
SENSITIVITY OF A GENERAL CLASS OF SHAPE FUNCTIONALS TO

TOPOLOGICAL CHANGES

ANTONIO ANDRÉ NOVOTNY

Abstract. The topological derivative represents the first term of the asymptotic expansion
of a given shape functional with respect to the small parameter which measures the size of
singular domain perturbations. The topological derivative has been successfully applied in the
treatment of problems such as topology optimization, inverse analysis and image processing. In
this paper, the calculation of the topological derivative for a general class of shape functionals
is presented. In particular, we evaluate the topological derivative of a modified energy shape
functional associated to the steady-state heat conduction problem, considering the nucleation
of a small circular inclusion as the topological perturbation. Several methods were proposed
to calculate the topological derivative. In this paper, the so-called topological-shape sensitivity
method is extended to deal with a modified adjoint method, leading to an alternative approach to
calculate the topological derivative based on shape sensitivity analysis together with a modified
Lagrangian method. Since we are dealing with a general class of shape functionals, which are
not necessarily associated to the energy, we will show that this new approach simplifies the most
delicate step of the topological derivative calculation, namely, the asymptotic analysis of the
adjoint state.

1. Introduction

The topological derivative represents the first term of the asymptotic expansion of a given
shape functional with respect to the small parameter which measures the size of singular domain
perturbations, such as holes, inclusions, source-terms and cracks. The topological asymptotic
analysis was introduced in the fundamental paper by [14] and can be seen as a mathematical
justification for the so-called bubble method [6]. The topological derivative has been successfully
applied in the treatment of problems such as topology optimization [5], inverse analysis [10]
and image processing [9]. More recently, it has also been applied in the multi-scale constitutive
modeling context [4], fracture mechanics sensitivity analysis [16] and damage evolution modeling
[1]. See also the book by Novotny & Sokolowski [13].

In order to introduce these ideas, let us consider an open and bounded domain Ω ⊂ R
2, which

is subject to a non-smooth perturbation confined in a small region ωε(x̂) = x̂+ εω of size ε, as
shown in fig. 1. Here, x̂ is an arbitrary point of Ω and ω is a fixed domain of R2. We introduce
a characteristic function x 7→ χ(x), x ∈ R

2, associated to the unperturbed domain, namely
χ = 1Ω. Then, we define a characteristic function associated to the topologically perturbed
domain of the form x 7→ χε(x̂;x), x ∈ R

2. In the case of a hole, for example, χε(x̂) = 1Ω−1
ωε(x̂)

and the singulary perturbed domain is given by Ωε = Ω\ωε. Then, we assume that a given shape
functional ψ(χε(x̂)), associated to the topologically perturbed domain, admits the following
topological asymptotic expansion

ψ(χε(x̂)) = ψ(χ) + f(ε)DTψ(x̂) + o(f(ε)) , (1.1)

where ψ(χ) is the shape functional associated to the unperturbed domain and f(ε) is a positive
function such that f(ε) → 0 when ε → 0. The function x̂ 7→ DTψ(x̂) is called the topological
derivative of ψ at x̂. Therefore, the term f(ε)DTψ(x̂) represents a first order correction of ψ(χ)
to approximate ψ(χε(x̂)). Since we are dealing with singular domain perturbations, the shape
functionals ψ(χε(x̂)) and ψ(χ) are associated to topologically different domains. Therefore, we
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need to perform an asymptotic analysis of the shape functional ψ(χε(x̂)) with respect to the
small parameter ε.

Figure 1. The topological derivative concept.

Several methods were proposed to calculate the topological derivative. In this paper, we
extend the so-called topological-shape sensitivity method developed by [12] to deal with the
modified adjoint method proposed by [3], leading to an alternative approach to calculate the
topological derivative based on shape sensitivity analysis together with a modified Lagrangian
method. The proposed approach is based on the following result [12]:

DTψ(x̂) = lim
ε→0

1

f ′(ε)

d

dε
ψ(χε(x̂)) . (1.2)

The derivative of ψ(χε(x̂)) with respect to ε can be seen as the sensitivity of ψ(χε(x̂)), in the
classical sense [15], to the domain variation produced by a uniform expansion of the perturbation
ωε, namely, ωε+t(x̂) = ωε(x̂) + tω. In fact, we have

d

dε
ψ(χε(x̂)) = lim

t→0

ψ(χε+t(x̂))− ψ(χε(x̂))

t
, (1.3)

where ψ(χε+t(x̂)) is the shape functional associated to the perturbed domain, whose perturbation
is given by ωε+t. Therefore, since ψ(χε+t(x̂)) and ψ(χε(x̂)) are now associated to topologically
identical domains, we can use the concept of shape sensitivity analysis as an intermediate step
in the topological derivative calculation.

