]
in B(εi, x̂i) ,

(γ1 − γ0)

2π
log

(
s̃ir̂i
ŝiR

)
in Ω \B(εi, x̂i) ,

(3.25)

which can be proven by direct differentiation. The solution to (3.14) is

hi =
(γ1 − γ0)

2π

[
r2

2R2
−

1

4
− 2 log

(
s̃i
r̃i

)]
. (3.26)

We can prove by direct differentiation the field equation and boundary condition of (3.14). In
addition, since log(s̃i/r̃i) is harmonic, by the mean value property of harmonic functions, we
have ∫ 2π

0
r

[
log

(
s̃i
r̃i

)]
dθ = 2πr

[
log

(
s̃i
r̃i

)]

x=0

= 2πr

[
log

(
r̃i
r̃i

)]
= 0 . (3.27)

Hence, by using this result we have
∫

Ω
hi =

(γ1 − γ0)

2π

∫ R

0

∫ 2π

0
r

[
r2

2R2
−

1

4
− 2 log

(
s̃i
r̃i

)]
dθ dr

=
(γ1 − γ0)

2π
· 2π

[
r4

8R2
−

r2

8

]R

r=0

= 0 . (3.28)
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The expressions for x̂i = 0 can easily be obtained as:

vεi =





(γ1 − γ0)

2π

[
log

(
R

εi

)
+

ε2i − ŝ2i
2ε2i

]
in B(εi, 0) ,

(γ1 − γ0)

2π
log

(
R

ŝi

)
in Ω \B(εi, 0) ,

(3.29)

hi =
(γ1 − γ0)

2π

[
r2

2R2
−

1

4

]
. (3.30)

We can see now that the functions {hi}i∈I are linearly independent. Let us assume, without
loss of generality that x̂1 = 0, i.e. the first point is at the origin. The case without points at the
origin is simpler. Note that for any set of distinct points {x̂i}i∈I\{1}, we have a set of distinct
points {x̃i}i∈I\{1}. Consider the following linear combination:

∑

i∈I

αihi =

(
∑

i∈I

αi

)
·

(
r2

2R2
−

1

4

)
−

∑

i∈I\{1}

2αi log

(
s̃i
r̃i

)
= 0, (3.31)

where we have omitted the irrelevant factor (γ1 − γ0)/(2π). Since only the term r2/(2R2)− 1/4
has a nonzero Laplacian, the sum

∑
i∈I αi must be zero. Then we have

∑

i∈I\{1}

αi log(s̃i) =
∑

i∈I\{1}

αi log(r̃i) , (3.32)

and the equality must hold at every point x ∈ Ω. Since both the left and right hand sides in
the above equation are harmonic, by the identity theorem of harmonic functions [22] both sides
should be equally harmonically extended outside Ω. However, if any αi, with i > 1, is not zero,
then the left hand side is singular at x̃i, while the right hand side is not. Then, αi = 0, for each
i > 1, and since

∑
i∈I αi = 0 we also have α1 = 0. Then, the functions {hi}i∈I are linearly

independent, and we can prove that the example has the following interesting property:

Proposition 5. Consider the disk Ω = {x ∈ R
2 | ‖x‖ < R}. Then, the minimum of the

Kohn-Vogelius functional (3.4) in the class

A :=

{
b
e,x̂ = γ0χΩ\̟

e,x̂
+ γ1

n∑

i=1

χB(εi,x̂i)n ∈ N, x̂i 6= x̂j for i 6= j, and ̟
e,x̂ ⊂ Ω

}
, (3.33)

is unique. In particular, problem (2.4) can have at most one solution in A.

Proof. Assume that the Kohn-Vogelius functional has two minimal solutions in A, the first
defined by the centers x̂1 = {x̂1, . . . x̂n} and radii e1 = {ε1, . . . , εn}, and the second by the
centers x̂2 = {x̂n+1, . . . , x̂n+m} and radii e2 = {εn+1, . . . εn+m}. Let the areas be ai = πε2i ,
1 ≤ i ≤ n+m, and without loss of generality assume that all the n+m centers are distinct. Then,
for the point x̂ = {x̂1, . . . , x̂n+m}, the vectors (a1, . . . , an, 0, . . . , 0) and (0, . . . , 0, an+1, . . . , an+m)
should both be global minimal points of the function J

x̂
(a) of (3.22) in the convex set defined

by the linear constraints ai ≥ 0, ai ≤ π (R− ‖x̂i‖)
2, 1 ≤ i ≤ n+m. However, since the functions

{hi}i∈I are linearly independent, from Proposition 4 we obtain that J
x̂
(a) is a strictly convex

quadratic function of the variable a, hence it has a unique global minimum in any convex set,
see Theorem 3.4.2 in [6]. �

Remark 6. Note that the balls that define b
e,x̂ ∈ A can overlap. Hence A is not a subset of

PCγ. However, if uniqueness holds in A, then uniqueness holds on the smaller class A ∩ PCγ

(where the balls do not overlap) automatically.

