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Abstract. The topological derivative measures the sensitivity of a given shape functional
with respect to an infinitesimal singular domain perturbation. According to the literature,
the topological derivative has been fully developed for a wide range of one single physical
phenomenon modeled by partial differential equations. In addition, the topological asymptotic
analysis associated to multi-physics problems has been reported in the literature only on the level
of mathematical analysis of singularly perturbed geometrical domains. In this work, we present
the topological derivative in its closed form for the total potential mechanical energy associated
to a thermo-mechanical semi-coupled system, when a small circular inclusion is introduced at an
arbitrary point of the domain. In particular, we consider the linear elasticity system (modeled
by the Navier equation) coupled with the steady-state heat conduction problem (modeled by the
Laplace equation). The mechanical coupling term comes out from the thermal stress induced
by the temperature field. Since this term is non-local, we introduce a non-standard adjoint
state, which allows to obtain a closed form for the topological derivative. Finally, we provide
a full mathematical justification for the derived formulas and develop precise estimates for the
remainders of the topological asymptotic expansion.

1. Introduction

The topological derivative represents a first order asymptotic correction term of a given shape
functional with respect to a singular domain perturbation [18]. It has been applied in topology
design optimization [2], inverse problems [12], image processing [11], multi-scale constitutive
modeling [8], fracture mechanic sensitivity analysis [20] and damage evolution modeling [1]. See
also the book by [16] and references therein.

For the sake of completeness, we recall the basic concepts on topological sensitivity analysis.
Let us consider a bounded domain Ω ⊂ R

2, which is subject to a non-smooth perturbation
confined in a small region ωε(x̂) = x̂ + εω of size ε, as shown in fig. 1. Here, x̂ is an arbitrary
point of Ω and ω is a fixed bounded domain of R2. Associated to the domain Ω we introduce
a characteristic function x 7→ χ(x), x ∈ R

2, namely χ = 1Ω. Also, for the topologically
perturbed domain we can define a characteristic function of the form x 7→ χε(x̂;x). If the
perturbation is given by a perforation, the characteristic function can be written as χε(x̂) =
1Ω − 1ωε(x̂)

and the perforated domain is obtained now as Ωε = Ω \ ωε. Now, by assuming the

following topological asymptotic expansion of a given shape functional ψ(χε(x̂)), associated to
the topologically perturbed domain,

ψ(χε(x̂)) = ψ(χ) + f(ε)DTψ(x̂) + o(f(ε)) , (1.1)

the function x̂ 7→ DTψ(x̂) is called the topological derivative of ψ at x̂. In (1.1), ψ(χ) is the
shape functional associated to the original (unperturbed) domain and f(ε) is a positive function
such that f(ε) → 0, when ε→ 0. After rearranging (1.1) we have

ψ(χε(x̂))− ψ(χ)

f(ε)
= DTψ(x̂) +

o(f(ε))

f(ε)
. (1.2)

The limit passage ε→ 0 in the above expression leads to

DTψ(x̂) = lim
ε→0

ψ(χε(x̂))− ψ(χ)

f(ε)
. (1.3)
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Figure 1. The topological derivative concept.

Since we are dealing with singular domain perturbations, the shape functionals ψ(χε(x̂)) and
ψ(χ) are associated to topologically different domains. Therefore, the above limit is not trivial to
be calculated. In particular, we need to perform an asymptotic analysis of the shape functional
ψ(χε(x̂)) with respect to the small parameter ε. In order to calculate the topological derivative,
in this work we will apply the approach fully developed in the book by [16]. The method is based
on the following result, whose rigorous mathematical justification can be found in the paper by
[14]:

DTψ(x̂) = lim
ε→0

1

f ′(ε)

d

dε
ψ(χε(x̂)) . (1.4)

The derivative of ψ(χε(x̂)) with respect to ε can be seen as the sensitivity of ψ(χε(x̂)), in the
classical sense of [5] and [19], to the domain variation produced by an uniform expansion of the
perturbation ωε.

According to the literature, the topological derivative has been fully developed for a wide
range of one single physical phenomenon modeled by partial differential equations. In addition,
only a few works dealing with multi-physics problems have been reported in the literature, and,
in general, the derived formulas are presented in their abstract forms (see, for instance, the paper
by [4] on topological derivatives for piezoelectric materials. In this work, therefore, we derive
the topological derivative in its closed form for the total potential mechanical energy associated
to a thermo-mechanical semi-coupled system, when a small circular inclusion is introduced at an
arbitrary point of the domain. In particular, we consider the linear elasticity system (modeled
by the Navier equation) coupled with the steady-state heat conduction problem (modeled by the
Laplace equation). The mechanical coupling term comes out from the thermal stress induced by
the temperature field. Since this term is non-local, we introduce a non-standard adjoint state,
which simplifies the analysis allowing to obtain a closed form for the topological derivative.
Finally, we provide a full mathematical justification for the derived formula and develop precise
estimates for the remainders of the topological asymptotic expansion. We note that this result
can be applied in technological research areas such as multi-physic topology design of structures
under mechanical and/or thermal loads.

This paper is organized as follows. Section 2 describes the model associated to a thermo-
mechanical semi-coupled problem. The topological sensitivity analysis is presented in Section 3,
where the main result of this work is derived: the topological derivative in its closed form for
the total potential mechanical energy associated to a thermo-mechanical semi-coupled system.
Also in this section, a computational framework designed to the numerical validation of the
topological derivative formula is presented. The paper ends in Section 4 where concluding
remarks are presented.

2. Formulation of the problem

In this work the topological derivative of the total potential energy associated to the mechan-
ical problem submitted to thermal stresses is derived. The topologically perturbed domain is
obtained when a small hole is introduced inside the geometrical domain. Then, the resulting
void is filled by an inclusion with a contrast on the elastic, thermal and thermal-expansion ma-
terial properties. Therefore, we need to formulate the problems associated to both original and
topologically perturbed domains.
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2.1. Unperturbed problem. Consider an open and bounded domain Ω ∈ R
2 representing an

elastic solid body subject to a linear thermo-mechanical deformation process. Assuming small
deformation and variations of temperatures, the functional that represents the total potential
energy of the mechanical system for a given temperature field θ is written as:

Jχ(u, θ) :=
1

2

∫

Ω
σ(u) · ∇us −

∫

Ω
Q(θ) · ∇us −

∫

ΓNu

t̄ · u, (2.1)

where u represents the displacement field and t̄ is a external traction acting on boundary ΓNu .
The displacement field on the boundary ΓDu satisfies u|ΓDu

= ū, being ū a prescribed displace-

ment. Moreover, note that ΓDu ∩ΓNu = ∅ and ΓDu ∪ΓNu = ∂Ω. The Cauchy stress tensor σ(u)
in (2.1) is defined as:

σ(u) := C∇us , (2.2)

where ∇us is used to denote the symmetric part of the gradient of the displacement field u, i.e.