In this paper the calculation of the topological derivative for a general class of shape function-
als is presented. In particular, the topological derivative of a modified energy shape functional
associated to the Laplace equation, considering the nucleation of a small inclusion as the topo-
logical perturbation, is derived. Since we are dealing with a general class of shape functionals,
which are not necessarily associated to the energy, we will show later that the proposed new
approach simplifies the most delicate step of the topological derivative calculation, namely, the
asymptotic analysis of the adjoint state.

2. Problem Formulation

The shape functional in the unperturbed domain which we are dealing with is defined as

ψ(χ) := Jχ(u) = −
1

2

∫

Ω
Bq(u) · ∇u , (2.1)

where B is a given second order symmetric constant tensor and the scalar function u is the
solution to the variational problem:





Findu ∈ U , such that∫

Ω
q(u) · ∇η =

∫

ΓN

qη ∀η ∈ V ,

with q(u) = −k∇u .

(2.2)

In the above equation, k is the thermal conductivity of the medium, assumed to be constant
everywhere. The set U and the space V are respectively defined as

U :={ϕ ∈ H1(Ω) : ϕ|ΓD
= u} and V:={ϕ ∈ H1(Ω) : ϕ|ΓD

= 0} . (2.3)
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In addition, ∂Ω = ΓD ∪ ΓN with ΓD ∩ ΓN = ∅, where ΓD and ΓN are Dirichlet and Neumann
boundaries, respectively. Thus u is a Dirichlet data on ΓD and q is a Neumann data on ΓN ,
both assumed to be smooth enough. See the details in fig. 2. The strong equation associated
to the above variational problem (2.2) reads:





Findu, such that
divq(u) = 0 in Ω ,

q(u) = −k∇u
u = u on ΓD ,

q(u) · n = q on ΓN .

(2.4)

Remark 1. The functional (2.1) includes a large range of shape functions, which shall be useful
for practical applications. In particular, when B = I, the functional (2.1) degenerates to the
energy. In addition, when B 6= I, the analysis becomes much more involved, which justifies the
introduction of a modified adjoint state.

The domain is topologically perturbed by the nucleation of a small inclusion. More precisely,
the perturbed domain is obtained when a circular hole ωε(x̂) = Bε(x̂) is introduced inside Ω,
where Bε(x̂) is used to denote a ball of radius ε and center at x̂ ∈ Ω. Next, this region is filled by
an inclusion with different material property. In particular, we introduce a piecewise constant
function γε of the form

γε :=

{
1 in Ω \ Bε

γ in Bε
, (2.5)

where γ ∈ R
+ is the contrast in the material property. In the case of a circular inclusion, we

can construct a shape change velocity field V ∈ C∞(Ω) that represents a uniform expansion of
Bε(x̂). In fact, it is sufficient to define V on the boundaries ∂Ω and ∂Bε in the following way

{
V = 0 on ∂Ω
V = −n on ∂Bε

, (2.6)

where n = −(x−x̂)/ε, with x ∈ ∂Bε, is the normal unit vector field pointing toward the center of
the circular inclusion Bε. We will see later that this velocity field V is the key point in using the
result (1.2), leading to a simple and constructive method to calculate the topological derivative.
Note that in this case the topologies of the original and perturbed domains are preserved.
However, we are introducing a non-smooth perturbation in the coefficients of the differential
operator through the contrast γε, by changing the material property of the background in a small
region Bε ⊂ Ω. Therefore, the sensitivity of the shape functional with respect to the nucleation
of an inclusion can also be studied through the topological asymptotic analysis concept, which is,
in fact, the most appropriate approach for such a problem. Now, let us state the same problem
in the perturbed domain. In this case, the shape functional reads

ψ(χε) := Jχε(uε) = −
1

2

∫

Ω
Bqε(uε) · ∇uε , (2.7)

where the scalar function uε solves the variational problem:




Finduε ∈ Uε, such that∫

Ω
qε(uε) · ∇η =

∫

ΓN

qη ∀η ∈ Vε ,

with qε(uε) = −γεk∇uε .