We end this section providing the analytic expressions of the second order derivativeD2J (x̂i, x̂j).
From (3.18) and (3.26) we have

D2J (x̂i, x̂i) =

[
(γ1 − γ0)

2π

]2 ∫

Ω

[
r2

2R2
−

1

4
− 2 log

(
s̃i
r̃i

)]2
, (3.34)
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and, by resorting again to the mean value property of harmonic functions we obtain

D2J (x̂i, x̂i) =

[
(γ1 − γ0)

2π

]2{∫

Ω

[
r2

2R2
−

1

4

]2
+

∫

Ω

[
2 log

(
s̃i
r̃i

)]2}

=

[
(γ1 − γ0)

2π

]2{
2π

[
r6

24R4
−

r4

16R2
+

r2

32

]R

r=0

+ 4

∫

Ω

[
log

(
s̃i
r̃i

)]2}
. (3.35)

Hence, defining f := log(s̃i/r̃i) and the open set Ωa := {x ∈ R2 | ‖x‖ < a}, we are interested
in computing the integral of f2 on Ωa for the particular value a = R. From Green’s second
identity we have ∫

Ωa

f2∆g =

∫

∂Ωa

f2∂ng −

∫

∂Ωa

g∂n(f
2) +

∫

Ωa

g∆(f2) . (3.36)

Since f is harmonic we have ∆(f2) = 2∇f · ∇f = 2/s̃2i , and by taking g = 1/4(r2 − a2) we
obtain ∫

Ωa

f2 =

∫

∂Ωa

1

2
af2 +

∫

Ωa

r2 − a2

2s̃2i
, (3.37)

where the last term is∫

Ωa

r2 − a2

2s̃2i
=

∫ a

0
r(r2 − a2)

∫ 2π

0

1

2s̃2i
dθ dr

=

∫ a

0
r(r2 − a2)



arctan

((
r̃i+r
r̃i−r

)
· tan

(
θ
2

))

r̃2i − r2



2π

θ=0

dr

=

∫ a

0
r(r2 − a2) ·

π

r̃2i − r2
dr

= −
π

2

[
r2 + log(r̃2i − r2)(r̃2i − a2)

]a
r=0

= −
π

2

[
log

(
r̃2i − a2

r̃2i

)
(r̃2i − a2) + a2

]
. (3.38)

Then, by defining φ as

φ(r) =

∫ 2π

0
log

(
s̃i
r̃i

)2

dθ , (3.39)

(3.37) can be written as
∫ a

0
rφ(r) dr =

1

2
a2φ(a) −

π

2

[
log

(
r̃2i − a2

r̃2i

)
(r̃2i − a2) + a2

]
. (3.40)

By differentiating this last expression with respect to a we obtain

∂φ

∂a
(a) = −

2π

a
log

(
r̃2i − a2

r̃2i

)
. (3.41)

From (3.39) we obtain φ(0) = 0. Then, by integrating the previous expression we have

φ(r) =

∫ r

0
−
2π

a
log

(
r̃2i − a2

r̃2i

)
da

= π

[
dilog

(
r̃2i − a2

r̃2i

)]r

a=0

= π dilog

(
r̃2i − r2

r̃2i

)
. (3.42)

Then, from (3.37) and (3.40)
∫

Ωa

f2 =
πa2

2

[
dilog

(
r̃2i − a2

r̃2i

)
− log

(
r̃2i − a2

r̃2i

)
·

(
r̃2i − a2

a2

)
− 1

]
. (3.43)

Returning back to (3.35) and simplifying the expressions, we obtain

D2J (x̂i, x̂i) =
(γ1 − γ0)

2R2

2π

[
dilog

(
r̃2i −R2

r̃2i

)
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− log

(
r̃2i −R2

r̃2i

)
·

(
r̃2i −R2

R2

)
−

95

96

]
. (3.44)

Since r̃i = R2/r̂i, we can express the previous result as

D2J (x̂i, x̂i) =
(γ1 − γ0)