∇us :=
1

2
(∇u+ (∇u)⊤) . (2.3)

The induced thermal stress tensor Q(θ) in (2.1) is defined as:

Q(θ) := CBθ . (2.4)

Therefore the total stress, i.e. the contribution of the mechanical and thermal stresses, is
defined as

S(u, θ) = σ(u)−Q(θ). (2.5)

In addition, C denotes the four-order elastic tensor and B denotes the second-order thermo-
elastic tensor. In the case of isotropic elastic body, theses tensors are given by:

C = 2µII + λ(I ⊗ I) and B = αI ⇒ CB = 2α(λ + µ)I, (2.6)

with µ and λ denoting the Lame’s coefficients, and α the thermal expansion coefficient. In terms
of the engineering constant E (Young’s modulus) and ν (Poisson’s ratio) the above constitutive
response can be written as:

C =
E

1− ν2
[(1− ν)II + ν(I ⊗ I)] and CB =

αE

1− ν
I . (2.7)

Considering the previous definitions, we have that the field u is the solution of the following
variational problem: given the temperature field θ, find u ∈ UM , such that

∫

Ω
σ(u) · ∇ηs =

∫

Ω
Q(θ) · ∇ηs +

∫

ΓNu

t̄ · η ∀η ∈ VM . (2.8)

In the variational problem (2.8), the set UM and the space VM are defined as

UM :=
{
φ ∈ H1(Ω;R2) : φ = ū on ΓDu

}
, (2.9)

VM :=
{
φ ∈ H1(Ω;R2) : φ = 0 on ΓDu

}
. (2.10)

Moreover, the temperature field θ must satisfy the following variational problem: find θ ∈ UT ,
such that ∫

Ω
q(θ) · ∇η =

∫

ΓNθ

q̄η ∀η ∈ VT , (2.11)

where q̄ is a prescribed heat flux on the Neumann boundary ΓNθ
. In the Dirichlet boundary

ΓDθ
there is a prescribed temperature denoted as θ̄. Then, ΓDθ

∩ΓNθ
= ∅ and ΓDθ

∪ΓNθ
= ∂Ω.

The heat flux operator q(θ) is defined as

q(θ) = −K∇θ, (2.12)

where K is an second order tensor representing the thermal conductivity of the medium. In the
isotropic case, the tensor K can be written as

K = kI, (2.13)
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being k the thermal conductivity coefficient. In the variational problem (2.11), the set UT and
the space VT are defined as:

UT :=
{
φ ∈ H1(Ω) : φ = θ̄ on ΓDθ

}
, (2.14)

VT :=
{
φ ∈ H1(Ω) : φ = 0 on ΓDθ

}
. (2.15)

Remark 1. In the case of a general thermo-elasticity model, the strain rate induces a change
in the temperature of the body, leading to a fully coupled system. In our simplified setting, the
temperature is completely independent of the mechanical strains, which leads to the so-called
thermo-mechanical semi-coupled system. For the mathematical analysis of a fully coupled piezo-
electric system in the context of singularly perturbed geometrical domains, see [4].

Finally, in order to simplify further analysis, the following auxiliary problem is introduced:
find ϕ ∈ VT , such that:

∫

Ω
q(ϕ) · ∇η =

∫

Ω
Q(η) · ∇us ∀η ∈ VT . (2.16)

Note that ϕ can be seen as the adjoint state associated to the thermal stress induced by the
temperature θ (see, for instance, [19].

2.2. Perturbed problem. Considering the introduction of a circular inclusion, denoted as
ωε(x̂) := Bε(x̂), with radius ε and centered at point x̂ in Ω, the total potential energy functional
associated to the perturbed domain of the mechanical system for a given temperature field θε
can be written as:

Jχε(uε, θε) :=
1

2

∫

Ω
σε(uε) · ∇u

s
ε −

∫

Ω
Qε(θε) · ∇u

s
ε −

∫

ΓNu

t̄ · uε, (2.17)

where uε and θε denotes, respectively, the displacement and temperature fields, both associated
to the perturbed system. In addition, σε(uε) and Qε(θε) are used to denote the mechanical and
the induced thermal stresses tensors associated to the perturbed problem. These tensors are
defined as:

σε(uε) := γMε C∇usε and Qε(θε) := γMε γCε CBθε, (2.18)

and the corresponding total stress operator Sε(uε, θε) associated to the perturbed problem is
given by

Sε(uε, θε) = σε(uε)−Qε(θε). (2.19)

The contrast parameters in the material properties γMε and γCε are defined as

γMε :=

{
1 in Ω \ Bε

γM in Bε
and γCε :=

{
1 in Ω \ Bε

γC in Bε
. (2.20)

with γM and γC used to denote the values of the contrast on the Young modulus and thermal-
expansion coefficient, respectively. In the perturbed configuration, the displacement field satisfies
the variational problem: given the temperature field θε, find uε ∈ UM

ε , such that
∫

Ω
σε(uε) · ∇η

s =

∫

Ω
Qε(θε) · ∇η

s +

∫

ΓNu

t̄ · η ∀η ∈ VM
ε . (2.21)

The set UM
ε and the space VM

ε in the variational problem (2.21) are defined as

UM
ε :=

{
φ ∈ UM : JφK = 0 on ∂Bε

}
, (2.22)

VM
ε :=

{
φ ∈ VM : JφK = 0 on ∂Bε

}
, (2.23)

where the operator J(·)K is introduced to denote the jump of (·) across the boundary of the
perturbation.

In addition, the thermal equilibrium problem can be written in the variational form as: find
θε ∈ UT

ε , such that ∫

Ω
qε(θε) · ∇η =

∫

ΓNθ

q̄η ∀η ∈ VT
ε , (2.24)
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with the thermal flux in the perturbed domain being defined as:

qε(θε) := −γTε K∇θε , (2.25)

where γTε is the parameter that define the contrast between the thermal (constitutive) properties
of the matrix and the inclusion, and is defined by:

γTε :=

{
1 in Ω \ Bε

γT in Bε
, (2.26)

being γT the value of the contrast on the thermal conductivity coefficient. In the variational
problem (2.24) the set UT

ε and the space VT
ε are defined as:

UT
ε :=

{
φ ∈ UT : JφK = 0 on ∂Bε

}
, (2.27)

VT
ε :=

{
φ ∈ VT : JφK = 0 on ∂Bε

}
. (2.28)

Finally, the auxiliary problem associated to the topologically perturbed domain is written as:
find ϕε ∈ VT

ε , such that:
∫

Ω
qε(ϕε) · ∇η =

∫

Ω
Qε(η) · ∇u

s ∀η ∈ VT
ε , (2.29)

where ϕε can be interpreted as the adjoint state associated to the thermal stress induced by the
perturbed temperature θε (see, for instance, [19].

3. Topological Sensitivity Analysis

In order to proceed, it is convenient to introduce an analogy to classical continuum mechanics
[9] where by the shape change velocity field V is identified with the classical velocity field of
a deforming continuum and ε is identified as a time parameter. Since we are dealing with
an uniform expansion of the inclusion Bε, the shape velocity field V satisfies: V |∂Ω = 0 and
V |∂Bε = −n. Then, the shape derivative of the functional (2.17) can be written as:

J̇χε(uε, θε) =

(
1

2

∫

Ω
σε(uε) · ∇u

s
ε −

∫

Ω
Qε(θε) · ∇u

s
ε −

∫

ΓNu

t̄ · uε

)
·

=
1

2

(∫

Ω
σε(uε) · ∇u

s
ε

)
·

−

(∫

Ω
Qε(θε) · ∇u

s
ε

)
·

−

∫

ΓNu

t̄ · u̇ε , (3.1)

where we use both notations (·)· and ˙(·) to represent the total derivative with respect to the
parameter ε. Therefore, we can state the following propositions:

Proposition 1. Let Jχε(uε, θε) be the functional defined by (2.17). Then, its derivative with
respect to the small parameter ε is given by

J̇χε(uε, θε) =

∫

Ω
Σε · ∇V −

∫

Ω
Qε(θ̇ε) · ∇ (uε − u)s , (3.2)

where V is the shape change velocity field defined in Ω that satisfies V |∂Ω = 0 and V |∂Bε = −n;