(2.8)

with γε defined by (2.5). The set Uε and the space Vε are defined as

Uε:={ϕ ∈ U : JϕK = 0 on ∂Bε} and Vε:={ϕ ∈ V : JϕK = 0 on ∂Bε} , (2.9)

where the operator JϕK is used to denote the jump of function ϕ on the boundary of the inclusion
∂Bε, namely, JϕK := ϕ|

Ω\Bε
−ϕ|Bε

on ∂Bε. See the details in fig. 2. The strong equation associated
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to the variational problem (2.8) reads:





Finduε, such that
divqε(uε) = 0 in Ω ,

qε(uε) = −γεk∇uε
uε = u on ΓD ,

qε(uε) · n = q on ΓN ,
JuεK

Jqε(uε)K · n
=
=

0
0

}
on ∂Bε .

(2.10)

Now, we need to introduce the adjoint state vε. In this particular case, vε is the solution to
the adjoint equation of the form:





Find vε ∈ Vε, such that

−

∫

Ω
qε(vε) · ∇η = −〈DuJχε(u), η〉

=

∫

Ω
Bqε(u) · ∇η ∀η ∈ Vε ,

with qε(vε) = −γεk∇vε .

(2.11)

The strong equation associated to the variational problem (2.11) reads:





Find vε, such that
divqε(vε) = −div(Bqε(u)) in Ω ,

qε(vε) = −γεk∇vε
vε = 0 on ΓD ,

qε(vε) · n = −Bqε(u) · n on ΓN ,
JvεK

Jqε(vε)K · n
=
=

0
−JBqε(u)K · n

}
on ∂Bε .

(2.12)

Hence, with this construction the right hand side of the adjoint equation does not depend on
the parameter ε through the function uε. This feature will simplify the asymptotic analysis of
the adjoint state vε. Finally, the adjoint state associated to the unperturbed domain is given by
taking ε = 0 in (2.11), namely, v is the solution to the adjoint equation of the form:





Find v ∈ V, such that

−

∫

Ω
q(v) · ∇η = −〈DuJχ(u), η〉

=

∫

Ω
Bq(u) · ∇η ∀η ∈ V ,

with q(v) = −k∇v .

(2.13)

The strong equation associated to the variational problem (2.11) reads:





Find v, such that
divq(v) = −div(Bq(u)) in Ω ,

q(v) = −k∇v
v = 0 on ΓD ,

q(v) · n = −Bq(u) · n on ΓN ,

(2.14)
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(a) unperturbed domain (b) perturbed domain

Figure 2. The Laplace problem defined in the unperturbed and perturbed domains.

3. Shape Sensitivity Analysis

In order to apply the result (1.2), we firstly need to evaluate the shape derivative of functional
Jχε(uε) with respect to a uniform expansion of the inclusion Bε. Before starting, we note that
after considering the constitutive relation qε(uε) = −γεk∇uε in (2.7), with the contrast γε given
by (2.5), the shape functional Jχε(uε) can be written as follows

Jχε(uε) = −
1

2

(∫

Ω\Bε

Bq(uε) · ∇uε +

∫

Bε

γBq(uε) · ∇uε

)
. (3.1)

where q(uε) = −k∇uε. Thus, we have the explicit dependence with respect to parameter ε.
Therefore, let us start by proving the following result:

Proposition 2. Let Jχε(uε) be the shape functional defined by (2.7). Then, the derivative of
this functional with respect to the small parameter ε is given by

d

dε
ψ(χε) = J̇χε(uε) = −

∫

∂Bε

JΣε −∇uε ⊗Bqε(uε − u)Kn · n−

∫

Ω
Bqε(uε − u) · ∇u′ε . (3.2)

where V stands for the shape change velocity field defined through (2.6), and Σε is a generaliza-
tion of the classical Eshelby energy-momentum tensor [7] given by

Σε = −
1

2
(Bqε(uε) · ∇uε + 2qε(uε) · ∇vε)I + (∇uε ⊗Bqε(uε) +∇uε ⊗ qε(vε) +∇vε ⊗ qε(uε)) .(3.3)

Proof. Before starting, let us recall that the constitutive operator is defined as qε(ϕ) = −γεk∇ϕ
and that the shape change velocity field vanishes on the exterior boundary, namely, V = 0 on
∂Ω. Thus, by making use of Reynolds’ transport theorem and the concept of material derivative
of spatial fields together with the relation between material and spatial derivatives of scalar
fields, namely, ϕ̇ = ϕ′ +∇ϕ ·V [8], the derivative with respect to ε of the shape functional (3.1)
is given by