2R2

4π
·

[
2ϕ

(
r̂2i
R2

)
−

95

48

]
, (3.45)

where

ϕ(x) = dilog(1− x)−
1− x

x
· log(1− x) , (3.46)

is a positive continuous function in (0, 1) satisfying

lim
x→0

ϕ(x) = 1 , lim
x→1

ϕ(x) =
π2

6
. (3.47)

If we consider another point x̂j of polar coordinates (r̂j, θ̂j) with 0 < r̂j < R, by following
similar steps as above we obtain

D2J (x̂i, x̂j) =
(γ1 − γ0)

2R2

4π
·

[
ϕ

(
r̂ir̂j
R2

eιδij
)
+ ϕ

(
r̂ir̂j
R2

e−ιδij

)
−

95

48

]
. (3.48)

where ι is the imaginary unit, and δij = |θ̂i − θ̂j|.

4. Numerical results

We apply the algorithm described in Section 3.3 to several examples to demonstrate the
effectiveness of the approach. We use the finite element method to solve the boundary value
problems, and look for the optimal solution in the set of all the feasible points x̂ = {x̂i}i∈I where
each x̂i belongs to a defined subgrid of the finite element grid (note that some combinations
may be infeasible).

For the examples presented here, an exhaustive search in this set was used to find the optimal
x̂. However, due to its computational complexity, the exhaustive search in the set of all combi-
nations is possible only if the number of balls m is small, and other algorithms for combinatorial
optimization problems should be used to address problems with a large m.

In the examples we take Ω = (0, 1)× (0, 1), γ0 = 1 and γ1 = 10. The domain Ω is discretized
with three-node finite elements. The mesh is generated from a grid of size 100×100, where each
resulting square is divided into four triangles, leading to 40 × 103 elements. Examples 1-5 are
free of noise, while in Example 6 the data is corrupted with noise.

4.1. Example 1: Sensitivity with respect to the subgrid. Here we test the sensitivity of
the reconstruction with respect to the size of the subgrid. We consider two subgrids of 10×10 and
20 × 20 nodes. From the result in Fig. 3, we note that the algorithm fails in finding accurately
the location of the object in the coarse subgrid (Fig. 3b), while the reconstruction is much
better for the fine subgrid (Fig. 3c). Therefore, the subgrid should be sufficiently fine in order to
obtain a good reconstruction. Ideally, it should coincide with the finite element mesh. However,
since the finite element mesh is usually very refined, such a fine subgrid is impracticable due
to the combinatorial nature of the algorithm of Section 3.3. Therefore, we fix the subgrid to
20× 20 nodes for the next examples, which leads to a good compromise between resolution and
computational cost.
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(a) (b) (c)

Figure 3. Sensitivity with respect to the subgrid: true source term (a) and
reconstructions in a 10× 10 (b) and 20× 20 (c) subgrids.

4.2. Example 2: Sensitivity with respect to the contrast. We test the sensitivity with
respect to the contrast γ1− γ0. The true source term has intensity γ1 = 10. Therefore, from the
result in Fig. 4 we observe that for the intensity γ1 > 10 the sizes of the anomalies are underes-
timated (Fig. 4b), while for the intensity γ1 < 10 the sizes of the anomalies are overestimated
(Fig. 4c). In both cases, the correct centers were found.

The result shows the adverse effect of the non-uniqueness mentioned in Sections 1 and 2.
Anomalies produce similar boundary data when the product of their size and intensity is roughly
the same.

(a) (b) (c)

Figure 4. Sensitivity with respect to the contrast γ1 − γ0: true source term (a)
and reconstructions for γ1 = 20 (b) and γ1 = 5 (c).

4.3. Example 3: Looking for the number of anomalies. We suppose that the number of
anomalies is unknown and proceed with successive trials to find the correct number of balls m.
We start with one trial ball and increment the number of balls every step until the algorithm
provides the same result from one iteration to the next. In Figures 5, 6 and 7 we are looking for
one, two and three anomalies, respectively. In the case of one anomaly, we start with one and
end with two trial balls. With one trial ball we already reconstruct the anomaly, and with two
trial balls we obtain the same result, i.e. the second trial (small) ball is embedded in the first
one (Fig. 5) and we can conclude that there is only one main anomaly. For two anomalies, we
start with two and end with three trial balls. We do not show the result for one trial ball since
it is obviously inaccurate. Again, the results obtained for two and three balls are the same, i.e.
the third trial (small) ball is included in one of the two others (Fig. 6), allowing us to conclude
that there are two main anomalies. Finally, we proceed with three anomalies. The results for
one and two trial balls are obvious. We conclude that there are three balls, since the results for
three and four trial balls are identical (Fig. 7).
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(a) (b) (c)

Figure 5. Looking for one anomaly: true source term (a) and reconstructions
using one trial ball (b) and two trial balls (c).