θ̇ε is the material derivative of the temperature field and Σε is a generalization of the classical
Eshelby momentum-energy tensor [6], given - for this particular case - by

Σε :=
1

2
((Sε(uε, θε)−Qε(θε)) · ∇u

s
ε)I − (∇uε)

⊤Sε(uε, θε)

+ [(qε(θε) · ∇ϕε)I − 2qε(θε)⊗s ∇ϕε] , (3.3)

with uε, θε and ϕε denoting the solutions to (2.21), (2.24) and to the auxiliary problem (2.29).
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Proof. By making use of Reynolds’ Transport Theorem [9, 19] we obtain the identities

(∫

Ω
σε(uε) · ∇u

s
ε

)
·

=

∫

Ω
(2σε(uε) · ∇u̇

s
ε − 2σε(uε) · (∇uε∇V )s

+

∫

Ω
(σε(uε) · ∇u

s
ε)divV ) , (3.4)

(∫

Ω
Qε(θε) · ∇u

s
ε

)
·

=

∫

Ω
(Qε(θε) · ∇u̇

s
ε −Qε(θε) · (∇uε∇V )s

+

∫

Ω
(Qε(θε) · ∇u

s
ε)divV +Qε(θ̇ε) · ∇u

s
ε . (3.5)

Then, by considering the above results in (3.1), the shape derivative of the functional Jχε(uε, θε)
is given by

J̇χε(uε, θε) =

∫

Ω

(
1

2
((Sε(uε, θε)−Qε(θε)) · ∇u

s
ε)I − (∇uε)

⊤Sε(uε, θε)

)
· ∇V

−

∫

Ω
Qε(θ̇ε) · ∇u

s
ε +

∫

Ω
Sε(uε, θε) · ∇u̇

s
ε −

∫

ΓNu

t̄ · u̇ε . (3.6)

Since u̇ε ∈ UM
ε , see the work made by [19], the terms in u̇ε satisfy the state equation (2.21),

then

J̇χε(uε, θε) =

∫

Ω

(
1

2
((Sε(uε, θε)−Qε(θε)) · ∇u

s
ε)I − (∇uε)

⊤Sε(uε, θε)

)
· ∇V

−

∫

Ω
Qε(θ̇ε) · ∇u

s
ε. (3.7)

Now, adding the term ±
∫
ΩQε(θ̇ε) · ∇u

s in the above result, the derivative J̇χε(uε, θε) can be
written alternatively as

J̇χε(uε, θε) =

∫

Ω

(
1

2
((Sε(uε, θε)−Qε(θε)) · ∇u

s
ε)I − (∇uε)

⊤Sε(uε, θε)

)
· ∇V

−

∫

Ω
Qε(θ̇ε) · ∇(uε − u)s −

∫

Ω
Qε(θ̇ε) · ∇u

s . (3.8)

On the other hand, the derivative of the state equation (2.24) with respect to the parameter ε
is given by

∫

Ω
qε(θ̇ε) · ∇η = −

∫

Ω
[(qε(θε) · ∇η)I − 2qε(θε)⊗s ∇η] · ∇V ∀η ∈ VT

ε . (3.9)

Next, taking η = ϕε in the above expression, we obtain
∫

Ω
qε(θ̇ε) · ∇ϕε = −

∫

Ω
[(qε(θε) · ∇ϕε)I − 2qε(θε)⊗s ∇ϕε] · ∇V, (3.10)

and tacking η = θ̇ε in the auxiliary problem (2.29), we obtain
∫

Ω
qε(ϕε) · ∇θ̇ε =

∫

Ω
Qε(θ̇ε) · ∇u

s . (3.11)

By using the definition of the heat flux operator (2.25) and comparing the two last expressions,
the following identity holds

∫

Ω
Qε(θ̇ε) · ∇u

s = −

∫

Ω
[(qε(θε) · ∇ϕε)I − 2qε(θε)⊗s ∇ϕε] · ∇V . (3.12)
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From the above result, the derivative of the shape functional Jχε(uε, θε) can be written equiva-
lently in the following form:

J̇χε(uε, θε) =

∫

Ω

(
1

2
((Sε(uε, θε)−Qε(θε)) · ∇u

s
ε)I − (∇uε)

⊤Sε(uε, θε)

)
· ∇V

+

∫

Ω
[(qε(θε) · ∇ϕε)I − 2qε(θε)⊗s ∇ϕε] · ∇V

−

∫

Ω
Qε(θ̇ε) · ∇(uε − u)s , (3.13)

which leads to the result with Σε given by (3.3). �

Proposition 2. Let Jχε(uε, θε) be the functional defined by (2.17). Then, its derivative with
respect to the small parameter ε is given by

J̇χε(uε, θε) = −

∫

∂Bε

JΣεKn · n−

∫

Ω
Qε(θ

′
ε) · ∇(uε − u)s , (3.14)

where V is the shape change velocity field defined in Ω that satisfies V |∂Ω = 0 and V |∂Bε = −n;
θ′ε is the spatial derivative of the temperature field and Σε is a generalization of the classical
Eshelby momentum-energy tensor presented in (3.3).

Proof. By making use of the Reynolds’ Transport Theorem [9, 19], we obtain the following
identities:

(∫

Ω
σε(uε) · ∇u

s
ε

)
·

=

∫

Ω
2(σε(uε) · ∇u̇

s
ε + div(σε(uε)) · (∇uε)V )

+

∫

∂Ω

[
(σε(uε) · ∇u

s
ε)I − 2(∇uε)

⊤σε(uε)
]
n · V

+

∫

∂Bε

J(σε(uε) · ∇u
s
ε)I − 2(∇uε)

⊤σε(uε)Kn · V, (3.15)

(∫

Ω
Qε(θε) · ∇u

s
ε

)
·

=

∫

Ω
(Qε(θε) · ∇u̇

s
ε +Qε(θ

′
ε) · ∇u

s
ε)

+

∫

Ω
div(Qε(θε)) · (∇uε)V

−

∫

∂Ω

[
(∇uε)

⊤Qε(θε)− (Qε(θε) · ∇u
s
ε)I
]
n · V

−

∫

∂Bε

J(∇uε)
⊤Qε(θε)− (Qε(θε) · ∇u

s
ε)IKn · V . (3.16)

Introducing the above expressions in the definitions of the shape derivative (3.1) and taking into
account that: (i) u̇ε ∈ UM

ε , see the work made by [19], the terms in u̇ε satisfy the state equation
(2.21); (ii) divSε(uε, θε) = 0 in Ω ; (iii) adding the term ±

∫
ΩQε(θ

′
ε) · ∇u

s ; and (iv) the shape
change velocity field V defined in Ω satisfies V |∂Ω = 0 and V |∂Bε = −n; then

J̇χε(uε, θε) = −

∫

∂Bε

J
1

2
((Sε(uε, θε)−Qε(θε)) · ∇u

s
ε)I − (∇uε)

⊤Sε(uε, θε)Kn · n

−

∫

Ω
Qε(θ

′
ε) · ∇(uε − u)s −

∫

Ω
Qε(θ

′
ε) · ∇u

s. (3.17)
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By using the relation between the material and spatial derivatives of the temperature field, the
above expression can be written as,

J̇χε(uε, θε) = −

∫

∂Bε

J
1

2
((Sε(uε, θε)−Qε(θε)) · ∇u

s
ε)I − (∇uε)