J̇χε(uε) = −

∫

Ω
Bqε(uε) · ∇u

′
ε −

1

2

∫

∂Bε

JBqε(uε) · ∇uεKn ·V . (3.4)

In addition, we have

J̇χε(uε) = −
1

2

∫

∂Bε

JBqε(uε) · ∇uεKn ·V−

∫

Ω
Bqε(uε) · ∇u̇ε +

∫

Ω
Bqε(uε) · ∇(∇uε ·V) . (3.5)

From integration by parts, we obtain

J̇χε(uε) = −
1

2

∫

∂Bε

JBqε(uε) · ∇uεKn ·V+

∫

∂Bε

J(∇uε ·V)Bqε(uε)K · n

−

∫

Ω
div(Bqε(uε))∇uε ·V−

∫

Ω
Bqε(u) · ∇u̇ε −

∫

Ω
Bqε(uε − u) · ∇u̇ε , (3.6)
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and after some rearrangements

J̇χε(uε) = −
1

2

∫

∂Bε

JBqε(uε) · ∇uεI − 2∇uε ⊗Bqε(uε)Kn ·V

−

∫

Ω
div(Bqε(uε − u))∇uε ·V−

∫

Ω
div(Bqε(u))∇uε ·V

−

∫

Ω
Bqε(u) · ∇u̇ε −

∫

Ω
Bqε(uε − u) · ∇u̇ε . (3.7)

Now, let us differentiate both sides of the state equation (2.8) with respect to ε, which leads to

−

∫

Ω
(qε(uε) · ∇η)

′ =

∫

∂Bε

Jqε(uε) · ∇ηKn ·V , (3.8)

which can be rewritten as∫

Ω
(qε(uε) · ∇η)

′ =

∫

Ω
(qε(uε) · ∇η)

· −

∫

Ω
∇(qε(uε) · ∇η) ·V

=

∫

Ω
qε(u̇ε) · ∇η −

∫

Ω
(∇V

⊤∇uε · qε(η) +∇V
⊤∇η · qε(uε))

−

∫

Ω
((∇∇uε)

⊤qε(η) ·V+ (∇∇η)⊤qε(uε) ·V) . (3.9)

After some rearrangements, we obtain
∫

Ω
(qε(uε) · ∇η)

′ =

∫

Ω
qε(u̇ε) · ∇η −

∫

Ω
∇(∇uε ·V) · qε(η)−

∫

Ω
∇(∇η ·V) · qε(uε) , (3.10)

where we have taken into account that ∇∇(·) = (∇∇(·))⊤. Therefore, we have

−

∫

Ω
qε(u̇ε) · ∇η =

∫

∂Bε

Jqε(uε) · ∇ηKn ·V−

∫

Ω
qε(η) · ∇(∇uε ·V)−

∫

Ω
qε(uε) · ∇(∇η ·V) .(3.11)

Since u̇ε ∈ Vε and the modified adjoint state vε ∈ Vε, then we can take η = vε in the above
equation and η = u̇ε in the modified adjoint equation (2.11), leading to

−

∫

Ω
qε(vε) · ∇u̇ε =

∫

Ω
Bqε(u) · ∇u̇ε (3.12)

−

∫

Ω
qε(u̇ε) · ∇vε =

∫

∂Bε

Jqε(uε) · ∇vεKn ·V−

∫

Ω
qε(vε) · ∇(∇uε ·V)−

∫

Ω
qε(uε) · ∇(∇vε ·V) .(3.13)

By symmetry of the above bilinear forms, we have
∫

Ω
Bqε(u) · ∇u̇ε =

∫

∂Bε

Jqε(uε) · ∇vεKn ·V−

∫

Ω
qε(vε) · ∇(∇uε ·V)−

∫

Ω
qε(uε) · ∇(∇vε ·V) .(3.14)

From integration by parts and some rearrangements, we obtain
∫

Ω
Bqε(u) · ∇u̇ε =

∫

∂Bε

Jqε(uε) · ∇vεKn ·V−

∫

∂Bε

J∇uε ⊗ qε(vε)Kn ·V−

∫

∂Bε

J∇vε ⊗ qε(uε)Kn ·V

+

∫

Ω
div(qε(vε))∇uε ·V+

∫

Ω
div(qε(uε))∇vε ·V . (3.15)