(a) (b) (c)

Figure 6. Looking for two anomalies: true source term (a) and reconstructions
using two (b) and three trial balls (c).

(a) (b) (c)

Figure 7. Looking for three anomalies: true source term (a) and reconstructions
using three (b) and four trial balls (c).

4.4. Example 4: Shape and topology reconstruction. In this example we detect the
topology as well as the shape of the anomalies. In the first case, the reconstruction of thee square-
shaped anomalies resulted in three balls, with approximately the same volume and barycenters,
as shown in Fig. 8. The next result approximates two anomalies by three balls. Namely, in
Fig. 9, the small square is approximated by one ball, while the rectangle is approximated by
two balls. Finally, in Fig. 10, a L-shaped anomaly is approximated by three balls. Through
these examples, we conclude that the proposed algorithm is able to reconstruct approximately
the shape and the topology of hidden objects.
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(a) (b)

Figure 8. Three anomalies: true source term (a) and reconstruction using three
balls (b).

(a) (b)

Figure 9. Two anomalies: true source term (a) and reconstruction using three
balls (b).

(a) (b)

Figure 10. One anomaly: true source term (a) and reconstruction using three
balls (b).

4.5. Example 5: Anomalies of different sizes. We consider two anomalies, where one of
them is much bigger than the other one. In Fig. 11, we present the result for the anomalies far
from each other. The case of anomalies very close to each other is shown in Figure 12. In both
cases, the reconstructions match precisely the targets.
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(a) (b)

Figure 11. Two anomalies far from each other: true source term (a) and recon-
struction using two balls (b).

(a) (b)

Figure 12. Two anomalies close to each other: true source term (a) and recon-
struction using two balls (b).

4.6. Example 6: Detection of four simultaneous anomalies. Finally, we detect four si-
multaneous anomalies. In addition, we consider different levels of noise. In order to obtain
noisy synthetic data, the true source term b∗ is corrupted with white Gaussian noise, where the
resulting level of noise on the boundary measurement is computed as follows

noise = ‖q∗ − q∗n‖L2(∂Ω)/‖q
∗‖L2(∂Ω) × 100 %, (4.1)

where q∗n is the noisy boundary measurement used as synthetic data. Through this procedure
we can verify the robustness of the method with respect to noisy data avoiding, to some extent,
the effect of the so called inverse crime. In Fig. 13, we present the target with four balls. The
results obtained for different levels of noise are shown in Fig. 14. We observe that the results
are acceptable until 4% of noise on the boundary measurement q∗. For 8% of noise, the true
source term is completely degraded and the method fails in reconstructing b∗ from the corrupted
boundary measurement q∗n.

Figure 13. Four anomalies: true source term.
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Figure 14. Four anomalies: noisy source term b∗ (left) and reconstruction ob-
tained using four balls (right), with 1.01%, 2.03%, 4.04% and 8.08% of resulting
noise on q∗, respectively.

5. Conclusions

In this work, we have proposed a new method for solving the inverse potential problem.
In particular, the inverse potential problem has been reformulated as an optimization problem
using the Kohn-Vogelius criterion as objective function. In order to minimize the Kohn-Vogelius
criterion, its total variation with respect to a set of ball-shaped perturbations on the unknown
measure has been explicitly evaluated. We have proved that for this class of perturbations the
expansion of the the Kohn-Vogelius criterion is exact up to the second order, i.e., there is no
remainder. The expansion obtained has been used to minimize the Kohn-Vogelius criterion
with respect to the size and center of the circular perturbations. This leads to an exhaustive
combinatorial search which is tractable only in the case of a small number of unknown anomalies.
Therefore, other algorithms for combinatorial optimization problems should be used to address
problems with a large number of anomalies. Finally, we have presented an extensive set of
numerical experiments showing the following features of the proposed reconstruction algorithm:

• The number of unknown anomalies can be found after some trials.
• The shape and topology of the unknown measure can be approximated by several balls.
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• Anomalies of very different sizes (one anomaly much bigger than the other one, for
instance) can be detected.

• Corrupted measurements with a high level of noise can be reconstructed with acceptable
precision.

These promising results show that the application of other methods based on the expansion
of a given shape functional, such as the simple iterative method proposed in [9] or the level-set
method used in [5, 3], to the inverse potential problem should be investigated. In addition, since
the proposed method can precisely approximate the unknown measure by several balls, it can
be used to provide a good initial guess for other iterative methods such as the one studied in
[17, 21].
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