⊤Sε(uε, θε)Kn · n

−

∫

Ω
Qε(θ

′
ε) · ∇(uε − u)s −

∫

Ω
Qε(θ̇ε) · ∇u

s

+

∫

Ω
Qε(∇θε · n) · ∇u

s . (3.18)

On the other hand, the derivative of the state equation (2.24) with respect to parameter ε is
given by

∫

Ω
qε(θ̇ε) · ∇η = −

∫

Ω
[(qε(θε) · ∇η)I − 2qε(θε)⊗s ∇η] · ∇V ∀η ∈ VT

ε . (3.19)

Next, tacking η = ϕε in the above expression, we obtain
∫

Ω
qε(θ̇ε) · ∇ϕε = −

∫

Ω
[(qε(θε) · ∇ϕε)I − 2qε(θε)⊗s ∇ϕε] · ∇V , (3.20)

and tacking η = θ̇ε in the auxiliary problem (2.29), we obtain
∫

Ω
qε(ϕε) · ∇θ̇ε =

∫

Ω
Qε(θ̇ε) · ∇u

s . (3.21)

By using the definition of the heat flux operator (2.25) and comparing the two last expressions,
the following identity holds

∫

Ω
Qε(θ̇ε) · ∇u

s = −

∫

Ω
[(qε(θε) · ∇ϕε)I − 2qε(θε)⊗s ∇ϕε] · ∇V. (3.22)

From the above result, the derivative of the shape functional Jχε(uε, θε) can be written equiva-
lently in the following form,

J̇χε(uε, θε) = −

∫

∂Bε

J
1

2
((Sε(uε, θε)−Qε(θε)) · ∇u

s
ε)I − (∇uε)

⊤Sε(uε, θε)Kn · n

+

∫

Ω
[(qε(θε) · ∇ϕε)I − 2qε(θε)⊗s ∇ϕε] · ∇V

−

∫

Ω
Qε(θ

′
ε) · ∇(uε − u)s +

∫

Ω
Qε(∇θε · n) · ∇u

s . (3.23)

By integrating by parts the second term in the above expression and using the definition of the
Eshelby’s tensor Σε, we have

J̇χε(uε, θε) = −

∫

∂Bε

JΣεKn · n−

∫

Ω
Qε(θ

′
ε) · ∇(uε − u)s

−

∫

Ω
div[(qε(θε) · ∇ϕε)I − 2qε(θε)⊗s ∇ϕε] · V

+

∫

Ω
Qε(∇θε · V ) · ∇us . (3.24)

Taking into account the state equation (2.24) and the auxiliary problem (2.29), we observe that
the second term in the above expression satisfies the following identity

∫

Ω
div[(qε(θε) · ∇ϕε)I − 2qε(θε)⊗s ∇ϕε] · V =

∫

Ω
Qε(∇θε · V ) · ∇us . (3.25)

Then, the lats two terms in (3.24) vanish, leading to the result. �
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Corollary 1. By considering the relation between the material and spatial derivative of the
temperature field, (3.2) can be written as:

J̇χε(uε, θε) =

∫

Ω
Σε · ∇V −

∫

Ω
Qε(θ

′
ε) · ∇(uε − u)s −

∫

Ω
Qε(∇θε · V ) · ∇(uε − u)s. (3.26)

By integrating by part the first term of the above expression and using the restriction of the
velocity field V on the boundaries ∂Ω and ∂Bε, we obtain

J̇χε(uε, θε) = −

∫

∂Bε

JΣεKn · n−

∫

Ω
divΣε · V −

∫

Ω
Qε(θ

′
ε) · ∇(uε − u)s

−

∫

Ω
Qε(∇θε · V ) · ∇(uε − u)s . (3.27)

By comparing (3.14) with (3.27) and recalling that both identities are valid for all V ∈ Ω, the
follow result holds true∫

Ω
(div(Σε) + γMε γCε (CB · ∇(uε − u)s)∇θε) · V = 0 ∀V ∈ Ω, (3.28)

Thus, the equation for the balance of the configurational forces [10] can be written as:

div(Σε) = −γMε γCε (CB · ∇(uε − u)s)∇θε in Ω. (3.29)

Note that the first term of the derivative J̇χε(uε, θε) in (3.14) is given by an integral concen-
trated on ∂Bε depending on the solution to (2.21), (2.24) and (2.29). The second term, given
by a integral over all domain Ω, will be treated carefully (see A).

To analytically solve the integrals expression of the derivative J̇χε(uε, θε) it is necessary to
perform an asymptotic analysis of the solutions of the PDE’s involved in these coupled problems.
In order to simplify the analysis, let us use the linearity property of the shape functional with
respect to the solution of the thermal problem (2.24) and split the analysis in two cases: (i)
γT = 1 and (ii) γM = γC = 1.

3.1. Case γT = 1. For this particular case, γT = 1, we have that the temperature field is not
perturbed by the presence of the inclusion Bε in the mechanical problem. Then, the temperature
for the unperturbed and perturbed problems coincides, i.e. θε = θ. Thus, the derivative of the
shape functional can be written as:

J̇χε(uε, θ) = −

∫

∂Bε

JΣεKn · n

= −

∫

∂Bε

J
1

2
((Sε(uε, θ)−Qε(θ)) · ∇u

s
ε)I − (∇uε)

⊤Sε(uε, θ)Kn · n . (3.30)

In order to obtain an explicit expression for the perturbed stress field, we consider the following
ansatz for the displacement field uε:

uε(x) = u(x) + wε(x/ε) + ũε(x), (3.31)

where u(x) is the solution of the unperturbed problem in Ω, wε(x/ε) the solution to an exterior
perturbed problem in R

2 and ũε(x) the remainder, solution to a perturbed problem in Ω. The
terms in the above expansion requires additional explanation. The function wε(x/ε) decays to
zero at the infinity, i.e., wε → 0 at ∞, and compensates the discrepancy introduced by the lower
order term of the Taylor series expansion of u around x̂. The remainder ũε(x) is introduced
to compensate the discrepancies left by wε on the exterior boundary ∂Ω as well as by the
higher order term of the Taylor series expansion of u in the neighborhood of Bε(x̂). Then, the
mechanical stress satisfies the identity

σε(uε) = γMε C∇us + γMε C∇ws
ε + γMε C∇ũsε . (3.32)

Moreover, by introducing the term −Qε(θ) at both sides of the above expression, the stress
field associated to the perturbed domain Sε(uε, θ) admits the following asymptotic expansion

Sε(uε, θ) = γMε σ(u) + σε(wε) + σε(ũε)− γMε γCε Q(θ) , (3.33)
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where σε(wε) is the solution of the exterior problem




div(σε(wε)) = 0 in R
2

σε(wε) = γMε C∇ws
ε

σε(wε) → 0 at ∞
Jσε(wε)Kn = −su on ∂Bε

, (3.34)

and the residue ũε satisfies the equation




div(σε(ũε)) = 0 in Ω \ Bε

div(σε(ũε)) = (1− γC)γMCB∇θ in Bε

σε(ũε) = γMε C∇ũsε
ũε = −wε on ∂ΓDu

σε(ũε)n = −σε(wε)n on ∂ΓNu

Jσε(ũε)Kn = εhu on ∂Bε

, (3.35)

which has the following estimate ‖ũε‖H1(Ω;R2) = o(ε) (see A). Moreover, the functions su and
hu in (3.34) and (3.35), respectively, are given by

su := (1− γM )σ(u(x̂))n− (1− γMγC)Q(θ(x̂))n , (3.36)

hu := (1− γM )(∇σ(u(ζ))n)n − (1− γMγC)(∇Q(θ(ξ))n)n , (3.37)

where the points ζ and ξ belong to the interval (x, x̂).
By considering a polar system of coordinates (r, φ) centered at point x̂ (center of the inclusion