After considering this last result, we obtain

J̇χε(uε) =

∫

∂Bε

JΣεKn ·V−

∫

Ω
div(Bqε(uε − u))∇uε ·V−

∫

Ω
Bqε(uε − u) · ∇u̇ε

−

∫

Ω
[div(qε(vε)) + div(Bqε(u))]∇uε ·V−

∫

Ω
div(qε(uε))∇vε ·V . (3.16)

By taking into account that uε is the solution to the state equation (2.10) and that vε is
the solution to the modified adjoint equation (2.12), namely, divqε(uε) = 0 and divqε(vε) =
−div(Bqε(u)), respectively, the last two terms in the above equation vanish. From the relation
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between material and spatial derivatives of scalar fields and after integration by parts, we have
that

J̇χε(uε) =

∫

∂Bε

JΣεKn ·V−

∫

Ω
div(Bqε(uε − u))∇uε ·V

−

∫

Ω
Bqε(uε − u) · ∇u′ε −

∫

Ω
Bqε(uε − u) · ∇(∇uε ·V)

=

∫

∂Bε

JΣεKn ·V−

∫

∂Bε

J(∇uε ·V)Bqε(uε − u)K · n−

∫

Ω
Bqε(uε − u) · ∇u′ε ,(3.17)

which leads to the result �

4. Asymptotic Analysis of the Solutions

The shape derivative of functional Jχε(uε) is given in terms of an integral over the boundary
of the inclusion ∂Bε and also in terms of a domain integral associated to u′ε (3.2). This do-
main integral comes out from the introduction of the modified adjoint state, solution to (2.11).
Therefore, in order to apply the result (1.2), we need to know the behavior of the functions uε
and vε with respect to ε. In particular, once we know these behaviors explicitly, we can identify
function f(ε) and perform the limit passage ε → 0 in (1.2) to obtain the final formula for the
topological derivative DTψ(x̂) of the shape functional ψ. However, in general this is not an easy
task. In fact, we need to perform an asymptotic analysis of uε and vε with respect to ε. In this
section we present the formal calculation of the expansions for the solutions associated to the
transmission condition on the inclusion. The rigorous justification for the asymptotic expansions
of uε and vε is given in A.

4.1. Asymptotic expansion of the direct state. Let us propose an ansatz for the expansion
of uε in the form [11]:

uε(x) = u(x) + wε(x) + ũε(x)

= u(x̂) +∇u(x̂) · (x− x̂) +
1

2
∇∇u(ξ)(x− x̂) · (x− x̂) + wε(x) + ũε(x) , (4.1)

where ξ is an intermediate point between x and x̂. On the boundary of the inclusion ∂Bε we
have

Jqε(uε)K · n = 0 ⇒ ∂nuε|
Ω\Bε

− γ∂nuε|Bε
= 0 , (4.2)

with qε(ϕ) = −γεk∇ϕ. Thus, the normal derivative of the above expansion, evaluated on ∂Bε,
leads to

(1−γ)∇u(x̂)·n−ε(1−γ)∇∇u(ξ)n·n+∂nwε(x)|
Ω\Bε

−γ∂nwε(x)|Bε
+∂nũε(x)|

Ω\Bε
−γ∂nũε(x)|Bε

= 0 .

(4.3)
Thus, we can choose wε such that

∂nwε(x)|
Ω\Bε

− γ∂nwε(x)|Bε
= −(1− γ)∇u(x̂) · n on ∂Bε . (4.4)

Now, the following exterior problem is considered, and formally obtained with ε→ 0:





Findwε, such that
divqε(wε) = 0 in R2 ,

qε(wε) = −γεk∇wε

wε → 0 at ∞ ,
wε|

Ω\Bε
− wε|Bε

∂nwε|
Ω\Bε

− γ∂nwε|Bε

=
=

0
û

}
on ∂Bε ,

(4.5)
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with û = −(1 − γ)∇u(x̂) · n. The above boundary-value problem admits an explicit solution,
namely

wε(x)|
Ω\Bε

=
1− γ

1 + γ

ε2

‖x− x̂‖2
∇u(x̂) · (x− x̂) , (4.6)

wε(x)|Bε
=

1− γ

1 + γ
∇u(x̂) · (x− x̂) . (4.7)

Now we can construct ũε in such a way that it compensates for the discrepancies introduced by
the higher-order terms in ε as well as by the boundary-layer wε on the exterior boundary ∂Ω.
It means that the remainder ũε must be the solution to the following boundary-value problem:





Find ũε, such that
divqε(ũε) = 0 in Ω ,

qε(ũε) = −γεk∇ũε
ũε = −ε2g on ΓD ,

qε(ũε) · n = −ε2q(g) · n on ΓN ,
JũεK

Jqε(ũε)K · n
=
=

0
εh

}
on ∂Bε ,

(4.8)

where g = ε−2wε and h = k(1 − γ)∇∇u(ξ)n · n. Clearly ũε = O(ε), since wε = O(ε2) on the
exterior boundary ∂Ω. However, this estimate can be improved. In fact, according to Lemma 7
in A, with δε = ũε, we have ‖ũε‖H1(Ω) = O(ε2). Finally, the expansion for uε reads

uε(x)|
Ω\Bε

= u(x) +
1− γ

1 + γ

ε2

‖x− x̂‖2
∇u(x̂) · (x− x̂) +O(ε2) , (4.9)

uε(x)|Bε
= u(x) +

1− γ

1 + γ
∇u(x̂) · (x− x̂) +O(ε2) . (4.10)

4.2. Asymptotic expansion of the adjoint state. Let us propose again an ansatz for the
expansion of vε in the form [11]:

vε(x) = v(x) + wε(x) + ṽε(x)

= v(x̂) +∇v(x̂) · (x− x̂) +
1

2
∇∇v(ξ)(x− x̂) · (x− x̂) + wε(x) + ṽε(x) , (4.11)

where ξ is an intermediate point between x and x̂. On the boundary of the inclusion ∂Bε we
have

Jqε(vε)K · n = −JBqε(u)K · n⇒ ∂nvε|
Ω\Bε

− γ∂nvε|Bε
= −(1− γ)B∇u · n , (4.12)

with qε(ϕ) = −γεk∇ϕ. Thus, the normal derivative of the above expansion, evaluated on ∂Bε,
leads to

(1− γ)∇v(x̂) · n− ε(1 − γ)∇∇v(ξ)n · n+ ∂nwε(x)|
Ω\Bε

− γ∂nwε(x)|Bε
+

∂nṽε(x)|
Ω\Bε

− γ∂nṽε(x)|Bε
= −(1− γ)B∇u · n . (4.13)

Thus, we can choose wε such that

∂nwε(x)|
Ω\Bε

− γ∂nwε(x)|Bε
= −(1− γ)(∇v(x̂) +B∇u(x̂)) · n on ∂Bε , (4.14)

where we have expanded B∇u(x) in Taylor’s series around the center x̂ of the inclusion. Note
that from the construction of the adjoint state we have

−∆vε = div(B∇u) in Ω and −∆v = div(B∇u) in Ω , (4.15)

recalling that qε(ϕ) = −γεk∇ϕ and q(ϕ) = −k∇ϕ. The solution vε of the first equation should
be understood together with the transmission conditions on the interface ∂Bε. In addition,
vε = v = 0 on ΓD and ∂nvε = ∂nv = −B∇u · n on ΓN . It means that both boundary-value
problems associated to vε and v have the same source-terms, except, of course, on the boundary
of the inclusion ∂Bε. In particular, the transmission condition, namely ∂nvε|

Ω\Bε
− γ∂nvε|Bε

=
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−(1 − γ)B∇u · n on ∂Bε, does not depend on the parameter ε through the solution uε. Now,
the following exterior problem is considered, and formally obtained with ε→ 0:





Findwε, such that
divqε(wε) = 0 in R

2 ,
qε(wε) = −γεk∇wε

wε → 0 at ∞ ,
wε|

Ω\Bε
− wε|Bε

∂nwε|
Ω\Bε

− γ∂nwε|Bε

=
=

0
v̂

}
on ∂Bε ,

(4.16)

with v̂ = −(1− γ)(∇v(x̂)+B∇u(x̂)) ·n. The above boundary-value problem admits an explicit
solution, namely

wε(x)|
Ω\Bε

=
1− γ

1 + γ

ε2

‖x− x̂‖2
(∇v(x̂) +B∇u(x̂)) · (x− x̂) , (4.17)

wε(x)|Bε
=

1− γ

1 + γ
(∇v(x̂) +B∇u(x̂)) · (x− x̂) . (4.18)