Bε) and aligned with the principal directions of the tensor S(u, θ) associated to the original
domain Ω, the components of the tensor σε(wε) are given by (see, for instance, [13]:

• Exterior solution (r ≥ ε)

σε(wε)
rr = −

1− γM

1 + aγM
ε2

r2

(
σ1 + σ2

2

)

−
1− γM

1 + bγM
ε2

r2

(
4− 3

ε2

r2

)(
σ1 − σ2

2

)
cos 2φ

+
1− γMγC

1 + aγM
ε2

r2

(
Q1 +Q2

2

)
, (3.38)

σε(wε)
φφ =

1− γM

1 + aγM
ε2

r2

(
σ1 + σ2

2

)
− 3

1− γM

1 + bγM
ε4

r4

(
σ1 − σ2

2

)
cos 2φ

−
1− γMγC

1 + aγM
ε2

r2

(
Q1 +Q2

2

)
, (3.39)

σε(wε)
φr = −

1− γM

1 + bγM
ε2

r2

(
2− 3

ε2

r2

)(
σ1 − σ2

2

)
sin 2φ . (3.40)

• Interior solution (0 < r < ε)

σε(wε)
rr =

aγM (1− γM )

1 + aγM

(
σ1 + σ2

2

)
+
bγM (1− γM )

1 + bγM

(
σ1 − σ2

2

)
cos 2φ

−
aγM (1− γMγC)

1 + aγM

(
Q1 +Q2

2

)
, (3.41)

σε(wε)
φφ =

aγM (1− γM )

1 + aγM

(
σ1 + σ2

2

)
−
bγM (1− γM )

1 + bγM

(
σ1 − σ2

2

)
cos 2φ

−
aγM (1− γMγC)

1 + aγM

(
Q1 +Q2

2

)
, (3.42)

σε(wε)
φr = −

bγM(1− γM )

1 + bγM

(
σ1 − σ2

2

)
sin 2φ . (3.43)
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where σ1,2 and Q1,2 are, respectively, the principal stress associated to the tensor σ(u) and Q(θ)
of the unperturbed domain Ω, evaluated at the point x̂ ∈ Ω. In addition, the constants a and b
in (3.38) to (3.43) depend only on Poisson’s ratio ν of the matrix, and are given by

a =
1 + ν

1− ν
and b =

3− ν

1 + ν
. (3.44)

Finally, using the asymptotic expansions presented in (3.38) to (3.43), we have that the

derivative J̇χε is given by the following expression:

J̇χε(uε, θ) = −
πε

E

(
1− γM

1 + bγM

)[
4σ(u) · σ(u) +

γM (b− 2a)− 1

1 + aγM
(trσ(u))2

]

−
πε

2E

(
1− γMγC

1 + aγM

)[
(1− γMγC)(1 + ν)(trQ(θ))2 − 4trσ(u)trQ(θ)

]

+o(ε), (3.45)

where tr(·) denotes the trace operator of tensor (·).

3.2. Case γM = 1 and γC = 1. In this case the restriction γM = 1 and γC = 1 is introduced
in expression (3.14), then the derivative of the shape functional Jχε(uε, θε) is given by:

J̇χε(uε, θε) =

∫

∂Bε

J(qε(θε) · ∇ϕε)I − 2qε(θε)⊗s ∇ϕεKn · n+ E(ε), (3.46)

where the term E(ε) is given by

E(ε) = −

∫

Ω
Qε(θ

′
ε) · ∇(uε − u)s. (3.47)

The temperature field θε associated to the perturbed problem admits the following asymptotic
expansion:

θε(x) = θ(x) + vε(x/ε) + θ̃ε(x), (3.48)

where θ(x) is the solution of the unperturbed problem in Ω, vε(x/ε) the solution to an exterior

perturbed problem in R2 and θ̃ε(x) the remainder, solution to a perturbed problem in Ω. The
function vε(x/ε) is such that vε → 0 at ∞ and it compensates the discrepancy left by the lower

order term of the Taylor series expansion of θ in the neighborhood of x̂. The remainder θ̃ε(x)
compensates the discrepancies introduced by vε on the exterior boundary ∂Ω and by the higher
order term of the Taylor series expansion of θ around Bε(x̂). In particular, vε is the solution of
the exterior problem





div(qε(vε)) = 0 in R
2

qε(vε) = −γTε K∇vε
vε → 0 at ∞

JvεK = 0 on ∂Bε

Jqε(vε)K · n = −(1− γT )∇θ(x̂) · n on ∂Bε

, (3.49)

and the remainder θ̃ε must be satisfies the following equation:




div(qε(θ̃ε)) = 0 in Ω

qε(θ̃ε) = −γTε K∇θ̃ε
θ̃ε = −vε on ΓDθ

qε(θ̃ε) · n = −qε(vε) · n on ΓNθ

Jqε(θ̃ε)K · n = ε(1 − γT )(∇q(θ(ζ))n) · n on ∂Bε

, (3.50)

which has the following estimate ‖θ̃ε‖H1(Ω) = o(ε) (see A). Moreover, the point ζ in (3.50)
belongs to the interval (x, x̂). In addition, the solution vε to the exterior problem can be
obtained by using a standard separation of variables technique, together with the Fourier series
method. Then, the solution of the problem (3.49) is explicitly written in compact notation as:
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• Exterior solution (r ≥ ε)

vε(x/ε) =
1− γT

1 + γT
ε2

‖x− x̂‖2
∇θ(x̂) · (x− x̂). (3.51)

• Interior solution (0 < r < ε)

vε(x/ε) =
1− γT

1 + γT
∇θ(x̂) · (x− x̂). (3.52)

Following the same steps as before, we assume that the field ϕε, solution of the auxiliary
problem (2.29), admits an asymptotic expansion of the form

ϕε(x) = ϕ(x) + pε(x/ε) + ϕ̃ε(x), (3.53)

where pε is the solution of the exterior problem




div(qε(pε)) = 0 in R
2

qε(pε) = −γTε K∇pε
pε → 0 at ∞

JpεK = 0 on ∂Bε

Jqε(pε)K · n = −(1− γT )∇ϕ(x̂) · n on ∂Bε

, (3.54)

and the remainder ϕ̃ε must be satisfies the following equation:




div(qε(ϕ̃ε)) = 0 in Ω \ Bε

div(qε(ϕ̃ε)) = −(1− γT )CB · ∇us in Bε

qε(ϕ̃ε) = −γTε K∇ϕ̃ε

ϕ̃ε = −pε on ΓDθ

qε(ϕ̃ε) · n = −qε(pε) · n on ΓNθ

Jqε(ϕ̃ε)K · n = ε(1− γT )(∇q(ϕ(ξ))n) · n on ∂Bε

, (3.55)

which has the following estimate ‖ϕ̃ε‖H1(Ω) = o(ε) (see A). Moreover, the point ξ in (3.55)
belongs to the interval (x, x̂). In addition, by applying separation of variables technique and the
Fourier series method, the solution ϕε to the exterior problem (3.54) can be explicitly written
in compact notation as:

• Exterior solution (r ≥ ε)

pε(x/ε) =
1− γT

1 + γT
ε2

‖x− x̂‖2
∇ϕ(x̂) · (x− x̂). (3.56)

• Interior solution (0 < r < ε)

pε(x/ε) =
1− γT

1 + γT
∇ϕ(x̂) · (x− x̂). (3.57)

Finally, using the asymptotic expansions presented in (3.51), (3.52), (3.56) and (3.57), and
recalling the estimate for (3.47) (see A); we have that the derivative of the functional Jχε(uε, θε)
is given by the following expression:

J̇χε(uε, θε) = −4πε
1− γT

1 + γT
∇θ · ∇ϕ+ o(ε). (3.58)

3.3. Topological Derivative . In order to calculate the topological derivative, we shall adopt
the methodology developed in [15], whereby the topological derivative is obtained as

DT (x̂) = lim
ε→0

1

f ′(ε)
J̇χε(uε, θε), (3.59)

where the function f(ε) is the size of the perturbation, i.e. f(ε) = πε2 ⇒ f ′(ε) = 2πε.
Due to the linearity property of the shape functional with respect to the thermal problem

(2.24), it is possible to write the topological derivative of the functional Jχε(uε, θε) based on
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the results given in (3.45) and (3.58). Then, the final expression of the topological derivative
becomes a scalar function defined over the unperturbed domain Ω, that is

DT (x̂) = −
1

2E

(
1− γM

1 + bγM

)[
4σ(u) · σ(u) +

γM (b− 2a)− 1

1 + aγM
(trσ(u))2

]

−
1

4E

(
1− γMγC

1 + aγM

) [
(1− γMγC)(1 + ν)(trQ(θ))2 − 4trσ(u)trQ(θ)

]

−2
1− γT

1 + γT
∇θ · ∇ϕ . (3.60)

Notice that the first term is classic in the topological asymptotic analysis for the elasticity
problem. The linearity property mentioned previously appears explicitly in the last term of
the above results, see term involving the contrast parameter γT . On the other hand, the non-
linear dependence of the problem with the thermo-elastic constitutive properties appears, also
explicitly, in the term with the contrast parameters γMγC . These two last terms represent the
contribution of the thermal problem to the elastic stress problem.

3.4. Numerical validation . The analytical formula for the topological derivative presented
in (3.60), can be validated by using the computational framework described in this section. To
this end, we define (for a finite value of ε) the function gε(x̂) as:

gε(x̂) :=
ψ(χε(x̂))− ψ(χ)

f(ε)
. (3.61)

Clearly, the above definition have the following property,

lim
ε→0

gε(x̂) = DT (x̂) . (3.62)

A numerical approximation of DT (x̂) can be obtained by calculating the functions ψ(χε(x̂))
and ψ(χ), for a sequences of decreasing values of ε and then using (3.61) to compute the corre-
sponding estimates gε(x̂) for DT (x̂). The values of the function ψ are computed numerically by
means of standard finite element procedure for the elasticity problem with thermal stresses. The
domain considered in the verification is a unit square with material properties given by: Young’s
modulus E = 1, Poisson’s ratio ν = 1/3, thermal conductivity k = 1 and thermal expansion
coefficient α = 1. The perturbed domains are obtained by introducing circular inclusions of
radii

ε ∈ {0.160, 0.080, 0.040, 0.010, 0.005}, (3.63)

centered at x̂ = (0.5, 0.5), with the origin of the coordinate system positioned at the bottom left
corner. The finite element mesh used to discretise the perturbed domain contains a total number
of 962560 three-nodded elements and 481921 nodes. To solve the thermal problem, we set the
temperature θ̄ = 0 on the boundary denoted as ΓDθ

. On the boundary ΓNθ
, an external heat

flux q̄ = 1 is prescribed, see fig. 2(a). In addition, the remainder part of the boundary remains
insulated. For the mechanical problem, we prescribe the displacement on ΓDu to be ū = 0 and
tractions t̄ = 1 on ΓNu , see fig. 2(b). Due to the definition of the auxiliary problems (2.16) and
(2.29), the boundary conditions for these problems are the same as the thermal problem on ΓDθ

and with homogeneous data on ΓNθ
.
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(a) Thermal problem. (b) Mechanical problem

Figure 2. Domain and boundary conditions.

The study is conducted for two combinations of the contrast parameters γM , γC and γT . The
analyzed cases are given by:

• Case A: γM = γC = γT = 1/3 ,
• Case B: γM = γT = γC = 3 .

The normalized obtained results (gε/DT ) are plotted in fig. 3, where the analytical topological
derivative and the numerical approximations for each value of ε are shown. It can be seen that
the numerical topological derivatives converge to the corresponding analytical value for all cases.
This confirms the validity of the proposed formula (3.60).

Figure 3. Results of numerical verification.

According to the numerical experiments, the obtained formula (3.60) remains valid only for
small (infinitesimal) inclusions. The case associated to topological perturbations of finite size
has been analyzed by [7, 3, 17, 12], for instance.

4. Final comments

The topological derivative in its closed form for the total potential mechanical energy as-
sociated to a thermo-mechanical semi-coupled system, when a circular inclusion is introduced
at an arbitrary point of the domain, has been derived. In particular, the linear elasticity sys-
tem (modeled by the Navier equation) coupled with the steady-state heat conduction problem
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(modeled by the Laplace equation) has been considered. The mechanical coupling term comes
out from the thermal stresses induced by the temperature field. Since this term is non-local, a
non-standard adjoint state has been introduced, which allowed to obtain a closed form for the
topological derivative. In addition, a full mathematical justification for the derived formulas and
precise estimates for the remainders of the topological asymptotic expansion have been provided.
Finally, we remark that this information can be potentially used in a number of applications of
practical interest such as multi-physic topology design of structures under mechanical and/or
thermal loads.
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Appendix A. Estimation of the remainders

Lemma 1. Let ũε be solution to (3.35) or equivalently solution to the following variational

problem: Find ũε ∈ Ũε, such that
∫

Ω
σε(ũε) · ∇η

s = ε2
∫

ΓNu

σ(gu)n · η + ε

∫

∂Bε

hu · η +

∫

Bε

bu · η ∀η ∈ Ṽε , (A.1)

where the set Ũε and the space Ṽε are defined as

Ũε := {φ ∈ H1(Ω;R2) : JφK = 0 on ∂Bε, φ|ΓDu
= ε2gu} , (A.2)

Ṽε := {φ ∈ H1(Ω;R2) : JφK = 0 on ∂Bε, φ|ΓDu
= 0} , (A.3)

and with functions gu, hu and bu, independents of the small parameter ε, given by

gu := −ε−2wε , (A.4)

hu := (1− γM )(∇σ(u(ζ))n)n − (1− γMγC)(∇Q(θ(ξ))n)n) , (A.5)

bu := −(1− γC)γMdiv(Q(θ)) , (A.6)

where the points ζ and ξ belong to the interval (x, x̂). Then, we have the following estimate for
the remainder ũε

‖ũε‖H1(Ω;R2) ≤ Cε1+δ , (A.7)

where C is a constant independent of the parameter ε and δ > 0.