Now we can construct ṽε in such a way that it compensates for the discrepancies introduced by
the higher-order terms in ε as well as by the boundary-layer wε on the exterior boundary ∂Ω.
It means that the remainder ṽε must be the solution to the following boundary-value problem:





Find ṽε, such that
divqε(ṽε) = 0 in Ω ,

qε(ṽε) = −γεk∇ṽε
ṽε = −ε2g on ΓD ,

qε(ṽε) · n = −ε2q(g) · n on ΓN ,
JṽεK

Jqε(ṽε)K · n
=
=

0
εh

}
on ∂Bε ,

(4.19)

with g = ε−2wε and h = k(1− γ)(∇∇v(ξ)n+B(∇∇u(ζ)n) ·n, where ζ is an intermediate point
between x and x̂. Once again, we clearly have ṽε = O(ε), since wε = O(ε2) on the exterior
boundary ∂Ω. However, this estimate can be improved. In fact, according to Lemma 7 in A,
with δε = ṽε, we have ‖ṽε‖H1(Ω) = O(ε2). Finally, the expansion for vε reads

vε(x)|
Ω\Bε

= v(x) +
1− γ

1 + γ

ε2

‖x− x̂‖2
(∇u(x̂) +B∇u(x̂)) · (x− x̂) +O(ε2) , (4.20)

vε(x)|Bε
= v(x) +

1− γ

1 + γ
(∇u(x̂) +B∇u(x̂)) · (x− x̂) +O(ε2) . (4.21)

5. Topological Derivative Evaluation

Now, we need to evaluate the integrals in formula (3.2) to collect the terms in powers of ε
and recognize the function f(ε). With these results, we can perform the limit passage ε → 0.
The integrals in (3.2) can be evaluated explicitly by using the expansions for the direct uε and
adjoint vε states, respectively given by (4.9,4.10) and (4.20,4.21). The idea is to introduce a
polar coordinate system (r, θ) with center at x̂. Then, we can write uε, vε and also the tensor
B in this coordinate system to evaluate the integrals explicitly. In particular, the first integral
in (3.2) leads to

−

∫

∂Bε

JΣε −∇uε ⊗Bqε(uε − u)Kn · n =

2πε

(
2αq(u(x̂)) · ∇v(x̂) +

1

2
Bq(u(x̂)) · ∇u(x̂) + αBq(u(x̂)) · ∇u(x̂) −

1

2
γ(1 + α)2Bq(u(x̂)) · ∇u(x̂) +

1

4
α2tr(B)q(u(x̂)) · ∇u(x̂)

)
+ o(ε) , (5.1)
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with the parameter α given by α = (1− γ)/(1 + γ). The second integral in (3.2) becomes

−

∫

Ω
Bqε(uε − u) · ∇u′ε = −2πε

(
1

2
α2tr(B)q(u(x̂)) · ∇u(x̂)

)
+ o(ε) , (5.2)

where u′ε is obtained simply by calculating the derivative of uε in (4.9,4.10) with respect to ε.
Finally, the topological derivative given by (1.2) leads to

DTψ(x̂) = lim
ε→0

1

f ′(ε)

[
2πε

(
2αq(u(x̂)) · ∇v(x̂) +

1

2
Bq(u(x̂)) · ∇u(x̂) + αBq(u(x̂)) · ∇u(x̂) −

1

2
γ(1 + α)2Bq(u(x̂)) · ∇u(x̂)−

1

4
α2tr(B)q(u(x̂)) · ∇u(x̂)

)
+ o(ε)

]
. (5.3)

where the remainder o(ε) comes out from the estimates derived in A and from the elliptic
regularity of u and v. Now, in order to extract the main term of the above expansion, we choose
f(ε) = πε2, which leads to the following theorem:

Theorem 3. The topological derivative of the shape functional (2.1) is given by

DTψ(x̂) = 2αq(u(x̂)) · ∇v(x̂) +
1

2
Bq(u(x̂)) · ∇u(x̂) + αBq(u(x̂)) · ∇u(x̂)−

1

2
γ(1 + α)2Bq(u(x̂)) · ∇u(x̂)−

1

4
α2tr(B)q(u(x̂)) · ∇u(x̂) ∀x̂ ∈ Ω , (5.4)

recalling that u and v are solutions to the direct (2.2) and adjoint (2.13) problems, respectively,
and α = (1− γ)/(1 + γ).