Proof. By taking η = ũε − φε in (A.1), where φε is the lifting of the Dirichlet boundary data
ε2gu on ΓDu , we have
∫

Ω
σε(ũε) · ∇ũ

s
ε = ε2

∫

ΓNu

σ(gu)n · ũε + ε2
∫

ΓDu

gu · σ(ũε)n+ ε

∫

∂Bε

hu · ũε +

∫

Bε

bu · ũε . (A.8)

From the Cauchy-Schwarz inequality we obtain
∫

Ω
σε(ũε) · ∇ũ

s
ε ≤ ε2‖σ(gu)n‖H−1/2(ΓNu ;R

2)‖ũε‖H1/2(ΓNu ;R
2)

+ ε2‖gu‖H1/2(ΓDu ;R
2)‖σ(ũε)n‖H−1/2(ΓDu ;R

2)

+ ε‖hu‖H−1/2(∂Bε;R2)‖ũε‖H1/2(∂Bε;R2)

+ ‖bu‖L2(Bε;R2)‖ũε‖L2(Bε;R2) . (A.9)
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Taking into account the trace theorem, we have
∫

Ω
σε(ũε) · ∇ũ

s
ε ≤ (ε2C1 + ε‖hu‖L2(Bε;R2))‖ũε‖H1(Ω;R2)

+ ‖bu‖L2(Bε;R2)‖ũε‖L2(Bε;R2)

≤ ε2C2‖ũε‖H1(Ω;R2) + εC3‖ũε‖L2(Bε;R2) , (A.10)

where we have used the interior elliptic regularity of functions u and θ, solution to problems (2.8)
and (2.11), respectively. For the estimation of the last term in the right-hand side of the above
expression we will use the Hölder inequality together with the Sobolev embedding theorem. In
fact, we can find an estimate for the remainder ũε of the form ‖ũε‖H1(Ω;R2) ≤ Cε1+δ, with δ > 0
small. In particular, for 1/p + 1/q = 1, we have

‖ũε‖L2(Bε;R2) ≤

[(∫

Bε

‖ũε‖
2p

) 1
p
(∫

Bε

12q
) 1

q

] 1
2

= π1/2q ε1/q‖ũε‖L2p(Bε;R2)

= π1/2q ε1/q‖ũε‖L2q/(q−1)(Bε;R2)

≤ εδC‖ũε‖H1(Ω;R2) , (A.11)

where δ = 1/q, with q > 1, and the constant C independent of the small parameter ε. Next, by
introducing the above result in (A.10) we have,

∫

Ω
σε(ũε) · ∇ũ

s
ε ≤ ε1+δC4‖ũε‖H1(Ω;R2) . (A.12)

Finally, from the coercivity of the bilinear form on the left-hand side of (A.1), namely,

c‖ũε‖
2
H1(Ω;R2) ≤

∫

Ω
σε(ũε) · ∇ũ

s
ε , (A.13)

we obtain

‖ũε‖H1(Ω;R2) ≤ C5ε
1+δ , (A.14)

which leads to the result, with C5 = C4/c . �

Lemma 2. Let θ̃ε be solution to (3.50) or equivalently solution to the following variational

problem: Find θ̃ε ∈ Ũε such that

−

∫

Ω
qε(θ̃ε) · ∇η = ε2

∫

ΓNθ

q(gθ) · n η + ε

∫

∂Bε

hθ η ∀η ∈ Ṽε , (A.15)

where the set Ũε and the space Ṽε are defined as

Ũε := {φ ∈ H1(Ω) : JφK = 0 on ∂Bε, φ|ΓDθ

= −ε2gθ} , (A.16)

Ṽε := {φ ∈ H1(Ω) : JφK = 0 on ∂Bε, φ|ΓDθ

= 0} , (A.17)

and with functions gθ and hθ, independents of the small parameter ε, given by

gθ := ε−2vε , (A.18)

hθ := −(1− γT )(∇q(θ(ξ))n) · n , (A.19)

where the point ξ belongs to the interval (x, x̂). Then, we have the following estimate for the

remainder θ̃ε

‖θ̃ε‖H1(Ω) ≤ Cε2 , (A.20)

where C is a constant independent of the parameter ε.
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Proof. By taking η = θ̃ε − φε in (A.15), where φε is the lifting of the Dirichlet boundary data
ε2gθ on ΓDθ

, we have

−

∫

Ω
qε(θ̃ε) · ∇θ̃ε = ε2

∫

ΓNθ

q(gθ) · n θ̃ε + ε2
∫

ΓDθ

gθ q(θ̃ε) · n+ ε

∫

∂Bε

hθ θ̃ε . (A.21)

From the Cauchy-Schwartz inequality we obtain

−

∫

Ω
qε(θ̃ε) · ∇θ̃ε ≤ ε2‖q(gθ) · n‖H−1/2(ΓNθ

)‖θ̃ε‖H1/2(ΓNθ
)

+ ε2‖gθ‖H1/2(ΓDθ
)‖q(θ̃ε) · n‖H−1/2(ΓDθ

)

+ ε‖hθ‖H−1/2(∂Bε)
‖θ̃ε‖H1/2(∂Bε)

. (A.22)

Taking into account the trace theorem, we have

−

∫

Ω
qε(θ̃ε) · ∇θ̃ε ≤ ε2C1‖θ̃ε‖H1(Ω) + ε2C2‖∇θ̃ε‖L2(Ω)

+ ε‖hθ‖L2(Bε)‖θ̃ε‖H1(Bε)

≤ ε2C1‖θ̃ε‖H1(Ω) + ε2C3‖θ̃ε‖H1(Ω) + ε2C4‖θ̃ε‖H1(Ω)

≤ ε2C5‖θ̃ε‖H1(Ω) , (A.23)

where we have used the interior elliptic regularity of function θ, solution to problem (2.11).
Finally, from the coercivity of the bilinear form on the left-hand side of (A.15), namely,

c‖θ̃ε‖
2
H1(Ω) ≤ −

∫

Ω
qε(θ̃ε) · ∇θ̃ε , (A.24)

we obtain

‖θ̃ε‖H1(Ω) ≤ Cε2 , (A.25)

which leads to the result, with C = C5/c. �

Lemma 3. Let θ̃ε be solution to (3.50). Then, its derivative with respect to ε has the following
estimate

‖θ̃′ε‖H1(Ω) ≤ Cε , (A.26)

where C is a constant independent of the parameter ε.

Proof. The convergence follows by the property of the asymptotic expansions of solutions which
can be differentiated term by term under the appropriate decrease order rule for the remainders
of the expansions, namely O′(εm) = O(εm−1). See the work by [14], for instance. Therefore, the
result follows by Lemma 2 together with the rule O′(ε2) = O(ε). �

Lemma 4. Let ϕ̃ε be solution to (3.55) or equivalently solution to the following variational

problem: Find ϕ̃ε ∈ Ũε such that

−

∫

Ω
qε(ϕ̃ε) · ∇η = ε2

∫

ΓNθ

q(gϕ) · n η + ε

∫

∂Bε

hϕ η +

∫

Bε

bϕ η ∀η ∈ Ṽε , (A.27)

where the set Ũε and the space Ṽε are defined as

Ũε := {φ ∈ H1(Ω) : JφK = 0 on ∂Bε, φ|ΓDθ

= −ε2gϕ} , (A.28)

Ṽε := {φ ∈ H1(Ω) : JφK = 0 on ∂Bε, φ|ΓDθ

= 0} , (A.29)

and with functions gϕ, hϕ and bϕ, independent of the small parameter ε, given by

gϕ := ε−2pε , (A.30)

hϕ := −(1− γT )(∇q(θ(ξ))n) · n , (A.31)

bϕ := −(1− γT )αtrσ(u) . (A.32)
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where the point ξ belongs to the interval (x, x̂). Then, we have the following estimate for the
remainder ϕ̃ε

‖ϕ̃ε‖H1(Ω) ≤ Cε1+δ , (A.33)

where the constant C is independent of the parameter ε and δ > 0.

Proof. By taking η = ϕ̃ε − φε in (A.15), where φε is the lifting of the Dirichlet boundary data
ε2gϕ on ΓDθ

, we have

−

∫

Ω
qε(ϕ̃ε) · ∇ϕ̃ε = ε2

∫

ΓNθ

q(gϕ) · n ϕ̃ε + ε2
∫

ΓDθ

gϕ q(ϕ̃ε) · n

+ ε

∫

∂Bε

hϕ ϕ̃ε +

∫

Bε

bϕ ϕ̃ε . (A.34)

From the Cauchy-Schwartz inequality we obtain

−

∫

Ω
qε(ϕ̃ε) · ∇ϕ̃ε ≤ ε2‖q(gϕ) · n‖H−1/2(ΓNθ

)‖ϕ̃ε‖H1/2(ΓNθ
)

+ ε2‖gϕ‖H1/2(ΓDθ
)‖q(ϕ̃ε) · n‖H−1/2(ΓDθ

)

+ ε‖hϕ‖H−1/2(∂Bε)
‖ϕ̃ε‖H1/2(∂Bε)

+ ‖bϕ‖L2(Bε)‖ϕ̃ε‖L2(Bε) . (A.35)

Taking into account the trace theorem, we have

−

∫

Ω
qε(ϕ̃ε) · ∇ϕ̃ε ≤ ε2C1‖ϕ̃ε‖H1(Ω) + ε2C2‖∇ϕ̃ε‖L2(Ω)

+ ε‖hϕ‖L2(Bε)‖ϕ̃ε‖H1(Bε) + ‖bϕ‖L2(Bε)‖ϕ̃ε‖L2(Bε)

≤ ε2C1‖ϕ̃ε‖H1(Ω) + ε2C3‖ϕ̃ε‖H1(Ω)

+ ε2C4‖ϕ̃ε‖H1(Ω) + εC5‖ϕ̃ε‖L2(Bε) , (A.36)

where we have used the interior elliptic regularity of functions θ and u. By using the Hölder
inequality together with the Sobolev embedding theorem, the last term in the right-hand side
of the above expression is given by

‖ϕ̃ε‖L2(Bε) ≤ εδC‖ϕ̃ε‖H1(Ω) , (A.37)

where δ = 1/q, with q > 1, and the constant C independent of the small parameter ε. Next, by
introducing the above result in (A.36) we have,

−

∫

Ω
qε(ϕ̃ε) · ∇ϕ̃ε ≤ ε1+δC6‖ϕ̃ε‖H1(Ω) . (A.38)

Finally, from the coercivity of the bilinear form on the left-hand side of (A.15), namely,

c‖ϕ̃ε‖
2
H1(Ω) ≤ −

∫

Ω
qε(ϕ̃ε) · ∇ϕ̃ε , (A.39)

we obtain

‖ϕ̃ε‖H1(Ω) ≤ Cε1+δ , (A.40)

which leads to the result, with C = C6/c �

Lemma 5. Let θε, uε and u solution of the problems (2.24), (2.21) and (2.8). Then, we have
the following estimate for the remainder E(ε) in (3.47):

E(ε) ≤ Cε2 , (A.41)

where C is a constant independent of the parameter ε.
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Proof. By tacking into account the definition of the mechanical and thermal stress operators σε
and Qε, respectively, the remainder term E(ε) in (3.47) can be alternatively written as:

E(ε) = −

∫

Ω
γCε Bθ

′
ε · σε(uε − u). (A.42)

Next, by considering the definition of the contrast γCε and the ansatz (3.31) and (3.48), the
above expression is given by

E(ε) = −

∫

Ω\Bε

Bv′ε · σε(wε)−

∫

Bε

γCBv′ε · σε(wε)−

∫

Ω\Bε

Bθ̃′ε · σε(wε)

−

∫

Bε

γCBθ̃′ε · σε(wε)−

∫

Ω\Bε

Bv′ε · σε(ũε)−

∫

Bε

γCBv′ε · σε(ũε)

−

∫

Ω
Bθ̃′ε · σε(ũε) . (A.43)

Since v′ε = 0 in Bε and σε(φ) = σ(φ) in Ω \ Bε, the remainder E(ε) is given by

E(ε) = −

∫

Ω\Bε

Bv′ε · σ(wε)−

∫

Ω\Bε

Bθ̃′ε · σ(wε)−

∫

Bε

γCBθ̃′ε · σε(wε)

−

∫

Ω\Bε

Bv′ε · σ(ũε)−

∫

Ω
Bθ̃′ε · σε(ũε) . (A.44)

From the Cauchy-Schwartz inequality we obtain

E(ε) ≤ C1‖v
′
ε‖L2(Ω\Bε)

‖σ(wε)‖L2(Ω\Bε;R2) + C1‖θ̃
′
ε‖L2(Ω\Bε)

‖σ(wε)‖L2(Ω\Bε;R2)

+ C2‖θ̃
′
ε‖L2(Bε)‖σε(wε)‖L2(Bε;R2) + C1‖v

′
ε‖L2(Ω\Bε)

‖σ(ũε)‖L2(Ω\Bε;R2)

+ C3‖θ̃
′
ε‖L2(Ω)‖σε(ũε)‖L2(Ω;R2) . (A.45)

By considering the asymptotic expansion of vε presented in (3.51) its derivative with respect to
ε can be written as v′ε = εgv(x) in Ω \ Bε, with the function gv independent of the parameter ε.
After introducing a change of variables of the form y = ε−1x, we have

‖v′ε‖L2(Ω\Bε)
=

(∫

Ω\Bε

|εgv(x)|
2

) 1
2

= ε

(∫

R2\B1

|gv(y)|
2

) 1
2

≤ εC4 , (A.46)

where we have used the fact that function gv(y) is regular at infinity, i.e., gv(y) → 0 when
‖y‖ → ∞. In the same way, by considering (3.38) to (3.40) and the same change of variables,
we obtain

‖σ(wε)‖L2(Ω\Bε;R2) = ε

(∫

R2\B1

‖σ(hσ(y))‖
2

) 1
2

≤ εC5 , (A.47)

being the function hσ(x) independent of the parameter ε and regular at infinity, such that,
σ(hσ(y)) → 0 when ‖y‖ → ∞. By taking into account the fact that function σε(wε) is indepen-
dent of the parameter ε in Bε, we can write σε(wε) = σ(bσ(x)) in Bε. Then, we have

‖σε(wε)‖L2(Bε;R2) =

(∫

Bε

‖σ(bσ(x))‖
2

) 1
2

≤ εC6 . (A.48)
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Next, by introducing the above results in (A.45), we have

E(ε) ≤ ε2C7 + εC8‖θ̃
′
ε‖L2(Ω\Bε)

+ εC9‖θ̃
′
ε‖L2(Bε)

+ εC10‖σ(ũε)‖L2(Ω\Bε;R2) + C3‖θ̃
′
ε‖L2(Ω)‖σε(ũε)‖L2(Ω;R2) ,

≤ ε2C7 + εC11‖θ̃
′
ε‖H1(Ω) + εC12‖ũε‖H1(Ω;R2)

+ C13‖θ̃
′
ε‖H1(Ω)‖ũε‖H1(Ω;R2) , (A.49)

Finally, by considering the Lemmas 1, 2 and 3, we obtain

E(ε) ≤ Cε2 , (A.50)

which leads to the results, with C independent of the parameter ε. �
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RJ, Brazil.

E-mail address: novotny@lncc.br
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