Remark 4. We observe that for B = I we have the energy shape functional. In this case, the
adjoint state reads v = −(u+ϕ), where ϕ is the lifting of the Dirichlet boundary data u on ΓD.
Since we can construct ϕ such that x̂ /∈ supp(ϕ), then the topological derivative becomes

DTψ(x̂) = −Pγq(u(x̂)) · ∇u(x̂) , (5.5)

where the polarization tensor Pγ is given by the following second order isotropic tensor

Pγ =
1− γ

1 + γ
I . (5.6)

Remark 5. We note that the obtained polarization tensor is isotropic because we are dealing
with circular inclusions. For the polarization tensor associated to arbitrary shaped inclusions the
reader may refer to [2], for instance.

Remark 6. Formally, we can take the limit cases γ → 0 and γ → ∞. For γ → 0, the inclusion
leads to an ideal insulator and the transmission condition on the boundary of the inclusion
degenerates to homogeneous Neumann boundary condition. In fact, in this case the polarization
tensor is given by

P0 = I . (5.7)

In addition, for γ → ∞, the inclusion leads to an ideal conductor and the polarization tensor is
given by

P∞ = −I . (5.8)
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Appendix A. Estimates for the Remainders

In this Section we proceed with the estimation of the remainders in the topological asymptotic
expansion used in the derivation of the topological derivative expression (5.4). In particular, we
study the asymptotic behavior of the remainders ũε in (4.8) and ṽε in (4.19). Before proceeding,
let us state the following result:

Lemma 7. Let δε be solution to the following variational problem:




Find δε ∈ Ũε, such that

−

∫

Ω
qε(δε) · ∇η = ε2

∫

ΓN

q(g) · n η + ε

∫

∂Bε

h η ∀η ∈ Ṽε ,

with qε(δε) = −γεk∇δε ,

(A.1)

where the set Ũε and the space Ṽε are defined as

Ũε := {ϕ ∈ H1(Ω) : JϕK = 0 on ∂Bε, ϕ|ΓD
= −ε2g} ,

Ṽε := {ϕ ∈ H1(Ω) : JϕK = 0 on ∂Bε, ϕ|ΓD
= 0} ,

with functions g and h independent of the small parameter ε. Then, we have the estimate
‖δε‖H1(Ω) = O(ε2) for the remainder.

Proof. By taking η = δε − ϕε in (A.1), where ϕε is the lifting of the Dirichlet boundary data
ε2g on ΓD, we have

−

∫

Ω
qε(δε) · ∇δε = ε2

∫

ΓN

q(g) · n δε + ε2
∫

ΓD

g q(δε) · n+ ε

∫

∂Bε

h δε . (A.2)

From the Cauchy-Schwarz inequality we obtain

−

∫

Ω
qε(δε) · ∇δε ≤ ε2‖q(g) · n‖H−1/2(ΓN )‖δε‖H1/2(ΓN )

+ ε2‖g‖H1/2(ΓD)‖q(δε) · n‖H−1/2(ΓD)

+ ε‖h‖H−1/2(∂Bε)
‖δε‖H1/2(∂Bε)

. (A.3)

Taking into account the trace theorem, we have

−

∫

Ω
qε(δε) · ∇δε ≤ ε2C1‖δε‖H1(Ω) + ε2C2‖∇δε‖L2(Ω) + ε‖h‖L2(Bε)‖δε‖H1(Bε)

≤ ε2C1‖δε‖H1(Ω) + ε2C3‖δε‖H1(Ω) + ε2C4‖δε‖H1(Ω)

≤ ε2C5‖δε‖H1(Ω) , (A.4)

where we have used the interior elliptic regularity of function δ. Finally, from the coercivity of
the bilinear form on the left-hand side of (A.1), namely,

c‖δε‖
2
H1(Ω) ≤ −

∫

Ω
qε(δε) · ∇δε , (A.5)

we obtain

‖δε‖H1(Ω) ≤ Cε2 , (A.6)

which leads to the result, with C = C5/c independent of the small parameter ε �

Corollary 8. By setting δε = ũε and δε = ṽε in Lemma 7, we get the estimates for both
remainders, namely

‖ũε‖H1(Ω) = O(ε2) and ‖ṽε‖H1(Ω) = O(ε2) . (A.7)
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